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The aim of this study was to explore the role of attention in pulse and meter perception using 

complex rhythms. We used a selective attention paradigm in which participants attended to either 

a complex auditory rhythm or a visually presented word list. Performance on a reproduction 

task was used to gauge whether participants were attending to the appropriate stimulus. 

We hypothesized that attention to complex rhythms – which contain no energy at the pulse 

frequency – would lead to activations in motor areas involved in pulse perception. Moreover, 

because multiple repetitions of a complex rhythm are needed to perceive a pulse, activations in 

pulse-related areas would be seen only after sufficient time had elapsed for pulse perception to 

develop. Selective attention was also expected to modulate activity in sensory areas specific to 

the modality. We found that selective attention to rhythms led to increased BOLD responses in 

basal ganglia, and basal ganglia activity was observed only after the rhythms had cycled enough 

times for a stable pulse percept to develop. These observations suggest that attention is needed 

to recruit motor activations associated with the perception of pulse in complex rhythms. Moreover, 

attention to the auditory stimulus enhanced activity in an attentional sensory network including 

primary auditory cortex, insula, anterior cingulate, and prefrontal cortex, and suppressed activity 

in sensory areas associated with attending to the visual stimulus.
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in syncopated rhythms even when no corresponding objective fre-
quency exists among the acoustic events that comprise the rhythm 
(cf. Patel et al., 2005).

Investigations of the neural circuitry underlying rhythm and 
meter perception reveal overlap between brain regions sensitive to 
the production of rhythmic sequences and those related to move-
ment (Dhamala et al., 2003; Chen et al., 2006, 2008b; Karabanov 
et al., 2009; Thaut et al., 2009). Rhythm perception recruits motor 
related areas even in the absence of overt movement, showing activ-
ity in premotor cortex (PMC) (Schubotz et al., 2000; Grahn and 
Brett, 2007; Chen et al., 2008a; Bengtsson et al., 2009; Grahn, 2009; 
Grahn and Rowe, 2009), cerebellum (Schubotz et al., 2000; Grahn 
and Brett, 2007; Chen et al., 2008a; Bengtsson et al., 2009), pre-
supplementary motor area (pre-SMA) (Schubotz et al., 2000; Grahn 
and Brett, 2007; Bengtsson et al., 2009), supplementary motor area 
(SMA) (Schubotz et al., 2000; Grahn and Brett, 2007; Chen et al., 
2008a; Bengtsson et al., 2009; Grahn, 2009; Grahn and Rowe, 2009), 
and basal ganglia (Schubotz et al., 2000; Grahn and Brett, 2007; 
Grahn, 2009; Grahn and Rowe, 2009). Basal ganglia and SMA have 
been implicated specifically in meter and pulse perception and have 
been shown to be more active while listening to metrical rhythms 
than in listening to rhythms not likely to induce a pulse percept 
(Grahn and Brett, 2007; Grahn, 2009; Grahn and Rowe, 2009). 
The role of basal ganglia in mediating pulse perception is further 

INTRODUCTION

Rhythms in music are complex sequences of acoustic events made 
up of repeating patterns of alternating sounds and silences that flow 
in time. Beat is a periodicity perceived in a rhythm, while metrical 

accent, or meter, refers to the perception of alternating stronger 
and weaker beats. Pulse refers to the most salient level of beats, 
i.e., the periodicity at which one is most likely to tap along with 
a rhythm. Figure 1A illustrates these concepts using the notation 
of Lerdahl and Jackendoff (1983). Pulse and meter are thought 
to correspond to temporal expectations, which are expectations 
for when rhythmic events should occur (e.g., Large and Jones, 
1999; London, 2004). Pulse and meter develop over time through 
a process called  induction, and rhythms that give rise to pulse and 
meter perception are called metrical rhythms. Metrical rhythms 
are easier to remember and reproduce than rhythms that are less 
likely to give rise to metrical percepts (See also Essens and Povel, 
1985; Grahn and Brett, 2007). The degree of metricality affects the 
precision of the temporal encoding of rhythmic sequences (Grube 
and Griffiths, 2009), and pulse and meter are thought to enable 
synchronistic entrainment of body movements to complex musi-
cal rhythms (Large, 2000). Interestingly, pulse and meter persist in 
the face of considerable rhythmic complexity, such as syncopated 
rhythms (Figure 1B), in which event onset times violate temporal 
expectancies. For example, a periodic pulse is commonly perceived 
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Because of the role that beta band activity plays in motor proc-
esses (Stancák and Pfurtscheller, 1996; McFarland et al., 2000) and in 
long-range coordination of brain areas (Kopell et al., 2000; Brovelli 
et al., 2004), it has been suggested that auditory responses might be 
modulated by the motor system via high-frequency  activity in the 
beta band (Iversen et al., 2009). Moreover, recent studies have found 
that the time course of high-frequency neural activity in certain brain 
areas provides a good temporal correlate of pulse and meter percep-
tion (Snyder and Large, 2005; Fujioka et al., 2009; Iversen et al., 2009). 
These results are consistent with the theory of dynamic attending, 
which hypothesizes that neural oscillation underlies the perception 
of pulse and meter (Large and Kolen, 1994; Large, 2000), targeting 
attentional energy toward expected points in time (Large and Jones, 
1999). Dynamic attending is supported by a number of studies that 
have observed perceptual facilitation of temporally expected events 
(McAuley and Kidd, 1995; Jones and Yee, 1997; Large and Jones, 1999; 
Barnes and Jones, 2000; Jones et al., 2002; Jones and McAuley, 2005; 
Quene and Port, 2005). We reasoned that, if high-frequency burst-
ing mediates not only attention to events in rhythmic sequences but 
also the temporal coordination between brain areas, then attention 
may play a role in coordinating the interaction between auditory 
and motor areas in pulse and meter perception (Large and Snyder, 
2009). Neural responses to metrical changes (Geiser et al., 2009) 
and behavioral responses to tempo changes have been shown to be 
attention dependent (Repp and Keller, 2004). Thus, it is possible that 

