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Abstract

Our experience of the world seems to divide naturally into discrete, temporally extended events,

yet the mechanisms underlying the learning and identification of events are poorly understood.

Research on event perception has focused on transient elevations in predictive uncertainty or

surprise as the primary signal driving event segmentation. We present human behavioral and

functional magnetic resonance imaging (fMRI) evidence in favor of a different account, in which

event representations coalesce around clusters or ‘communities’ of mutually predicting stimuli.

Through parsing behavior, fMRI adaptation and multivoxel pattern analysis, we demonstrate the

emergence of event representations in a domain containing such community structure, but in

which transition probabilities (the basis of uncertainty and surprise) are uniform. We present a

computational account of how the relevant representations might arise, proposing a direct

connection between event learning and the learning of semantic categories.

Introduction

As we observe and act in the world, perceptual information arrives in a more-or-less

continuous manner over time, yet we do not experience the world as an unpunctuated

stream. Instead, we apprehend coherent and bounded sub-sequences that have beginnings,

middles and ends. In the cognitive literature, these segments have been termed events, and a

core problem has been to understand how and why the continuous flow of experience is

partitioned in this way. Operationally, segmentation is often measured by having

participants observe some temporally extended episode and explicitly judge where the

boundaries between sub-sequences lie. Such judgments are quite reliable1,2 — but how do

we come to know where events are bounded?

Prediction error or surprise have a central role in most accounts of event parsing3-6, and

sequence parsing7 more generally. In this class of explanations, event boundaries are

identified on the basis of non-uniform transition probabilities. Within an event, a given

observation is highly predictable from preceding observations, whereas the observation

beginning a new event is less predictable. Thus, uncertainty about an upcoming observation,
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or surprise at the occurrence of an unpredicted observation, can provide a cue for

segmentation.

We present an alternative account of event comprehension and segmentation that does not

rely on predictive uncertainty and does not require the presence of non-uniform transition

probabilities. Instead, we consider how representations of stimuli within an event are shaped

by their temporal context. We propose that stimuli associated with similar temporal contexts

are grouped together in representational space, forming clusters that provide the basis for

event discrimination. This idea has a counterpart in theories of object semantics, which have

aimed to explain why everyday objects seem to fall into natural categories. According to

these theories, semantic category structure reflects a clustering of object representations in

an internal representational space: Items belong to the same category when they are

represented as similar to one another and as dissimilar to other familiar items8-10. The

degree to which items are represented as similar depends on the extent to which they are

observed to share attributes.

We hypothesize that events are like semantic categories in this sense. Individual items ‘go

together’ to form events because they are situated near each other in an internal

representational space, and they lie near to one another because they share attributes. In

object semantics, the attributes are the intrinsic properties of objects (for example, their

parts, shapes, behaviors, functions and so on). In event representation, the relevant attributes

are temporal associations. In particular, we hypothesize that items will fall close together in

representational space when they are preceded and followed by similar distributions of items

in familiar sequences. The resulting representational clustering grounds event perception and

segmentation, just as the representational clustering involved in object semantics grounds

category identification.

To make this idea concrete, consider the graph in Figure 1a. Imagine a scenario in which

each node in the graph is associated with a particular visual stimulus and each edge indicates

a possible transition between stimuli. Given that each node has exactly four neighbors, a

random walk through the graph (used to generate a stream of stimuli) would produce

uniform transition probabilities over all neighbors. Because the set of possible successor

items on each step depends only on the current item, this uniformity in transition

probabilities holds whether one takes into account only the most recent item or the n most

recent items (Supplementary Fig. 1). As every transition that occurs is equally likely, the

graph never gives rise to moments of relative uncertainty or surprise.

Despite this uniformity, the graph remains highly structured, in that it contains three clusters

of densely interconnected nodes. Although any individual node connects to four other nodes,

nodes within a cluster tend to connect to one another and not to nodes in other clusters. In

research on complex networks, this kind of clustering is referred to as community

structure11,12. Community structure is ubiquitous across a wide range of natural

systems13,14, and the construct has proven useful in analyzing networks describing

sequential transition probabilities15, as in the case considered here. Note that in this

sequential setting, nodes in the same cluster or community overlap in their temporal

associations—they are likely to be preceded and followed by overlapping sets of nodes—

whereas those lying in different clusters do not overlap as much in their temporal

associations. Even in the presence of uniform transition probabilities, this pattern of

temporal overlap provides a potential basis for dividing sequences of stimuli into events.

