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Abstract Bayesian models are often successful in describing
perception and behavior, but the neural representation of
probabilities remains in question. There are several distinct
proposals for the neural representation of probabilities, but
they have not been directly compared in an example system.
Here we consider three models: a non-uniform population
code where the stimulus-driven activity and distribution of
preferred stimuli in the population represent a likelihood
function and a prior, respectively; the sampling hypothesis
which proposes that the stimulus-driven activity over time
represents a posterior probability and that the spontaneous
activity represents a prior; and the class of models which
propose that a population of neurons represents a posterior
probability in a distributed code. It has been shown that the
non-uniform population code model matches the representa-
tion of auditory space generated in the owl’s external nucleus
of the inferior colliculus (ICx). However, the alternative
models have not been tested, nor have the three models been
directly compared in any system. Here we tested the three
models in the owl’s ICx.We found that spontaneous firing rate
and the average stimulus-driven response of these neurons
were not consistent with predictions of the sampling hypoth-
esis. We also found that neural activity in ICx under varying
levels of sensory noise did not reflect a posterior probability.
On the other hand, the responses of ICx neurons were consis-
tent with the non-uniform population code model. We further
show that Bayesian inference can be implemented in the non-

uniform population code model using one spike per neuron
when the population is large and is thus able to support the
rapid inference that is necessary for sound localization.
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1 Introduction

Perception and behavior are often consistent with Bayesian
inference. Bayesian models describe how sensory and prior
information can be combined optimally (Fig. 1). Bayesian
inference about a variable θ, such as the direction of a sound
source, based on sensory information S is performed using the
posterior probability p θjSð Þ. The posterior probability cap-
tures what is known about the variable θ after sensory input
S has been observed. Bayes’ rule tells us that the posterior
probability can be written as p θjSð Þ∝p Sjθð Þp θð Þ, where p θð Þ
is the prior and the probability p Sjθð Þ viewed as a function of
θ is called the likelihood. The likelihood describes how the
sensory input depends on the external variable θ. The prior
describes the probability distribution of θ before any sensory
information has been received. Bayesian models highlight the
importance of prior distributions in solving perceptual prob-
lems that rely on ambiguous sensory information (Fischer and
Peña 2011; Weiss et al. 2002). For example, visual informa-
tion from small regions of an image does not uniquely signal
the velocity of an object. A Bayesian model with a prior that
favors slow velocities explains human perception of visual
motion, including misjudgments of velocities, based on the
ambiguous local motion information (Weiss et al. 2002). An
important open question is, however, how the components of
a Bayesian model are represented in the brain.
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Several models exist for the neural representation of a
probability distribution. Here we consider models that make
specific predictions about how neural circuits represent a
probability defined on environmental variables θ and the
resulting sensory input S. These models differ in the way that
the response of a neuron or group of neurons encodes a
posterior probability, and thus make experimentally testable
predictions that allow the models to be evaluated and distin-
guished between.

The non-uniform population code model proposes that the
likelihood is represented in the shape of the tuning curves and
the prior is represented in the distribution of preferred stimuli
(Fig. 1a) (Shi and Griffiths 2009; Fischer and Peña 2011;

Girshick et al. 2011). The representation of the prior p θð Þ in
the distribution of preferred stimuli means that more neurons
will have preferred stimuli θn in regions of the stimulus space
that have high prior probability. This is achieved in the model
by having the preferred stimuli sampled from the prior. The
model prediction that neural responses are determined by the
likelihood function means that the tuning of a neuron with
preferred stimulus θn to the sensory input S is determined by
the statistics of the sensory input p Sjθnð Þ. Specifically, under
this model the activity of neurons in the population to stimulus
S is assumed to be proportional to the likelihood p Sjθð Þ. This
model is consistent with experimental observations in the
owl’s midbrain (Fischer and Peña 2011).