supported by the finding that Parkinson’s patients do not show the 
same benefit for beat-based rhythms as normal controls in a rhythm 
discrimination task (Grahn and Brett, 2009). Moreover, functional 
connectivity between basal ganglia (putamen) and cortical motor 
areas (PMC and SMA) and auditory cortex increases when listen-
ing to rhythms that have a perceived beat than when listening to 
non-beat rhythms (Grahn, 2009; Grahn and Rowe, 2009).

The foregoing results stress that the perception of pulse and 
meter involves integration across widespread auditory and motor 
related brain regions (Todd et al., 1999; Warren et al., 2005; Stewart 
et al., 2006; Zatorre et al., 2007). It has been proposed that the inter-
action between auditory and motor networks is mediated through 
the dorsal auditory pathway that leads from posterior superior 
temporal gyrus (planum temporale, PT) to prefrontal, premotor, 
and motor cortices (Warren et al., 2005; Zatorre et al., 2007). The 
dorsal auditory pathway is activated in the production of rhythmic 
sequences regardless of whether the rhythm was learned through 
auditory or visual modalities, suggesting that all rhythms learned 
for the purposes of production, at least with short-term training, are 
maintained through an auditory-motor representation (Karabanov 
et al., 2009). Both the PT and PMC have been shown to be recruited 
when tapping to increasingly metrical rhythms (Chen et al., 2006), 
to be functionally correlated when tapping to increasingly complex 
rhythms (Chen et al., 2008b), and to be active during passive listen-
ing to rhythms (Chen et al., 2008a).

FIGURE 1 | An illustration of the concepts of rhythm, beat, pulse, meter, 

and syncopation. S, Strong beat; W, Weak beat; (A) is a simple rhythm on a 

grid showing metrical structure and accent, with 16 beats at the eighth-note 

metrical level, eight (strong) beats at the quarter-note level (the pulse), and four 

beats at the half-note level; (B) is a syncopated rhythm shown on the same grid. 

The syncopated example shows violation of expectation based on metrical 

structure of strong/weak beats, with the absence of events on some strong 

beats and the presence of events on weak beats.
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tasks was used to gauge whether participants successfully attended 

to the appropriate stimulus. This allowed us to directly compare 

activity associated with attending to complex rhythms with activ-

ity related to passive exposure to rhythmic stimuli. Two stages of 

rhythm perception were investigated, an early phase during which 

pulse and meter are first induced and a later phase in which the 

listener has developed a stable pulse and meter percept.

Auditory stimulus

Ten complex rhythms were based on a metrical grid with 16 beats 

at the eighth-note metrical level, and eight (strong) beats at the 

quarter-note level (the pulse). Each of the eighth-note level beats 

was the possible temporal location of an acoustic event. Acoustic 

events were 440 Hz pure tones with a duration of 80 ms and 10 ms 

rise and fall times. The inter-beat-interval (IBI) at the eighth-note 

level was 250 ms and each pattern was 4 s long. Syncopated patterns 

were constructed as follows. Each pattern contained eight tones. 

The first tone always occurred on the first beat (which was a strong 

beat) and a rest always occurred on the final beat (a weak beat). 

Patterns were constructed in this way to facilitate the perception of 

the pattern repetition. The remaining seven tones were distributed 

such that half of the tones of the pattern occurred on strong beats 

and half occurred on weak beats. Thus, each pattern was expected 

to give rise to a basic pulse at 500 ms (i.e., the quarter-note level of 

the metrical grid) but would be highly syncopated (half of the pulse 

times would not be marked by a tone onset; see Figure 2). Fourier 

analysis of the rhythms verified that none of the patterns contained 

significant energy at the pulse frequency (i.e., 1/0.500 s = 2 Hz). A 

higher pitched 880 Hz tone began and ended the interval in which 

participants were asked to reproduce the rhythm. The auditory 

stimulus was adjusted to a comfortable listening level.

Visual stimulus

Participants looked at a fixation cross surrounded by three letter 

words (see Figure 3) while they listened to the rhythmic patterns. 