Using the graph in Figure 1a, we conducted three experiments testing two specific

predictions of our theory. First, after exposure to sequences generated from the graph,

human observers should parse sequences at points corresponding to transitions between
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communities. Whereas prior work on parsing has investigated transition probabilities as the

main factor of interest, the graph in Figure 1a controls for this factor, leaving only

community structure as a basis for parsing. Experiments 1 and 2 demonstrated reliable

parsing at community boundaries, supporting the hypothesis that community structure can

drive the formation of event representations. Second, stimuli belonging to the same

community in the graph should come to have more similar neural representations following

the sequence exposure. This prediction is supported by functional magnetic resonance

imaging (fMRI) adaptation and multivoxel pattern analysis results in experiment 3.

Results

Experiment 1

Participants viewed a 35-min sequence of individual characters (Fig. 1b), each presented for

1.5 s, in an order generated by a random walk on the graph in Figure 1a. During this phase,

participants performed a cover task requiring them to decide whether each stimulus was

rotated away from a canonical orientation (Methods). Task instructions avoided any allusion

to the structure or relevance of the order of stimuli. In the next phase of the experiment,

participants were shown another 15-min sequence and were asked to segment the stream by

pressing the spacebar at times that felt like natural breaking points. This sequence alternated

between blocks of 15 images generated from a random walk on the graph and blocks of 15

images generated from a randomly selected Hamiltonian path through the graph (a path

visiting every node exactly once). The purpose of interspersing Hamiltonian paths was to

ensure that parsing behavior could not be explained by local statistics of the sequence (for

example, after seeing items within a cluster repeat several times, participants might use the

relative novelty of an item from a new cluster as a parsing cue).

Accuracy on the rotation detection task indicated task compliance, with participants

detecting rotated images with high A’ sensitivity (mean = 0.901, s.d. = 0.091; versus chance,

t[29] = 24.19, P < 0.001; see Supplementary Table 1 for reaction times). In the parsing phase

of the experiment, participants pressed the spacebar on passage into a new cluster

significantly more often than at other times in the sequence (t[29] = 2.27, P < 0.05; Fig. 2a).

Restricting the analysis to Hamiltonian paths did not change the result; new-cluster parses

were significantly more likely even in these sequences (t[29] = 2.25, P < 0.05).

Experiment 2

The purpose of this experiment was to replicate the results of experiment 1 while

overcoming a subtle limitation of that experiment. The introduction of random Hamiltonian

paths into the testing sequences of experiment 1 resulted in non-uniform transition

probabilities within and between clusters. Specifically, within the set of Hamiltonian paths,

the probability of transitioning from one cluster boundary node (one of the pale nodes in

Fig. 1a) to the adjacent one, if not yet visited, is always exactly 1, whereas the probability of

transitioning from the latter boundary node to each of the adjacent non-boundary nodes is

one-third. To eliminate this difference, we employed one fixed Hamiltonian path for each

subject, rendering uniform transition probabilities in both random walk and Hamiltonian

paths. The Hamiltonian cycle was entered at different points, depending on where the

preceding random walk terminated, and backward and forward traversals were included,

chosen randomly for each Hamiltonian block. In addition to refining the procedure from

experiment 1, we used a stimulus set with less obvious visual similarity relations and that

did not invite verbal labeling (Fig. 1c).

Accuracy on the rotation detection task indicated task compliance, with participants

detecting rotated images with high A’ sensitivity (mean = 0.818, s.d. = 0.130; versus chance,
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t[9] = 7.72, P < 0.001). As in experiment 1, participants pressed the spacebar on passing into

a new cluster significantly more often than at other times in the sequence (t[9] = 2.30, P <

0.05; Fig. 2b). Restricting the analysis to Hamiltonian paths once again preserved this result

(t[9] = 2.35, P < 0.05). Control analyses evaluated the possible contribution of associations

formed between temporally nonadjacent items (Supplementary Fig. 1).

Experiment 3

In this fMRI experiment, we aimed to test our second prediction, namely that items lying in

the same graph community should have more similar neural representations than items

occupying different communities following exposure to the sequence. The experiment began

with a pre-scan exposure phase, which was identical to the exposure phase of experiment 2.

Participants then underwent fMRI as they continued to perform the orientation-detection

cover task (note: not the parsing task) on sequences structured as in the parsing phase of

experiment 2. To avoid potential issues raised by local item repetitions, we performed all

analyses only on the data from Hamiltonian paths. Accuracy on the rotation detection task

indicated task compliance, with participants detecting the rotated images with high A’

sensitivity in pre-scan (mean = 0.865, s.d. = 0.047; versus chance, t[19] = 34.73, P < 0.001)

and scanning phases (mean = 0.893, s.d. = 0.081;versus chance, t[19] = 21.70, P < 0.001).