The sampling hypothesis for the neural implementation of
Bayesian inference states that neurons correspond to vari-
ables, and the stochastic firing encodes the distribution of
the variables (Fig. 1b). Given a stimulus S, a neuron corre-
sponding to variable θ will have firing rates that are samples
from the posterior probability p θjSð Þ (Berkes et al. 2011; Fiser
et al. 2010). Thus, a neuron encoding the posterior probability
p θjSð Þ will have a high mean firing rate when a large value of
the variable θ is most probable and will have a lowmean firing
rate when a small value of θ is most probable. Also, the firing
rate will have high variability over time when the posterior has
a large variance and will have low variability over time when
the posterior has a small variance. When the firing rate reflects
the posterior in this way, a histogram of stimulus-driven
activity over time will approximate the posterior p θjSð Þ
(Fig. 1b). If there is no stimulus, the probability over θ is the
prior distribution p θð Þ. Thus, the sampling hypothesis predicts
that spontaneous activity, in the absence of a stimulus, is
sampled from the prior (Berkes et al. 2011; Fiser et al.
2010). This implies that the spontaneous activity will be
clustered around the values of θ that have high prior proba-
bility, with a variability that reflects the prior variance. The
sampling hypothesis therefore leads to the prediction that the
distribution of spontaneous activity of a neuron is the average
of the distribution of the stimulus driven activity. These pre-
dictions are consistent with observations in ferret V1 (Berkes
et al. 2011).

A third hypothesis is that neural activity in a population
directly encodes the posterior or the log of the posterior
(Fig. 1c) (Anderson and Van Essen 1994; Barber et al. 2003;
Eliasmith and Anderson 2004; 1993; Gold and Shadlen 2000;
Sahani and Dayan 2003; Sanger 1996; Simoncelli 2003,
2009). In models of this type, neurons have preferred stimuli
θn that uniformly cover the range of possible stimuli, regard-
less of the prior distribution. The pattern of stimulus-driven
activity of neurons in the population encodes the posterior
p θjSð Þ such that the firing rate of a neuron with preferred
stimulus θn reflects the value of the posterior at or near θn.
In this way, the pattern of activity across the population
matches the shape of the posterior distribution. Specifically,

Fig. 1 Models for the neural implementation of Bayesian inference a
The non-uniform population code model of Fischer and Peña (2011)
proposes that the neural activity encodes the likelihood (red) and the
prior is represented in the distribution of preferred directions of midbrain
neurons. b The sampling hypothesis predicts that neural activity
represents samples from the posterior. A histogram of the neural
activity over time approximates the posterior. c A population may
directly encode the posterior in the activities of neurons that are
uniformly distributed
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neurons with preferred stimuli θn that have high posterior
probability will have high firing rates, and neurons with
preferred stimuli θn that have low posterior probability will
have low firing rates.

These models for the neural implementation of Bayesian
inference have not been directly compared in an example
system. The rapid sound localization behavior of the barn
owl for brief sounds is consistent with a Bayesian model
(Fischer and Peña 2011). Here, the sensory information is
the interaural time difference (ITD), which is an ambiguous
cue for direction (Fischer and Peña 2011). A prior that em-
phasizes central directions encodes the owl’s behavioral bias
and allows for accurate localization for ethologically relevant
directions. The neural implementation of Bayesian inference
is consistent with a non-uniform population codemodel where
the prior is represented in the distribution of preferred stimuli.
The predictions of the non-uniform population code model
match the representation of auditory space generated in the
owl’s external nucleus of the inferior colliculus (ICx) (Fischer
and Peña 2011). However, the alternative models have not
been tested in the owl, nor have the three models been directly
compared in any system. Here we test alternative models for
the neural implementation of Bayesian inference in the owl’s
midbrain. Further, we test whether any of the models that are
consistent with the data for the owl are able to implement
Bayesian inference with few spikes per neuron, as required for
the fast temporal dynamics of the owl’s sound localization.

2 Materials and methods

2.1 Neurophysiology

Data collection methods have been described in detail previ-
ously (Peña and Konishi 2002; Wang et al. 2012). Procedures
complied with the U.S. National Institutes of Health and the
Albert Einstein College of Medicine’s Institute of Animal
Studies guidelines. Briefly, adult barn owls (Tyto alba) of both
sexes were restrained with a soft cloth jacket and anesthetized
with intramuscular injections of ketamine hydrochloride
(20 mg/kg Ketaset) and xylazine (4 mg/kg Anased).