Words were randomly selected from a list of 300 three-letter English 

words. The visual stimulus was arranged in such a way that the 

participant could see the entire word list even though s/he was 

fixating on the cross. The same word list/auditory pattern pairing 

was used in both auditory and visual conditions.

Auditory task

In the auditory condition, the participant was instructed to attend to the 

rhythmic pattern, which repeated for six cycles (attend = 24 s), mentally 

rehearse the rhythm for the duration of three cycles (rehearsal = 12 s), 

and reproduce the rhythm (using the right-hand) for three cycles 

(reproduction = 12 s). The rhythm reproductions corresponded to 

the events illustrated in Figure 2. The stimulus presentation portion 

of the experiment was divided into two parts, termed attend 1 (first 3 

repetitions – 12 s) and attend 2 (second 3 repetitions – 12 s). Stimulus 

presentation was continuous through both Attend 1 and Attend 2.

Visual task

In the visual condition, the participant was instructed to attend to 

the words surrounding the fixation cross (attend = 24 s), mentally 

rehearse the words once they disappeared (rehearsal = 12 s), and then 

verbally report the remembered words (reproduction = 12 s).

pulse and meter perception in complex, syncopated rhythms is also 

attention dependent. This hypothesis leads to several predictions. 

Here, we ask whether differences in functional activation may be 

observed in auditory and motor areas depending on whether atten-

tion is directed toward or away from a rhythmic stimulus. To test 

this hypothesis, participants were instructed to selectively attend to 

either a complex rhythmic sequence or a visually presented list of 

words so that activation related specifically to auditory attention to 

complex rhythms could be observed.

The current experiment was designed to uncover neural acti-

vation associated with attending to complex rhythms. Syncopated 

stimuli were constructed such that observed neural correlates of 

pulse perception would necessarily reflect endogenous processes, 

not merely responses to acoustic events in the rhythmic stimulus. 

For these stimuli, it was hypothesized that activations in auditory 

and motor areas associated with pulse and meter perception would 

depend on whether attention was directed toward or away from 

the rhythm. Specifically, activity in motor areas thought to support 

pulse perception, such as basal ganglia and SMA, was expected to be 

seen when participants were instructed to selectively attend to the 

rhythms but not when participants were instructed to attend to the 

visual stimuli. Selective attention to the auditory rhythms was also 

expected to reveal modality related differences in areas known to be 

involved in attention such as anterior cingulate (ACC), which, given 

its role in error detection (Bush et al., 2000), could be implicated in 

temporal expectancy as well. While some behavioral (Duncan et al., 

1997) and electrophysiological (measuring MMN) (Alho et al., 1994) 

studies have suggested independent processing of simple visual and 

auditory stimuli using attention monitoring tasks, we predicted that 

selectively attending to complex rhythms in an auditory working 

memory task would modulate activity in cortex specific to the modal-

ity (e.g., greater primary auditory activity seen when attending to the 

rhythms) (Woodruff et al., 1996; Johnson and Zatorre, 2006; Lakatos 

et al., 2008). Finally, because we used syncopated rhythms with no 

cues for pulse, pulse induction depended in part upon repetition of 

the rhythmic pattern and was expected to unfold over two or more 

pattern repetitions. Therefore, it was hypothesized that activations in 

pulse-related areas, such as basal ganglia and SMA, would be observed 

only after a sufficient number of pattern repetitions.

MATERIALS AND METHODS

PARTICIPANTS

Thirteen right-handed participants, five female and seven male 

(aged 20–46 years, M = 28.83 years), gave informed consent before 

participating in the study. Musical experience ranged from 0 to 

24 years (1 had 24 years experience playing music, 3 had 20 years 

experience, 1 had 7 years playing experience, 1 had 2 years experi-

ence and 7 had no experience playing music).

STIMULI AND TASK

Auditory and visual stimuli were presented simultaneously in 

the fMRI scanner in two conditions (1) auditory and (2) visual. 

Participants were instructed to either (1) perform an auditory 

working memory task in which they attended to rhythmic pat-

terns while ignoring visual stimuli or (2) perform a visual working 

memory task in which they attended to visual stimuli while ignoring 

the rhythms. Performance on auditory and visual reproduction 
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the extent to which each participant was able to  perceive the pulse 
of the complex rhythmic stimuli. Participants were seated in an 
IAC sound-attenuated experimental chamber wearing Sennheiser 
HD250 linear II headphones. The rhythms were presented by a 

Pulse synchronization

Prior to participation in the fMRI experiment, participants were 
tested in a preliminary pulse synchronization experiment (cf. Patel 
et al., 2005). The goal of this behavioral experiment was to determine 

FIGURE 2 | Auditory stimuli consisted of 10 syncopated rhythms with eight acoustic events, each placed at 1 of 16 possible event locations (i.e., 

eighth-note level beats with an IBI = 250 ms). During the pulse synchronization experiment, participants were asked to tap quarter-note level beats [i.e., the pulse, 

corresponding to strong beats (S), IBI = 500 ms].
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Acquisition

A sparse sampling technique was used in the scanner to increase 
the signal response from baseline (which was silence) and to 
avoid non-linear interaction of the scanner sound and the audi-
tory stimulus (see Figure 4, Hall et al., 1999). Participants were 
presented six 10-min blocks (three auditory attend, three visual 
attend conditions, presented in counterbalanced order), with 10 
trials in each block. A custom Visual Basic 5 program running on 
a Dell Optiplex GX260 was used to generate both auditory and 
visual stimuli. Sound stimuli were presented using custom noise-
attenuating headphones (Avotec Inc., Stuart, FL, USA). Visual 
stimuli were presented through a set of fiber optic goggles (Avotec 
Inc., Stuart, FL, USA) mounted to the head coil. Participants were 
instructed to tap with their right index finger on an MR compat-
ible button box.