As an initial analysis, and to match the approach taken in previous fMRI studies of

spontaneous event segmentation16, we ran a general linear model (GLM) with a regressor

that indicated the transitions from one cluster to another. No areas were positively correlated

with this event boundary regressor. A large cluster in medial prefrontal cortex (mPFC) was

negatively correlated with the regressor (Fig. 3a), however, suggesting that this area is

engaged during an event and transiently disengaged at event boundaries (P < 0.05 corrected;

Table 1). To confirm that the effect was temporally specific and not an artifact arising from

the design of the GLM, we ran two additional analyses: one with the event boundary shifted

two steps back in the sequence and another with the event boundary shifted two steps

forward. In both of these cases, there were no regions that reliably exhibited the same

behavior.

To test our prediction that items in the same community would come to be represented

similarly, we ran a GLM with a regressor that modeled an fMRI adaptation response.

Previous research has shown that the a blood oxygen level-dependent (BOLD) response to

an item can be affected by previous presentation of an item that engages an overlapping

neural population, causing either a decreased response (repetition suppression) or, less

commonly, an increased response (repetition enhancement)17,18. Insofar as items within a

community are represented by similar neural populations, we expected that responses to

these items would become progressively suppressed or enhanced as more time is spent in the

community. Consistent with this prediction, a repetition enhancement effect was observed in

bilateral inferior frontal gyrus (IFG) and anterior insula (P < 0.05 corrected; Fig. 3b and

Table 1), with progressively stronger responses as each of the five nodes in a community

was traversed. We also found this profile in the cuneus (P < 0.05 corrected; Table 1).

While these enhancement effects indicate overlapping representations within individual

voxels18, the similarity structure predicted by our theory may also manifest in distributed

patterns of responses across voxels. Thus, another way to test our prediction that items in the

same community are represented more similarly is to examine whether the multivoxel

response patterns evoked by each item come to be clustered by community. We examined

these patterns over local searchlights throughout the entire brain, using Pearson correlation

to determine whether activation patterns were more similar for pairs of items from the same

community than for pairs from different communities. Two clusters of searchlights covering

left IFG, anterior temporal lobe (ATL), insula and superior temporal gyrus (STG) showed
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this effect across participants (P < 0.05 corrected; Fig. 4 and Table 1). The adaptation and

pattern analyses were performed independently over the whole brain and were sensitive to

different components of the fMRI signal, yet they identified neighboring regions in left IFG

and insula (Fig. 5). No areas showed higher similarity for between- than for within-

community item pairs.

For each community, the three internal items (darker nodes in Fig. 1a) had more overlapping

temporal associations than the two boundary items did with each other. Thus, if the evoked

neural response in these regions expresses overlap in temporal associations, then the internal

items should be more correlated with one another than with the boundary items. This highly

specific prediction was supported by a marginally significant difference in the left STG

cluster (t[19] = 1.71, P = 0.052 one tailed; other regions, P > 0.16).

Computational model

The fMRI adaptation and pattern analysis results from experiment 3 confirmed that temporal

community structure shapes representational similarity, giving rise to clustered item

representations, with transitions between clusters signaling event boundaries, as measured

by parsing behavior in experiments 1 and 2. To articulate a specific hypothesis about the

mechanisms underlying these results, we constructed a three-layer neural network model

(Fig. 6a). The network took input representing the current stimulus and was trained to

predict which stimulus would occur next. To simulate the stimulus sequences involved in

our experiments, we included 15 localist units in both the input (current item) and output

(next item) layers. Note that there was therefore no direct overlap between items in either

the inputs or target outputs presented to the model.

We exposed 20 randomly initialized networks to the same sequences viewed by participants.

On each step of the sequence, the current item was shown as input and the model guessed

which items might occur next. The model modified connection weights from the current-

item layer to the internal (representation) layer and from the internal layer to the next-item

layer to learn to activate only the four possible successor items for a given current item.

Given that items in the same community generated similar predictions about which items

would come next, the model naturally came to represent such items similarly in the internal

layer.

The internal representations learned by the networks can be visualized by performing a

multi-dimensional scaling of the activation patterns evoked by each of the 15 images, just as

was done for visualization of evoked fMRI responses. The resulting plot (Fig. 6b) mirrors

the community structure of the graph, as well as the similarity relations found in left IFG

and insula, left ATL, and left STG (Fig. 4). Nodes within a community lie closer to one

another (that is, are represented as more similar) than nodes from different communities

(t[19] = 140.84, P < 0.0001). The nodes at the boundaries of communities do not share as

many predictions as the other community members do with each other, and are therefore

farther away from nodes that are more internal to the community (t[19] = 22.82, P <

0.0001). As a result of this structure, as the network traverses a Hamiltonian path, the

similarity between the current and previous item representation is strongest for items most

internal to a community, slightly weaker passing to a boundary item and weakest passing to

a new community (Fig. 6c). The resulting temporal variation provides a sufficient basis for

event parsing (even in the absence of explicit instructions to parse the sequence). Note that it

also mirrors the pattern of activity that we observed in mPFC (Fig. 3). The latter observation

prompts the speculation that mPFC may track changes in activity patterns in regions with

community-based representational similarity, providing a signal that could underlie parsing

decisions.
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The neural network model demonstrates one simple way that neural representations might

come to reflect environmental community structure. It is closely analogous to models of

object semantics that describe how object representations cluster on the basis of their

overlapping features10. The only difference is that the relevant overlap occurs in the

distribution of items over time in the sequence, rather than in the intrinsic properties

associated with each item. Specifically, the relevant features for the model are the items that

a current observation predicts will occur in the future.