Single units were extracellularly recorded in ICx using 1
MΩ tungsten electrodes (A-M Systems). Single units were
isolated by spike amplitude. Spikes were detected offline
using spike-discrimination software written in MATLAB
(MathWorks). ICx was located stereotaxically (Knudsen
1983) and by the unambiguous response of its neurons to
interaural time (ITD) and level (ILD) differences.

All free-field experiments were performed in a double-
walled sound-attenuating chamber (Industrial Acoustics) lined
with echo-absorbing acoustical foam (Sonex). The free-field
spatial tuning of the neurons was measured using a custom-
made hemispherical array of 144 speakers (Sennheiser,

3P127A) constructed inside the sound-attenuating chamber.
The speaker array range is ±100° in azimuth and ±80° in
elevation. The angular separation between the speakers varied
from 10° to 30°. During recordings, the owl was placed in a
stereotaxic frame at the center of the speaker array such that all
speakers were equidistant (60 cm) from the owl’s head.
Auditory stimuli used to measure free-field spatial RFs
consisted of five repetitions of 100 ms duration broadband
signals (0.5–10 kHz), with a 5 ms rise–fall time and 50 dB
intensity. Stimuli were presented with an interstimulus interval
(ISI) of 300 ms in which speaker location was randomized.

Extracellular ITD tuning was measure at different levels of
binaural correlation (BC). Acoustic stimuli were digitally
synthesized with a personal computer and delivered to both
ears by calibrated earphone assemblies. Auditory stimuli
consisted of broadband noise bursts [0.5–12.0 kHz; 50 or
100 msec in duration and 5 msec rise and decay times; sound
level of 40–50 dB sound pressure level]. The computer syn-
thesized three random noises to obtain different values of
binaural correlation. One of them was delivered to one ear
and its copy to the other ear, making the correlated component
of the stimulus. Each of the other two noises was used as the
uncorrelated component of the stimulus by adding it to the
correlated noise while keeping the sound level constant.
Binaural correlation varies with the relative amplitude of the
uncorrelated and correlated noises by 1/(1 + k2), where k is
the ratio between the root-mean-square amplitudes of the
uncorrelated and correlated noises.

Intracellular responses were recorded in vivo using sharp
borosilicate glass electrodes filled with 2 M potassium acetate
and 4 % neurobiotin. Analog signals were amplified
(Axoclamp 2A; Axon Instruments, Foster City, CA) and
stored in the computer. We identified ICx neurons by labeling
their axons, which project to the optic tectum. The tracer
neurobiotin was injected by iontophoresis (3 nA positive,
300 msec current steps; three per second for 5–30 min).
After the experiment, the owls were overdosed with
Nembutal and perfused with 2 % paraformaldehyde. Brain
tissue was cut in 60-μm-thick sections and processed accord-
ing to standard protocols (Kita and Armstrong 1991).
Membrane potentials were median-filtered using a sliding
window of 1 ms to remove spikes for the analysis of variabil-
ity over time.

2.2 Model

Our tests of the three models for the neural implementation of
Bayesian inference utilize the Bayesian behavioral model of
Fischer and Peña (2011). In this model, the environmental
variable is the azimuth of a sound source and the sensory input
is the ITD. The prior in the Bayesian model of the owl’s
localization behavior is a Gaussian with zero mean and a
standard deviation of 23.3 deg. This is consistent with the
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owl’s localization performance and also with the experimental
observation that the owl spends most of the time with the prey
in front of it while engaged in prey capture (Edut and Eilam
2004). The prior in the description of the localization of brief
sounds corresponds to the owl’s behavioral bias. While the
distribution of initial prey directions may be uniform, the
Gaussian prior represents the ethological importance of accu-
rate localization when the prey is in a position for the owl to
strike (Fischer and Peña 2011; Salinas 2011). The likelihood is
based on the model that ITD is a sinusoidal function of
direction, corrupted by Gaussian noise with zero mean and
standard deviation 41.2 μs. This model is constrained by
direct measurements of the ITD in the signals in the ear canals
for sounds arising from different directions in space
(Hausmann et al. 2009). This model describes the owl’s rapid
localization of brief sounds and this is the context in which our
tests are made.