DATA ANALYSIS

Behavioral measures

Performance on the pulse synchronization experiment was meas-
ured by calculating the synchronization coefficient, also called 
vector strength (Batschelet, 1981; Pikovsky et al., 2001), which 
quantified how well taps were time locked to the perceived pulse 
of the rhythms. Synchronization coefficients ranged from 0 (no 
synchronization) to 1 (perfect synchronization). Performance on 
the rhythm reproduction task was measured by correlating the 
participants’ inter-tap-intervals (ITI) with the inter-onset-intervals 
(IOI) of the rhythms.

fMRI

Reproduction of the rhythmic patterns was used to gauge whether 
participants had successfully attended to the auditory rhythms. In 
the attend auditory condition, trials in which the participant cor-
rectly reproduced the pattern were included in the fMRI analysis. 
Exclusion criteria for rhythm reproduction trials were based in part 
on the correlation between the participants’ ITIs and the IOIs of the 
rhythms. In addition, two judges listened to each reproduction and 
agreed on whether or not participants had tapped the qualitatively 
correct pattern. The judgment allowed us to retain four trials in 
which the participant tapped the correct pattern but did not have 
a high ITI/IOI correlation (e.g., because they started tapping in 
the middle of the pattern). Using these criteria, 103/390 trials were 
judged unsuccessful, and therefore excluded from the fMRI analysis. 
However, this did not represent a sufficient number of unsuccess-
ful rhythm reproductions to enable comparison of trials in which 
reproduction was successful to trials in which participants were not 

custom Max/MSP program running on a Macintosh G3 computer. 
Participants tapped on a Roland Handsonic HPD-15 drumpad that 
sent the time and velocity of the taps via MIDI (Musical Instrument 
Digital Interface) to the Max/MSP program. The experimenter 
instructed participants to listen to the pattern and begin tapping 
the pulse when they could “‘feel’ the beat” at a rate equal to how 
they would “normally tap (their) foot to a song.” The experimenter 
demonstrated tapping the pulse for two practice patterns (not used 
in the study) at a rate corresponding to the pulse (strong beats) 
illustrated in Figure 2. Participants were encouraged to practice 
pulse synchronization while listening to the practice patterns. Once 
they felt comfortable synchronizing with the practice patterns, par-
ticipants began the experiment.

MAGNETIC RESONANCE IMAGING

As a correlate for neural activity, changes in blood oxygenation 
(BOLD response) were measured using echo-planar imaging on 
a 3.0-T Signa Scanner equipped with real time fMRI capabilities 
(General Electric Medical Systems, Milwaukee, WI, USA). Echo-
planar images were collected using a single shot, gradient-echo, 
echo-planar pulse sequence [field of view (FOV) = 24 cm, echo 
time (TE) = 35 ms, flip angle (FA) = 90°, in plane matrix = 64 × 64]. 
All images were collected using a sparse sampling technique with 
an effective repetition time (TR) of 12 s. Adequate coverage of the 
brain was achieved by collecting 30 interleaved 5 mm thick axial 
slices with no spacing between (voxel size = 3.75 mm × 3.75 mm × 
5 mm). Immediately following the functional imaging, high resolu-
tion anatomical spoiled gradient-recalled at steady state (SPGR) 
images (5 mm thick, no spacing, number of excitations = 2, TE = in 
phase, TR = 325 ms, FA = 90°, in plane resolution 256 × 256, 
bandwidth = 31.25) were collected at the same slice locations as 
the functional images. Using an eight-channel head coil another 
set of high resolution FSPGR images (1 mm thick, no spacing, 180 
locs per slab, TE = min full, TR = prep time 400 ms, FA = 12°, in 
plane resolution 256 × 256, bandwidth = 31.25) were collected.

FIGURE 3 | Visual stimuli consisted of eight words surrounding a central 

fixation point.