Discussion

Our behavioral and fMRI data support an account of event representation in which stimuli

are grouped together into events because they share common temporal associations. In

graphic representations of transition dynamics (for example, Fig. 1a), groups of items with

shared contextual associations become clusters, or communities. In this sense, event

representations arise from temporal community structure. When asked to mark event

boundaries, participants segmented sequences at points corresponding to transitions between

graph communities. Notably, this took place in the context of a generative process with

uniform transition probabilities, excluding relative uncertainty or surprise as the only basis

of parsing.

Our second theoretical proposal is that items with overlapping temporal associations

coalesce into perceived events because such items give rise to similar internal

representations. Our fMRI results provide direct evidence for this hypothesis. A pattern

analysis revealed that areas of the left IFG, left insula, left ATL, and left STG represented

items within a community as more similar than items from different communities. Notably,

this effect emerged after only about an hour of exposure to the structured sequences, making

this one of the first cases, to the best of our knowledge, in which multivoxel pattern analysis

has been used to measure such acute learning-induced representational change19.

Also consistent with this proposal was a repetition enhancement effect in bilateral IFG and

insula, where activity increased with dwell time in a single graph community. Although

repetition suppression effects are more common18, repetition enhancement effects have been

documented in numerous studies17 (including in IFG20), especially when stimuli are

degraded, novel or perceptually similar21,22. One explanation for repetition enhancement in

our study might be that evidence for the current community accumulated with each new

item. Given the limited time for learning, each item may have carried partial or indefinite

information about its own community membership, with confidence about the current

community firming up over a succession of member items. Such a gradual accumulation of

evidence would explain repetition enhancement in IFG and insula, in much the same terms

that repeated presentation of a degraded visual stimulus leads to enhancement in visual

cortex.

Both our adaptation and pattern analyses suggest that the left IFG is involved in representing

events. This region has been associated with modality-independent semantic processing in

diverse tasks, including verb generation, semantic classification and selection among

competing semantic alternatives23-26. The pattern analysis found that community structure

was also captured by the left ATL and STG, regions that are strongly implicated in semantic

processing27. These findings are therefore consistent with our proposal that exposure to

structured sequences generates representations similar to those that support object

categorization. The IFG is also sensitive to sequential structure in a range of domains,

including artificial grammar learning28, language29 and music30,31 processing, and action

perception and production20,32. While such effects are clearly relevant to our work, they

involve comparison of overall IFG activity between different experimental conditions. We
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compared the fine-grained pattern of activity within IFG across different individual stimuli,

in a single task context. Understanding how the results obtained from this approach relate to

those proceeding from earlier univariate studies of IFG will be an interesting target for

investigation.

Whereas we found that representations in IFG captured the clustering of items within events,

mPFC seems to support a different function. This region was engaged throughout the

duration of an event, disengaging transiently at event boundaries. An extensive body of

evidence links mPFC to event processing. For example, mPFC is more responsive to objects

that are highly associated with a particular context33; by definition, an item within a

community is strongly associated with other members of the community, and thus with a

particular context. Other work has implicated mPFC in integrating information when

reading about events34, processing structured compared to random sequences35, thinking

about highly familiar events36, thinking about complex events37, and elaborating on past and

future events38. Such findings are broadly consistent with our finding that mPFC was

engaged during sub-sequences with tightly integrated temporal structure. Our modeling

findings motivate the more specific hypothesis that mPFC may track changes in activity

patterns in areas such as left IFG. One way of probing this possibility in the future (not

afforded by the current design) would be to examine functional connectivity between mPFC

and these other regions.

Both our theory and our fMRI findings suggest that stimuli with shared temporal

associations come to be represented similarly. Our computational model illustrates how this

similarity might emerge through learning. The idea that an item’s representation is shaped

by the temporal structure of the episodes in which it participates has a long history in

theories of language and conceptual knowledge. One influential model proposed that

semantic and grammatical relationships among words are latent in the similarity structure of

their linguistic contexts39, an idea that has also been applied in the artificial grammar

learning (AGL) literature40. In research on natural language processing, the conceptual

structure of words, phrases and even whole texts is often estimated by modeling the latent

similarity structure of the contexts in which the text samples appear41-43. Our proposal

therefore builds on numerous precedents, establishing a new link between context-based

representations in language and semantics and the phenomenon of event segmentation.