We modified the neural model of Fischer and Peña (2011)
to consider the case of computation with single spikes per
neuron. The tuning curves of the model neurons are given by

an θð Þ ¼ amaxexp −
Asin ωθð Þ−Asin ωθnð Þð Þ2

2σ BCð Þ2
 !

where amax is the maximum firing rate, θn is the preferred
direction, σ BCð Þ determines the width of the curve depending
on the binaural correlation BC, and A=260 μs and ω=0.143
rad are determined by the head-related transfer function
(Hausmann et al. 2009). The width parameter of the tuning
curve is given by σ BCð Þ ¼ 219:38exp �11:31BCð Þ þ41:2μs
where the binaural correlation BC ranges from 0 for uncorre-
lated sounds to 1 for correlated sounds (Fischer and Peña
2011) The maximum firing rate amax was selected to produce
less than one spike per neuron on average. Spike counts were
independent Poisson variables with the rates an θð Þ. Although
ICx neurons likely have correlated spike count variability, the
population vector decoder we use is robust to the presence of
correlated variability (Fischer and Peña 2011) and the assump-
tion of independence greatly reduces the computational
complexity.

3 Results

3.1 Test of the sampling hypothesis in ICx

The sampling hypothesis for the neural implementation of
Bayesian inference states that neurons correspond to variables
θ and stochastic stimulus-driven firing encodes the posterior
distribution of the variables p θjSð Þ, where S is the sensory

input (Fig. 1b). Here, the environmental variable θ is the
direction of a sound source and the sensory input S is the
localization cue ITD. Similarly, the sampling hypothesis pre-
dicts that spontaneous activity is sampled from the prior p θð Þ
(Berkes et al. 2011; Fiser et al. 2010). This hypothesis leads to
the prediction that the distribution of spontaneous activity of a
neuron is the average of the distribution of the stimulus driven
activity:

p θð Þ ¼
Z

p θjSð Þp Sð ÞdS:

This prediction for the distributions of spontaneous and
stimulus-driven activity implies the simpler condition that
the mean spontaneous firing rate is equal to the average over
all stimuli of the trial-averaged stimulus-driven firing rate
(Berkes et al. 2011; Fiser et al. 2010):

E θ½ � ¼
Z

E θjS½ �p Sð ÞdS:

Therefore, if the mean spontaneous firing rate is not equal to
the mean stimulus-driven firing rate, the sampling hypothesis
is not supported.

To test the sampling hypothesis in the owl, we compared
the mean spontaneous firing rate of midbrain auditory neurons
to the mean firing rate evoked by noise bursts presented in free
field from different directions in space (Fig. 2). We computed
the mean evoked activity by averaging over directions either
using the Gaussian prior from the Bayesian model or a uni-
form distribution over directions. The uniform distribution
matches the distribution of stimulus directions used in the
experimental data collection. We found that, in contrast to
the sampling hypothesis prediction (Berkes et al. 2011; Fiser
et al. 2010), the mean spontaneous firing rate was significantly
lower than the mean stimulus-driven firing rate, averaged over
all directions (Kolmogorov-Smirnov p<0.01 for each neuron
with both priors; n=61; Fig. 2). With spontaneous firing
largely absent from midbrain neurons, the average of the
stimulus driven activity cannot match the spontaneous activ-
ity, as required by the sampling hypothesis.