FIGURE 4 | A schematic representation of the fMRI scanning session for both auditory and visual conditions. A sparse sampling approach was adopted by 

clustering image acquisition into a 2 s interval preceded by 10 s of scanner silence. This approach gave an effective TR of 12 s.
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and attempted to synchronize with the pulse about halfway 
through the second repetition of the pattern. A wide range of 
synchronization coefficients was observed in pulse synchro-
nization (0.26 ≤ r

sync
 ≤ 0.86, mean r

sync
 = 0.60). In the fMRI 

experiment, performance on the rhythm reproduction task 
varied as well (0.32 ≤ r

corr
 ≤ 0.88, mean r

corr
 = 0.62). Thus, some 

participants had an easier time perceiving and synchronizing 
to the pulse and some participants had an easier time repro-
ducing the rhythmic patterns. Correlation analysis revealed a 
significant relationship between pulse synchronization task and 
rhythm reproduction (r = 0.74, p = 0.0064, Figure 5) after one 
outlier was removed (r = 0.50, p = 0.0804 when outlier was 
included). Thus, the ability to perceive the pulse of a complex 
rhythm predicted the ability to accurately reproduce the rhythm, 
as has been previously observed (Essens and Povel, 1985). On 
average, subjects remembered slightly more than half of the 
words during the visual reproduction task (mean = 5.23 words, 
SD = 1.66 words).

fMRI

In evaluating the imaging results, the auditory conditions were 
first compared to rest. BOLD signal increases during auditory 

attend 1 (Figure 6A; Table 1) were restricted to bilateral supe-
rior temporal gyrus (STG, BA 22, 41) in areas compatible with 
primary auditory cortex. Similar activity in primary and sec-
ondary auditory areas (BA 41, 22) was associated with auditory 

attend 2 (Figure 6B; Table 1). Additionally, for auditory attend 

2 we observed an increase in the BOLD response in motor areas 
including left SMA, right basal ganglia (caudate, globus pal-
lidus, extending into nucleus accumbens), and left postcentral 
gyrus (BA 3).

able to reproduce the rhythms accurately. Similarly, attend visual 
trials in which participants remembered four or more words were 
included in the fMRI analysis. Using this criterion, 46/390 trials 
were unsuccessful and therefore excluded from the analysis.

Except where noted, data analysis was performed using AFNI (Cox, 
1996; Cox and Hyde, 1997) running on an Apple G5. Functional data 
sets were corrected for motion and smoothed spatially by convolution 
with a Gaussian kernel (FWHM 4 mm). Data was high-pass filtered at 
1/90 s (∼0.0111 Hz) to correct for low frequency drift. A hemodynamic 
response function (HRF) was convolved with a binary vector represent-
ing the off/on timing of each condition to create a model time series. 
Multiple regression was used to determine the contribution of the 
model to the data at each voxel. Functional images were registered to 
a template brain in the coordinate system of Talairach and Tournoux 
(1988) using SPM2 (Wellcome Department of Imaging Neuroscience, 
London) using a two step process. First the high resolution SPGR image 
of each participant was registered to the template brain. Second, the 
same transformation matrix was applied to each of the low-resolu-
tion functional images. Group analysis was conducted by submitting 
individual beta weights to one sample t-tests. To correct for multiple 
comparisons, a Monte Carlo simulation was conducted to determine 
the random distribution of voxel cluster sizes for a given threshold 
(for similar approaches see, Ledberg et al., 1998). A corrected alpha of 
p < 0.002 was achieved by the combination of a per voxel threshold of 
p < 0.01 and a cluster size of eight contiguous voxels (512 mm3).

RESULTS

BEHAVIORAL MEASURES

In the preliminary pulse synchronization experiment, the mean 
time to begin pulse synchronization was 1.37 pattern repetitions 
(equal to 5.48 s, SD = 0.93 s). Therefore, participants perceived 

FIGURE 5 | Scatter plot showing pulse synchronization coefficients and rhythm reproduction values. Each subject’s data is represented by a blue cross, with 

the outlier circled in red. The solid green line represents the regression line with the outlier removed (p = 0.0064) and the dotted green line represents the regression 

line with the outlier included (p = 0.0804).
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nucleus, putamen, lateral globus pallidus), right cerebellum (declive 
culmen, uvula), bilateral inferior frontal gyrus (IFG, BA 44), as well as 
in primary and secondary auditory areas (mainly left lateralized).

Activations associated with attending to complex auditory 
rhythms were revealed by comparing auditory attend 2 with visual 

attend 2 (Figure 9; Table 3). Increased BOLD responses associ-
ated with auditory attention were seen in right basal ganglia (cau-
date), left primary auditory cortex, left superior frontal gyrus (BA 
8, extending into pre-SMA), and right medial prefrontal cortex 
(extending to bilateral ACC and cingulate).

Auditory rehearse (Figure 7; Table 2) was associated with BOLD 
increases in motor areas including bilateral SMA, bilateral basal gan-
glia (right side caudate, lentiform nucleus, and putamen, extending 
into nucleus accumbens; left side lentiform nucleus, putamen, lateral 
globus pallidus), right precentral gyrus (BA 6), left postcentral gyrus 
(BA 3,2), cerebellum (uvula, culmen), left prefrontal cortex, and 
secondary auditory cortices. During auditory reproduce (Figure 8; 
Table 2), increased activation was observed in left postcentral gyrus 
(BA 3,2, extending into precentral gyrus (BA 4), ventral PMC, SMA, 
inferior parietal lobe (IPL, BA 40), left basal ganglia (lentiform 

FIGURE 6 | Brain regions where BOLD signal was significantly different 

during (A) the auditory attend 1 condition compared to rest (p < 0.002 

corrected) and (B) auditory attend 2 compared to rest. Red to yellow colored 

voxels represent brain areas where auditory attend 1 > rest and attend 2 > rest. 