Our work also shares important links with statistical learning and AGL research7,19,44,45,

both of which are concerned with incidental learning of temporal regularities. In common

with our study, statistical learning studies have often focused on segmentation of continuous

stimulus streams and AGL studies have often considered how participants learn the

sequential structure generated by a random walk on a graph. Our study, however, represents

an important advance from these foundations. Both literatures have mainly emphasized

variation in predictive uncertainty as the primary engine of segmentation and sequential

knowledge generalization. In the case of segmentation, the central claim is that boundaries

are detected when predictive uncertainty is high, a view that presupposes the existence of

unequal transition probabilities. Even when previous studies have matched some transition

probabilities, the underlying goal has been to isolate and test the behavioral effect of other,

unequal transition probabilities46. In AGL research, where judgments of grammaticality

have been the main focus, the central claim has been that test sequences will be treated as

grammatical if they have high conditional probability given the underlying graph, and as

ungrammatical otherwise, again presupposing important differences in predictive strength

across stimuli. To the best of our knowledge, our findings are the first to demonstrate

identification of sequential structure in a context in which predictive strength is globally

uniform and learning is instead driven by community structure.
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Although we have focused on the implications for event representation, our results therefore

have repercussions for theories of sequence representation more generally. For instance, a

prominent idea in the AGL literature proposes that sequential structure, including segmental

structure47, is discovered by encoding commonly occurring sub-sequences (typically

bigrams or trigrams) that are often referred to as fragments or chunks45. An influential

chunking model (PARSER48), however, failed to identify the three communities in our

graph when exposed to sequences structured as in our experiments (Supplementary Figs. 2

and 3). The reason is that all n-grams both within and between communities occur with

equal probability in these sequences. As a result, any version of chunking that relies on

differences in n-gram frequency will fail to explain the parsing behavior that we observed.

One reason that this point is particularly noteworthy concerns the relationship between

chunking and neural network models in AGL research. There has been considerable interest

in understanding the relative strengths of these two formalisms, and this interest has

naturally placed a premium on behavioral findings capable of adjudicating between them.

Our results add to this set of findings by showing that the performance of chunking and

neural network models can diverge when community structure is paired with uniform n-

gram frequency.

One influential neural network AGL model proposed that items reflecting the same

underlying state in a finite-state grammar come to be represented similarly because they

occur in the same temporal context40,49. Unlike the grammars examined in that work, and

throughout the AGL literature, our graph never associates more than one stimulus with a

single underlying state (node). Nevertheless, this proposal is clearly related to our assertion

that items raising overlapping predictions will come to be represented similarly. Our work

applies this general principle to the problem of event segmentation and provides

neuroscientific evidence for its validity.

Our use of sequences with uniform transition probabilities served a critical methodological

purpose, but invites the question of how our theory might apply to sequential domains

(including naturalistic ones) that involve non-uniform and asymmetric transition

probabilities. A useful context for addressing this is provided by the task most heavily used

in statistical learning research. In the classical statistical learning experiment, items (for

example, syllables or images) are grouped so that items within a group always appear in a

fixed order, but the order of the groups is unpredictable. This sequential regime can be

represented as a directed graph with communities that correspond to the item groupings

(Supplementary Fig. 4). Thus, our account predicts that the representational changes

observed in the current experiment should generalize to the statistical learning setting. This

seems to be the case. After exposure to images that always occur in a fixed order in pairs,

but in which the order of pairs is unpredictable, the neural representations of images in the

same pair become more similar relative to images from distinct pairs19. This reorganization

occurs throughout the hippocampus and medial temporal lobe cortex, as well as in the

anterior temporal lobe, as we observed. Future work will be needed to understand how these

areas interact and how different types of structure affect neural representations in different

areas.

It is interesting to consider the extent to which our proposals concerning community

structure, contextual overlap and representational clustering might provide alternative

explanations for findings previously interpreted in terms of prediction error. The brain

regions that we identified overlap partially with those observed in a statistical learning

study19, but not with those reported in previous studies that emphasized the role of

prediction error in event segmentation5,16. The discrepancy may indicate that these other

regions respond specifically to prediction error and do not provide a direct signal for event

parsing, but could also reflect numerous differences in stimuli, methods, etc. Certainly our
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findings do not demonstrate that prediction error is never relevant to event segmentation, nor

do they show that community structure is always involved. Working out the potential role

for these two mechanisms, alongside others, such as goal-based processing50, is a critical

challenge for near-term research.