The sampling hypothesis also predicts that variability in
neural responses over time represents uncertainty (Berkes
et al. 2011; Fiser et al. 2010). Thus in the sampling hypothesis
the neural variability over time should increase when sensory
noise increases. In the owl’s sound localization system, sen-
sory noise increases when sounds at the two ears become
decorrelated (Saberi et al. 1998). When independent noise is
added to the ears, the correlation goes down, and it is said that
the sounds are ‘decorrelated’. The sensory noise increases by
adding relatively greater amplitude noise signals to the left and
right ears. We measured the variability of membrane potential
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responses of ICx neurons over time for correlated and uncor-
related sounds. We found that variability in the neural re-
sponse at the preferred ITD and ILD was higher for correlated
sounds than for uncorrelated sounds in 9 of 12 neurons (Fig. 3;
p<0.05; t-test). This result is opposite to the prediction of the
sampling hypothesis. Similarly, variability in the spike count
at the preferred ITD and ILD was higher for perfectly corre-
lated sounds than for sounds with zero correlation (p=0.007;
t-test; n=21). The increase in variability of spike count re-
sponses we observed as stimulus correlation increases is con-
sistent with Poisson-like neural noise and is expected due to
the increase in mean firing rate as correlation increases.

Consistent with our measurements in ICx, Saberi et al.
(1998) reported a small but significant increase in variability
in spiking responses of optic tectum neurons when correlation
increases. Thus, the responses of midbrain auditory neurons in
the owl do not support the sampling hypothesis.

3.2 Population coding of the posterior

Another hypothesis for the neural implementation of Bayesian
inference is that firing rates of a population of neurons encode
the posterior distribution (Fig. 1c). In these models, neurons
have preferred stimuli θn covering the range of possible
values. The firing rate of a neuron with preferred stimulus θn
reflects the value of the posterior at or near θn (Anderson and
Van Essen 1994; Barber et al. 2003; Eliasmith and Anderson
2004; 1993; Gold and Shadlen 2000; Sahani and Dayan 2003;
Sanger 1996; Simoncelli 2003, 2009). We tested this hypoth-
esis in the owl by comparing midbrain auditory responses
with those predicted by the posterior distribution as binaural
correlation changes.

The posterior probability is found by multiplying the like-
lihood function and the prior probability, and thus combines

Fig. 2 Spontaneous and stimulus-driven activity in the midbrain (a)
Auditory midbrain neurons in the owl have spatially restricted receptive
fields (black) and low spontaneous activity. The spontaneous activity
(red) is lower than the mean stimulus-driven activity (blue). (b)
The mean spontaneous firing rate is significantly lower than the mean
stimulus-driven firing rate, in contrast to the prediction of the sampling
hypothesis. The mean stimulus-driven firing rate was computed using the
Gaussian prior from the Bayesian model (gray) and the uniform
distribution used in data collection (black)

Fig. 3 Variability over time in midbrain responses (a–f) The variability
over time in median-filtered (black) membrane potential responses is
higher for correlated sounds (a,d) than for uncorrelated sounds (b,e), in
contrast to the prediction of the sampling hypothesis. This occurs for
stimulus conditions where spiking occurs (a–c) and where spiking is
absent (d–f). Error bars in (c) and (f) are bootstrap standard deviations
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sensory input with prior information. The relative weighting
of sensory input and prior assumptions depends on the reli-
ability of sensory input. As sensory input becomes unreliable,
the posterior becomes more greatly influenced by the prior.
The reliability of ITD as a sound localization cue is degraded
when the binaural correlation decreases (Saberi et al. 1998).
Consequently, in a Bayesian model, the posterior probability
will shift towards the prior as binaural correlation decreases
(Fig. 4a). The prediction for the representation of the posterior
under changing binaural correlation is that the locus of max-
imal activity in the population would shift towards zero de-
grees as binaural correlation decreases. This prediction holds
whether we assume that the firing rate of a neuron encodes the
posterior directly or the log-posterior. In addition, this predic-
tion of a shift in the locus ofmaximal activity in the population
as BC decreases would hold for any model where neural
activity is a fixed linear transformation of the posterior or
log-posterior.