Blue areas show where auditory attend 1 < rest and auditory attend 2 < rest. The 

coronal slice is shown with the left (L) on the left side of the figure. The colorbar 

reflects t-values. STG, superior temporal gyrus; SMA, supplementary 

motor area.



Frontiers in Psychology | Auditory Cognitive Neuroscience  December 2010 | Volume 1 | Article 224 | 8

Chapin et al. Attending to complex rhythms

DISCUSSION

In this experiment, we observed that brain activations related to 
selective attention, rehearsal, and reproduction of complex audi-
tory rhythms unfolded over time in a meaningful way. Attending 
to the first three repetitions of a complex rhythmic pattern acti-
vated primary sensory areas. During the next three repetitions of 
the pattern, the activation became more complex. Areas related 
to pulse and meter perception (Grahn and Brett, 2007, 2009; 
Grahn, 2009; Grahn and Rowe, 2009), such as basal ganglia and 
SMA, were recruited as the participant attended to additional 
repetitions of the pattern. After the external stimulus stopped, 
the pattern was maintained by these same structures with the 
added support of the dorsal auditory pathway (PT, PMC, pre-
frontal cortex) and insula. Reproduction of the rhythmic pattern 
recruited primary auditory sensory areas (mainly lateralized to 
the left), insula, and the dorsal auditory pathway, in addition 
to motor areas, which may be indicative of the utilization of an 
auditory sensory memory.

Activity associated with attending to a rhythm once a pulse per-
cept had sufficient time to fully develop was uncovered by compar-
ing auditory attend 2 with auditory attend 1 (Figure 10; Table 3). 
Increased BOLD responses were seen in left IFG [BA 47, extend-
ing into bilateral basal ganglia (caudate), nucleus accumbens), 
left STG (BA 22, 41, extending to insula, basal ganglia (lentiform 
nucleus, putamen)], left postcentral gyrus (BA 3, extending into 
primary and secondary auditory cortex), left medial prefrontal 
cortex [extending to ventral ACC, cingulate (BA 24, 32)], and left 
dorsal ACC (BA 24).

Rehearsing rhythms compared to rehearsing words 
(Figure 11; Table 3) revealed greater activity in bilateral basal 
ganglia (lentiform nucleus, putamen, caudate), left medial 
prefrontal cortex [BA 9, extends to bilateral cingulate, ACC 
(BA 24, 32), extending into pre-SMA], left postcentral gyrus 
(BA 3), and left primary auditory cortex. Results for relevant 
visual conditions (attend 2 and rehearse) compared to rest are 
reported in Table 4.

Table 1 | Auditory attend activations compared to rest (p < 0.002 corrected).

Region (cluster center) BA Cluster includes X Y Z Volume (mm3) t-Value

ATTEND 1

L STG 41 22 −58 −25 8 6016 3.97

R STG 22 41, 42 58 −17 4 3200 4.00

R SFG 9 MPFC (9, 10), cingulate, vACC (24) 2 51 32 19776 −3.70

L posterior cingulate 29 Bilateral 30, 23, cingulate (31), precuneus −2 −41 20 18560 −3.06

L MTG 39 19, angular gyrus, SOG, MOG,  −46 −69 24 6464 −3.12 

  supramarginal gyrus, IPL

R MOG  MTG (39), angular gyrus,  42 −73 16 5184 −3.77 

  supramarginal gyrus, IPL

L IFG 47  −30 15 −12 1856 −3.89

R IFG 47  34 15 −12 1536 −3.84

L precuneus 7  −10 −57 56 1216 −3.22

R IFG 46  42 43 0 960 −4.06

L SFG 10  −26 55 0 896 −3.76

L cuneus 18  −2 −77 28 896 −3.51

L near cerebellum  R thalamus −2 −25 −8 768 −3.43

R SFG 10  22 59 16 768 −3.63

R MTG 21  46 −5 −12 704 −3.65

L MTG   −46 −21 −12 640 −3.06

L ITG 37  −54 −57 −8 640 −3.43

L cerebellar declive  Fusiform gyrus (37), parahippocampal −22 −53 −12 576 −3.11 

  gyrus (36)