Methods

Participants

Members of the Princeton University community participated in exchange for monetary

compensation ($12 per h for experiments 1 and 2, and $20 per h for experiment 3) or partial

credit for a course requirement. Experiment 1 had 30 participants (17 females, mean age =

20.2 years, range = 18-30 years), experiment 2 had ten participants (four females, mean age

= 22.0 years, range = 18-30 years) and experiment 3 had 20 participants (nine females, mean

age = 20.9 years, range = 18-33 years). Data from one additional subject in experiment 3

was unusable because of procedural difficulties. Informed written consent was obtained

from all participants, and the study protocol was approved by the Institutional Review Board

for Human Subjects at Princeton University.

Stimuli and design

In experiment 1, the stimuli consisted of 15 glyphs from the Sabaean alphabet (Fig. 1b), an

ancient Semitic language, which were generated from fonts downloaded at http://

www.omniglot.com/. For each participant, the 15 glyphs were randomly assigned to the 15

nodes of the graph from Figure 1a. In experiments 2 and 3, the stimuli consisted of 15

abstract images (Fig. 1c) created in ArtMatic Pro (http://www.artmatic.com/). Again, these

stimuli were assigned randomly to graph nodes for each participant.

In experiment 1, the sequence exposure phase consisted of viewing 1,400 stimuli generated

from a random walk on the graph in Figure 1a. Stimuli were presented one at a time on a

computer screen for 1.5 s each, with no interstimulus interval. In the parsing phase,

participants viewed 600 stimuli, again presented one at a time for 1.5 s each. There were

never any cues as to the structure of the graph; item presentation was continuous within and

across clusters. In the parsing phase, sequence generation alternated between blocks of 15

items that were generated from a random walk on the graph and blocks of 15 items that were

generated from a randomly drawn Hamiltonian path through the graph in which each node

of the graph was visited exactly once. The purpose of interspersing Hamiltonian paths in the

parsing phase was to ensure that parsing behavior could not be explained by local statistics

of the sequence. If participants parse sequences at cluster boundaries in the Hamiltonian

paths, then they must be relying on previously learned statistics. We did not use exclusively

Hamiltonian paths in the parsing phase because we wanted to minimize unlearning of the

temporal statistics.

Experiment 2 was identical to experiment 1 except that abstract, nonverbalizeable stimuli

were used and the Hamiltonian paths were not randomly drawn in each block for each

subject. Instead, one path was drawn for each subject, and the forward and backward

versions of this path were chosen randomly for each block. This was done to remove the

possibility that participants could be parsing on the basis of statistics learned during the

parsing phase about the structure of randomly drawn Hamiltonian paths.

Experiment 3 was identical to experiment 2, except that there was a scanning session after

the exposure phase. The scanning session had the same structure as the parsing phase, with

alternating random walks and Hamiltonian paths, as concerns about the local statistics of the

random walk also applied to our interpretation of the neural data. A rapid event-related

design was used in the scanning session, with items presented for 1 s each with a jittered
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interstimulus interval (1, 3 or 5 s) such that the response to individual items could be

modeled separately. There were five scanning runs lasting 616 s, with 160 items per run.

Procedure

In the exposure phase of all three experiments and the scanning session in experiment 3,

participants were first shown the entire set of stimuli on the screen and told that they would

be asked to detect when the stimuli appeared rotated from this initial orientation.

Participants pressed one key on the keyboard when they thought the stimulus was rotated

from its initial orientation and a second key otherwise, thus responding on every trial. Key

assignment was counterbalanced across participants. Except in the scanner, a beep at one

frequency was played when the response was incorrect and at another frequency when the

response was not within the time frame that the stimulus was displayed. In the scanning

session in experiment 3, participants responded with a button box, using the same fingers

they had used on the keyboard in the exposure phase. Stimuli were rotated 90° from their

initial orientation about 20% of the time in experiments 1 and 2, and 12.5% of the time in

experiment 3. This rotation-detection task was used to keep participants engaged and

attentive to the stimuli. Participants were given the opportunity to take a self-paced break

about every 7 min in experiments 1 and 2, and between runs in experiment 3. The

instructions did not mention anything about sequential aspects of the experiment, and we

recruited participants who were naive to the purposes of the experiment.

In the parsing phase of all three experiments, participants were told that they would see

sequences of items in the correct orientation and to “simply press the spacebar at times in

the sequence that you feel are natural breaking points” (“spacebar” was replaced with “any

button” in experiment 3). We viewed the parsing data in experiment 3, collected during an

anatomical scan, as unreliable because of reports from multiple subjects that their strategy in

the task was heavily influenced by the timing of acoustic scanner noise (Supplementary Fig.

5).

For parsing analyses, we operationalized passage into a new community as involving arrival

into any community following at least four consecutive steps in another single community.