A neural representation of a shifting posterior as binaural
correlation decreases can be accomplished by two possible

mechanisms. First, a shift of preferred directions toward zero
degrees as binaural correlation decreases would be consistent
with neural activity representing the posterior distribution.
However, we found that the preferred ITD does not change
as binaural correlation decreases (Fig. 4b and c). The best
ITDs for the most peripheral neurons shifted slightly away
from zero, rather than toward zero, when binaural correlation
was reduced from 1 to 0.3 or 0.25 (Fig. 4c). The regression
line fitting the relationship between the best ITD for perfectly
correlated sounds and the best ITD at the low binaural corre-
lation value had a slope of 0.97, indicating that best ITD did
not change with binaural correlation (r2=0.82). Supporting the
claim that preferred ITD does not change with binaural cor-
relation is the observation that neural responses to ITD in the
owl’s sound localization pathway are well described by a
cross-correlation of the left and right input signals (Albeck
and Konishi 1995; Saberi et al. 1998). As specified in the
cross-correlation model, the preferred ITD does not change
with binaural correlation, but the gain of the response de-
creases as binaural correlation decreases (Albeck and
Konishi 1995; Saberi et al. 1998).

A second possible mechanism for representing the posteri-
or in neural activity is for the gain of neural responses to
change non-uniformly over the space map as binaural corre-
lation decreases. Using the Bayesian model of Fischer and
Peña (2011), we found that the pattern of gain change of
individual neurons with binaural correlation at the preferred
direction necessary to represent the posterior in neural activity
is sigmoidal, with a greater diversity of responses across
neurons at 0 binaural correlation than when binaural correla-
tion is 1 (Fig. 4d). The greater diversity of responses across
neurons at 0 binaural correlation occurs in the model because
neurons with preferred directions in the periphery must all
decrease their responses to zero while those neurons with
preferred directions near zero must maintain a variety of
elevated responses in order to encode a posterior that peaks
near zero. This is in contrast to the experimentally observed
ramp pattern where the gain converges to zero with little
variability over neurons (Fig. 4e) (Albeck and Konishi 1995;
Saberi et al. 1998). Therefore, the responses of midbrain
auditory neurons in the owl are not consistent with the repre-
sentation of the posterior probability directly in the population
responses as binaural correlation changes.

3.3 Inference with a single spike

The owl’s natural sound localization behavior requires infer-
ences to be made rapidly about sound source direction. Here
we test whether inference can be performed instantaneously in
the non-uniform population code model. We consider the
Bayesian model of ITD-based localization in the owl of
Fischer and Peña (2011) in the case of single spikes per
neuron. We use a small time interval so that the maximum

Fig. 4 Testing the representation of the posterior a The Bayesian model
shows that the posterior shifts toward prior as BC decreases. b Preferred
ITD of midbrain neurons doesn’t shift toward zero as BC decreases. c
Best ITD for perfectly correlation sounds (BC = 1) and decorrelated
sounds (BC = 0.25 for intracellular, BC = 0.3 for extracellular). The
dashed line is the regression line. d Predicted responses at the best ITD as
BC varies needed to represent the posterior. e Measured responses at the
best ITD as BC varies in the optic tectum (adapted from Saberi et al.
1998)
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spike count per stimulus of the Poisson spiking neurons is
approximately one (Fig. 5a).We compared the performance of
the population vector decoder to the Bayesian estimator for
different levels of binaural correlation. This allowed us to test
whether Bayesian inference can be performed instantaneously
in the model. This provides a stringent test of the model’s
applicability to the owl’s natural behavior. It also allows us to
test generally whether the non-uniform population codemodel
applies to rapid inference problems. This is in contrast to the
version of the sampling hypothesis that postulates that sam-
pling over time is used for inference (Fiser et al. 2010).

We found that Bayesian inference can be implemented with
a single spike per neuron in the non-uniform population code
model. The population vector accurately approximates the
performance of the Bayesian estimate of direction over a range
of binaural correlation levels (Fig. 5b). Thus, the model is able
to represent the stimulus uncertainty and produce the correct
weighting of sensory and prior information when neurons fire
at most one spike per neuron. The neural population encodes a
decrease in binaural correlation by spreading activity over

more of the population (Fig. 5a). This corresponds to a broad-
ening of neural tuning as correlation decreases. Under the
non-uniform population code model, the likelihood function
is represented by the population activity. Thus, the population
contains a representation of the stimulus uncertainty through
this broadening of the activity pattern. While we ultimately
measure the influence of the uncertainty on the direction
estimate, the uncertainty is represented in the population and
could be used in other computations.