R culmen  Parahippocampal gyrus (36) 18 −41 −8 576 −4.15

R thalamus   10 −17 16 576 −3.33

ATTEND 2

L STG 41, 22  −54 −29 8 13504 4.27

R STG 41, 22  54 −17 4 13120 4.53

L MPFC, SMA 6  −2 −9 56 2176 3.69

L postcentral gyrus/S1 3  −38 −29 52 1856 3.24

R occipital lingual gyrus 17, 18  6 −85 0 1344 3.38

L occipital lingual gyrus 17  −14 −89 −4 896 3.12

R thalamus/ basal ganglia  Caudate and GP, nucleus accumbens 6 −1 4 768 3.18

R middle occipital gyrus   42 −73 16 768 −3.68
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Supplementary motor area and PMC activations were found 
when participants were instructed to direct their attention 
toward the auditory rhythms. However, increased activation in 
these areas was not found in comparison with the visual attend 
condition, possibly because SMA and PMC activations were also 
observed during the attend visual conditions (compared to rest, 
see Table 4). Activation of these areas during visual attend con-
ditions could reflect their involvement in the visual working 
memory task or indicate automatic engagement of the motor 
system in response to rhythm presentation regardless of the 
modality to which attention is directed. SMA and PMC have 
been implicated in the semantic processing of words (Chee et al., 
1999), and maintenance of verbal working memory (Smith and 
Jonides, 1996, 1998). Furthermore, in the current study, rehearsal 
of the words was also associated with SMA and PMC activation 
(when there was no stimulus was present). Thus, while automatic 
engagement of these areas during rhythm presentation cannot 
be ruled out, these results suggest that the activations seen in 
SMA and PMC during the attend visual condition were due to 
the role of the motor system in perception and working memory 
for verbal information. Thus, the activity of the SMA and PMC 

Basal ganglia activity was observed when subjects were instructed 
to attend to the rhythms but not when they were instructed to attend 
to the visual stimulus. This finding supports the hypothesis that 
attention is necessary to recruit basal ganglia when listening to 
complex rhythms. Basal ganglia activity was observed only after 
the rhythms had been presented a sufficient number of times for 
the listener to perceive a pulse. Because there is evidence linking 
pulse perception to basal ganglia activation (Grahn and Brett, 2007, 
2009; Grahn, 2009; Grahn and Rowe, 2009), the current observa-
tions suggest that attention may be necessary for the induction of a 
pulse percept when listening to complex (syncopated) rhythms that 
contain no energy at the pulse frequency. This would be consistent 
with the role of attention in more complex rhythmic tasks (Repp 
and Keller, 2004; Geiser et al., 2009), though this prediction needs 
further testing in future behavioral experiments. Moreover, basal 
ganglia have also been discussed as playing a role in “training” more 
frontal areas during learning of musical sequences (Leaver et al., 
2009). In agreement with this notion, basal ganglia were found to 
remain active during rhythm rehearsal (and more so than during 
word rehearsal), when frontal areas were also recruited to maintain 
and learn the rhythm in preparation for reproduction.

FIGURE 7 | Brain regions where BOLD signal was significantly different during the auditory rehearse condition compared to rest (p < 0.002 corrected). Red 

to yellow colored voxels represent brain areas where auditory rehearse > rest. Blue areas show where auditory rehearse < rest. The coronal slice is shown with the 

left (L) on the left side of the figure. The colorbar reflects t-values. SMA, supplementary motor area; PMC, premotor cortex; LN, lentiform nucleus; Put, putamen.
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and rehearse conditions and when comparing the later and ear-
lier phases of the auditory attend condition. Consistent with its 
involvement in on-line monitoring of expectancies (Bush et al., 
2000), the dorsal portion of the ACC may be related to temporal 
expectancy in the complex rhythms presented in this study. ACC 
has also been correlated with tracking dynamic changes in tonal-
ity in autobiographically salient musical excerpts (Janata, 2009). 
In addition, in line with previous work, selective attention to the 
auditory stimulus (Figure 9) enhanced activity in auditory sensory 
areas (Woodruff et al., 1996; Johnson and Zatorre, 2006) and sup-
pressed activity in sensory areas associated with attending to the 
visual stimulus (Johnson and Zatorre, 2006; Lakatos et al., 2008). 

during both visual and auditory attend conditions may reflect 
the inherent role of the motor system in verbal and rhythm 
perception, respectively.

Instructions to attend to the auditory rhythms additionally led to 
greater activity in an attentional sensory network including primary 
auditory cortex, insula, ACC, and prefrontal cortex, indicating the 
role of attention in modulating activity in primary sensory areas 
through higher-level cognitive areas involved in learning complex 
sequences. Similar areas, such as STG, insula, and prefrontal cor-
tex, have also been correlated with selective attention to different 
streams in polyphonic music (Janata et al., 2002). Dorsal ACC 
activity was seen when comparing the auditory to visual attend 

Table 2 | Auditory rehearse and reproduce activations compared to rest (p < 0.002 corrected).

Region (cluster center) BA  Cluster includes X Y Z Volume t-Value 

      (mm3)

REHEARSE

L MPFC, SMA 6 Extends bilateral SMA and cingulate 24, 32,  −2 −9 56 25280 5.26 

  R MPFC (9, 10)

L SFG 11 Extends to 9 −30 51 16 13568 3.72

L postcentral gyrus/S1 3 2, precentral gyrus (4), −38 −29 56 5248 3.09

R basal ganglia  Caudate, nucleus accumbens, lentiform nucleus,  6 −1 4 1472 5.06 

  putamen

L basal ganglia  Lentiform nucleus, putamen, lateral globus pallidus −18 −1 4 1280 5.23