The imposition of this four-step restriction was based on the a priori prediction, independent

of our central theory, that participants might show a simple reluctance to press the parse

button twice in close temporal succession. The specific choice of four steps was based on

the fact that this criterion was met by two-thirds of all boundary-traversal events. However,

the same qualitative pattern of results was obtained in additional analyses employing both

less restrictive (1-3 steps) and more restrictive (5 steps) criteria (Supplementary Table 2).

fMRI acquisition and preprocessing

MRI data were acquired using a 3T Siemens Allegra scanner at Princeton University, and

were preprocessed using AFNI (http://afni.nimh.nih.gov/afni/) and SPM (http://

www.fil.ion.ucl.ac.uk/spm/). An echoplanar imaging sequence was used to acquire 34 3-mm

oblique axial slices with 1-mm gap, repetition time (TR) = 2 s, echo time = 30 ms, flip angle

= 90°, and field of view = 192 mm. An MPRAGE anatomical scan was acquired at the end

of the session, consisting of 176 1-mm axial slices, repetition time = 2.5 s, echo time = 4.38

ms, flip angle = 8°, and field of view = 256 mm. We performed slice acquisition time

correction using Fourier interpolation and motion correction using a six-parameter rigid

body transformation to co-register functional scans. A despiking algorithm was used to

attenuate outliers in each voxel’s time course. Data were spatially normalized by warping

each subject’s anatomical image to match a template in Talairach space using a 12-

parameter affine and nonlinear cosine transformation. This transformation was then applied

to functional data.
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fMRI GLM analysis

For GLM analyses, data were spatially blurred until total estimated spatial autocorrelation

was approximated by a three-dimensional 6-mm full width at half maximum Gaussian

kernel. Signal in each voxel was then intensity-normalized to reflect percent change. We ran

two GLM analyses using AFNI. Both contained zero- through fifth-order polynomial trends

and estimated movement in six directions for 13 participants who had some detectable

movement. Both also included regressors that indicated whether any stimulus was present,

whether the stimulus was rotated, error trials, trials with no response, and whether the

stimulus was generated from a Hamiltonian path. These indicators were convolved with a

standard hemodynamic response function. One of the GLMs was designed to look at

transient responses at event boundaries or responses lasting throughout a community

traversal. It contained a regressor indicating event boundaries (specifically, arrival at an item

in a new cluster) within Hamiltonian paths. We ran two additional control GLMs to test the

specificity of the boundary effects: One shifted the boundary regressor two items back and

the other shifted it two items forward such that they were misaligned in both cases with the

true boundaries. The other GLM was designed to detect adaptation effects during traversal

through communities. It contained a regressor with the (hemodynamic response function

convolved) values 2, 1, 0, −1 and −2 assigned to the first, second, third, fourth and fifth

node, respectively, in a Hamiltonian path through a given community. To test the reliability

of beta weights across participants, we used randomise (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

randomise) in FSL to perform permutation tests and generate a null distribution of cluster

masses for multiple comparisons correction (cluster-forming threshold, P < 0.05 two tailed).

fMRI pattern analysis

We ran a searchlight multivoxel pattern analysis51 to assess the similarity structure of

individual item representations after sequence exposure. We z scored each voxel’s activation

values across time in each run from the preprocessed data. We then took the average z
scored activation for all presentations of a particular item two TRs (4 s) after stimulus onset

(which was always time-locked to a TR). We only included item presentations that occurred

four or more steps into a Hamiltonian path to minimize the possibility of picking up on any

neural responses from items in the preceding random walk. The activity pattern for each of

the 15 items was extracted from a cube of 3 × 3 × 3 voxels (a searchlight) centered on every

voxel in the brain and stored as vectors with 27 elements. The Pearson correlation between

the vector corresponding to each item and the vector corresponding to each other item was

calculated, yielding a 15 by 15 similarity matrix for each searchlight.

We created a statistic on this matrix to evaluate the extent to which a particular searchlight

matched our predictions. The statistic was the average Fisher-transformed correlation

between items in the same cluster minus the average Fisher-transformed correlation between

items not in the same cluster. To ensure that temporal overlap of the hemodynamic response

between item presentations could not bias the results, we only compared between- and

within-cluster item similarities for pairs of items that appeared the same distance away in the

sequence. For example, we compared item pairs that occurred four steps away within a

cluster only to item pairs that occurred four steps away across clusters. We did this for one,

two, three and four steps (five or more steps would not allow any within-cluster pairs) and

then averaged the results. Across these steps, each item participated in exactly four within-

cluster pair correlations and exactly four across-cluster pair correlations. The difference

statistic was assigned to the center voxel of each searchlight for visualization and

hypothesis-testing purposes.