While instantaneous inference is possible, the population
vector only approximates the Bayesian estimate to within the
owl’s behavioral resolution of 3 deg (Bala et al. 2003) for a
population size of more than 400,000 neurons (Fig. 5c). The
midbrain auditory space map contains more than the required
400,000 neurons (Knudsen 1983). However, correlations in
the responses of midbrain neurons due to shared inputs may
limit the capacity for pooling to improve the accuracy of the
population vector (Fischer and Peña 2011). Note that if mul-
tiple spikes are allowed, the number of required neurons
decreases. The owl typically integrates information over 50–
100 ms before generating an orienting movement (Knudsen
et al. 1979), which would allow for several spikes per active
neuron. This shows that, in principle, the non-uniform popu-
lation model can implement Bayesian inference instanta-
neously if many independent neurons are used in the
representation.

4 Discussion

Given the success of Bayesian models in describing percep-
tion and behavior, a central question is how a prior distribution
can be represented and combined with sensory information in
the brain. We tested several hypotheses for the neural repre-
sentation of probability distributions in the owl’s localization
pathway, where the localization behavior for brief sounds is
well described as Bayesian inference (Fischer and Peña 2011).
We found that the owl’s representation of auditory space is not
consistent with the sampling hypothesis’ prediction that
stimulus-driven responses are samples from a posterior distri-
bution and spontaneous responses are samples from the prior
(Berkes et al. 2011; Fiser et al. 2010). We also found that
neural responses in the owl’s midbrain do not reflect a direct
encoding of the posterior distribution in the population
(Anderson and Van Essen 1994; Barber et al. 2003;
Eliasmith and Anderson 2004; 1993; Gold and Shadlen
2000; Sahani and Dayan 2003; Sanger 1996; Simoncelli
2003, 2009). The responses are only consistent with the
non-uniform population code model which proposes that the
likelihood is represented in the shape of the tuning curves and
the prior is represented in the distribution of preferred direc-
tions ofmidbrain neurons (Fischer and Peña 2011). In the non-

Fig. 5 Instantaneous inference a Responses of neurons in the model of
Fischer and Peña (2011) for correlated sounds (top; BC = 1), decorrelated
sounds (middle, BC = 0.5) and uncorrelated sounds (bottom; BC = 0).
Jitter was added to the firing rates for display. b The population vector
decoder matches the Bayesian estimate when single spikes per neuron are
used. c Accurate neural inference with the population vector and single
spikes per neuron requires a large population
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uniform population code model, variability in neural re-
sponses is treated as noise that is reduced by averaging the
responses of many neurons (Fischer and Peña 2011). The
increase in variability of spike count responses we observed
as stimulus correlation increases is consistent with Poisson-
like neural noise and is expected due to the increase in mean
firing rate as correlation increases. In addition, our observation
that best ITD does not change with binaural correlation
matches the prediction of the non-uniform population code
that the neural responses encode the likelihood function
(Fischer and Peña 2011). Thus, the responses of midbrain
auditory neurons are consistent with non-uniform population
code model for the representation of probabilities.

There are additional models for the neural representation of
probability distributions that we did not consider here. For
example, the probabilistic population coding model proposes
that neural activities are parameters in a high-dimensional
probability distribution that is used for inference (Ma et al.
2006). This class of models has successfully described prob-
abilistic computations in multiple settings (Beck et al. 2008;
Fetsch et al. 2011; Ma et al. 2011). However, we have previ-
ously shown that this model does not apply to the owl’s rapid
sound localization behavior (Fischer and Peña 2011). We also
did not test spiking models of inference that apply to binary
variables (Deneve 2008) because sound source direction is a
continuous variable.

What is the benefit of representing the prior in the distri-
bution of preferred directions rather than directly representing
the posterior in the neural activity? One explanation provided
by Ganguli and Simoncelli (2014) is that such a representation
produces an efficient code. This representation maximizes the
information that the neural responses convey about the envi-
ronmental variables. Additionally, if the posterior is directly
encoded in the activities, then the prior needs to be supplied in
terms of activity from either spontaneous responses or another
population (Ma et al. 2006). This is inefficient in terms of the
use of neural energy resources (Simoncelli 2009). A further
benefit of the representation of the likelihood, rather than the
posterior, in neural activity is that neurons can be pooled to
reduce neural noise when an estimate is decoded from the
population. The largest number of preferred directions, and
therefore the largest reduction in neural noise, occurs at high-
probability regions of the prior. Therefore, representing the
prior in the distribution of preferred directions can have the
benefit of providing a more accurate neural approximation to
the Bayesian estimate.

The prediction of the sampling hypothesis that the distri-
bution of spontaneous activity of a neuron is the average of the
distribution of the stimulus driven activity is independent of
the particular features of the Bayesian model. Therefore, our
finding that the prediction does not hold cannot be explained
by a failure of our particular Bayesian model of localization in
the owl. Berkes et al. (2011) found that the prediction of the

sampling hypothesis holds in the ferret primary visual cortex
for natural stimuli, but not for artificial stimuli. The natural
stimuli for the owl are rustling sounds or vocalizations of prey
or other owls (Konishi 1973). The noise bursts used in this
study are approximations to the short, broadband rustling
sounds of prey (Konishi 1973). In addition, noise bursts
readily elicit orienting behavior in owls (Knudsen et al.
1979). Even though the stimuli are approximations to natural
stimuli, the lack of spontaneous activity in the auditory mid-
brain neurons indicates that the average of stimulus-driven
activity from any stimulus distribution will not match the
spontaneous activity. The stimulus level used to measure
driven responses will influence the match between the average
of stimulus-driven activity and the spontaneous activity. As
the stimulus level decreases, the match will improve (Arthur
2004). However, for any supra-threshold stimulus level, the
average of stimulus-driven activity and the spontaneous ac-
tivity will never be equal, as required by the sampling hypoth-
esis. High spontaneous activity is observed in the superficial
layers of the optic tectum (Knudsen 1982), which may pro-
vide a means to represent prior information. However, these
neurons do not have auditory evoked responses and thus their
responses would not correspond to sampling from the poste-
rior, as required in the sampling hypothesis. Finally, our
rejection of the sampling hypothesis in the owl is supported
by the observation that response variability increases when
sensory noise decreases. We found that this was true for
preferred stimulus parameters that generated the highest firing
rate and for non-preferred stimulus parameters where the
neuron did not spike (Fig. 3). This shows that even for stimuli
that produce average responses that match the spontaneous
activity, the variability is not consistent with the prediction of
the sampling hypothesis. We also note that an alternative
version of the sampling hypothesis could be implemented in
a population of neurons where sampling occurs over neurons,
as well as over time. Sampling over neurons would have the
benefit of allowing for rapid inference if many neurons repre-
sented each feature. However, increasing the number of neu-
rons per feature-dimension of the distribution would limit the
possibility of representing high-dimensional distributions with
small numbers of neurons. While sampling over neurons and
time may be possible in general, this model would lead to the
same predictions for neural responses that we considered here
and would therefore be inconsistent with ICx responses.

There is a trade-off between the time and number of neu-
rons required to do inference in the sampling hypothesis and
non-uniform population code models. The sampling hypoth-
esis, as presented in Fiser et al. (2010) and Berkes et al. (2011),
requires only a single neuron per dimension of the distribu-
tion, but it takes time to generate the samples necessary to
represent the distribution. In a sampling scheme, a sample
from the distribution is generated at each time, but many such
samples are required to perform inferences such as computing
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the mean, variance, or higher order statistics of the distribution
accurately. This is advantageous for representing the high-
dimensional distributions that are likely involved in complex
cognitive tasks. By contrast, the non-uniform population code
can perform inference with a single spike per neuron, but
requires many neurons to represent the distribution. This is
advantageous for tasks, such as orientation that must be per-
formed rapidly and are relatively stereotyped.We propose that
the method used to represent Bayesian models in the brain
may vary among regions depending on the task demands.
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