We performed the same permutation test as with the GLM analyses to assess the reliability

of each searchlight across participants. The searchlight procedure creates additional
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smoothness in the data, but this smoothness appears in the null distribution of clusters,

making it appropriately more difficult to find a cluster mass large enough to reach

significance. The searchlight statistic can thus be treated the same way as beta weights (or

any other statistic) in the permutation test. As in the GLM analyses, the permutation test

shuffles voxel values across subjects and uses a cluster forming threshold of P < 0.05 (two

tailed).

Computational model

The model was a fully connected three-layer feedforward neural network implemented in

Emergent (http://grey.colorado.edu/emergent/), with 15 units in the input and output layers

(one for each of the 15 items in the experiments), and 50 units in the hidden layer. The

choice of number of units in the hidden layer was arbitrary, and results were the same for a

wide range of values. The model was exposed to a sequence of stimuli generated from a

random walk on the graph in Figure 1a, the same as for participants in all three experiments.

On each step of the sequence, the input unit corresponding to the item on that trial was set to

a value of 1, and all other inputs were set to 0. Similarly, the output unit corresponding to

the item on the next trial was set to a value of 1, and all other outputs were set to 0. The

network adjusted weights from the input to hidden layer and from the hidden to output layer

to predict what would come next in the sequence using back-propagation with a learning

rate of 0.2. We trained 20 models with weights randomly initialized from a uniform

distribution between −0.5 and +0.5 for 200 epochs (each epoch contained all 60 input-output

possibilities).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Design and stimuli. (a) Graph with community structure, used to generate stimulus

sequences. (b) Stimuli in experiment 1. (c) Stimuli in experiments 2 and 3.
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Figure 2.
Behavioral results. (a,b) For experiment 1 (a) and experiment 2 (b), the proportions of times

participants parsed at a cluster transition and elsewhere in the sequence out of all

opportunities to do so. Data were analyzed for all trials and restricted to Hamiltonian paths.

*P < 0.05. Error bars denote 1 s.e.m. (30 participants for a, 10 for b).

Schapiro et al. Page 16

Nat Neurosci. Author manuscript; available in PMC 2013 August 22.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 3.
Results of GLM analyses. (a) mPFC was engaged throughout the duration of an event. This

response reflects stronger activity within a community (dark red arrows) compared with at a

community boundary (light red arrows). The arrows outline a possible Hamiltonian

trajectory through the displayed portion of the graph. (b) Bilateral IFG and insula showed a

repetition enhancement effect, reflecting progressively greater activity as more items from

the same community were viewed, illustrated here with darker shades of green later in a

community traversal (20 participants for a,b). R, right.
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Figure 4.
Pattern similarity results. Clusters in left IFG and insula, left ATL, and left STG showed

reliable community structure in the BOLD response in a whole-brain searchlight analysis.

The similarity structure in each area was visualized by performing multi-dimensional scaling

on the distances between the multivoxel pattern evoked by each item with each other item

(averaged across searchlights within the area). Items are color-coded in accordance with the

graph nodes in Figure 1a (20 participants).
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Figure 5.
Neighboring regions found in adaptation and pattern analysis. (a) To visualize the proximity

of the regions, the adaptation (green) and pattern analysis (yellow) results are displayed on

the same brain. (b) To provide a sensitive measure of possible overlap between these results,

we calculated the average multivoxel pattern analysis effect across searchlights within each

of the three clusters identified by the adaptation analysis. In the left IFG cluster only, we

found higher pattern similarity for within-versus between-community items. **P < 0.01.

Error bars denote ± 1 s.e.m. (20 participants for a,b).
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Figure 6.
Model architecture and results. (a) Feed-forward neural network model that predicts

subsequent observations given the current observation. (b) Multi-dimensional scaling of the

hidden unit representations after sequence exposure. The dot colors correspond to positions

on the graph shown in Figure 1a. (c) The average cosine similarity in the hidden layer

representations between the current item and the last item in a traversal through a

Hamiltonian path of the graph. Results represent an average over 20 networks initialized

with different random seeds.
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Table 1

Reliable clusters in Experiment 3

Region Brodmann
areas

x y z Extent (voxels)

Boundary regressor

mPFC 9/10/24 −1.4 43.6 16.5 205

Adaptation regressor

Left IFG/insula 13/44 −43.7 0.0 13.1 100

Right IFG/insula 13/44/45 49.6 8.5 7.7 109

Cuneus 18/19 11.7 −80.7 22.5 84

Pattern analysis

Left IFG/insula/ATL 13/38/47 −40.2 10.9 −5.9 150

Left STG 21/22 −52.7 −23.0 −0.8 107

Clusters reliable at p < 0.05 corrected. Coordinates are in Talairach space and correspond to the center of mass of the cluster.
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