R precentral gyrus, PMC 6  50 −5 40 1280 5.07

R cerebellar uvula  Culmen 30 −65 −24 768 4.28

L STG 22 MTG (22) −54 −37 8 576 3.50

R cerebellar culmen  Parahippocampal gyrus, bilateral lingual gyrus, cuneus 2 −45 4 16832 −3.07

R cuneus 19  6 −81 32 3904 −3.10

R MOG  19 30 −77 8 2688 −3.85

L precuneus 7  −2 −49 56 2368 −3.45

L parahippocampal gyrus 27  −18 −29 −4 1728 −3.27

R MPFC 10 Bilateral 2 63 12 1024 −3.28

L cerebellar uvula  Pyramis −14 −77 −32 640 −3.43

L cerebellar culmen   −34 −49 −20 640 −3.90

L posterior cingulate   −10 −49 24 640 −3.62

R postcentral gyrus 7  22 −49 64 576 −3.18

REPRODUCE

L postcentral gyrus/S1 3 Precentral gyrus (4), postcentral gyrus (2), IPL (40), −34 −33 60 51456 3.51 

   STG (41, 22),insula (13),  

  vPMC, bilateral SMA, cingulate

R cerebellum dentate  Declive, culmen 18 −57 −20 6720 7.50

R STG 22 MTG (21), STG (41), insula, IPL (40) 54 −25 0 4224 4.38

R insula 13 Precentral gyrus, STG (22), IFG (44) 50 11 4 4160 3.19

R MFG 9 10 34 43 28 2816 3.26

R cerebellum  Uvula 22 −65 −48 2240 3.87

R IPL  Postcentral gyrus (2), supramarginal gyrus 50 −33 32 1664 3.89

L basal ganglia  Lentiform nucleus, putamen, lateral globus pallidus −26 −13 0 1408 3.25

R cuneus 19 Bilateral 18, MOG (19), cuneus (17), lingual gyrus 14 −81 32 34560 −7.86

L parahippocampal gyrus 35 Culmen, declive, fusiform gyrus −22 −29 −12 8128 −4.13

L precuneus 7 Bilateral −2 −61 48 3968 −3.70

L IFG 47  −30 31 −8 1024 −3.21

R paracentral lobule  Postcentral gyrus (3) 10 −37 64 768 −3.47

L SFG 9  −14 39 40 704 −3.23

L SFG/pre-SMA 6  −14 15 56 576 −3.15
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the phonological store to activity in supramarginal gyrus. Smith 
and Jonides (1996, 1998) observed activity in Broca’s area along 
with activation of PMC and SMA during verbal working mem-
ory. In the current study, activity was observed in PMC, SMA, and 
Broca’s area during both rhythm rehearsal and visual rehearsal 
conditions, which could be indicative of subvocal rehearsal seen 
in verbal working memory tasks. Similar activations due to verbal 
working memory in both auditory and visual rehearsal conditions 
would explain why these areas are not seen in the contrast between 
the two conditions. However, rehearsal of rhythms compared to 
rehearsal of words does result in other areas of activation, including 
basal ganglia, dorsal and ventral ACC, and primary auditory cortex, 
showing that maintaining a rhythmic pattern recruits additional 
areas that may be related to pulse perception, temporal expectancy, 
and auditory memory.

As predicted, activity in pulse-associated areas (basal ganglia and 
SMA) was seen during the second half of stimulus presentation in 
the auditory attend condition, whereas activation in these areas was 
not seen during the first three repetitions of the rhythms. Together 

Previous work has suggested independent processing for simple 
auditory and visual stimuli using dual task (Duncan et al., 1997) 
and oddball detection (Alho et al., 1994) paradigms. However, 
suppression of auditory cortex has been observed during visual 
working memory tasks (Crotazz-Herbette et al., 2004) and selec-
tive attention tasks (Johnson and Zatorre, 2006). The current study 
used more demanding working memory tasks with complex stimuli 
in a selective attention paradigm. While we did not observe sup-
pression of auditory areas during the visual attend condition, we 
did observe greater activation of auditory cortex during selective 
attention to the auditory stimulus. The current findings provide 
evidence that selective attention for complex stimuli and tasks 
results in differential activity depending on the attended modality 
and that there is an asymmetry in suppression of activity in the 
unattended modality.

Verbal working memory has been modeled as a phonological 
loop that consists of articulatory rehearsal and phonological store 
components (Baddeley, 1986). Paulesu et al. (1993) attributed the 
articulatory rehearsal component to activation in Broca’s area and 

FIGURE 8 | Brain regions where BOLD signal was significantly different 

during the auditory reproduce condition compared to rest (p < 0.002 

corrected). Red to yellow colored voxels represent brain areas where auditory 

reproduce > rest. Blue areas show where auditory reproduce < rest. The axial 

slice is shown with the left (L) on the left side of the figure. The colorbar reflects 

t-values. SMA, supplementary motor area; STG, superior temporal gyrus; IPL, 

inferior parietal lobe; PMC, premotor cortex; LN, lentiform nucleus; 

Put, putamen.
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FIGURE 9 | Brain regions where BOLD signal was greater during the auditory attend 2 compared to visual attend 2 condition (p < 0.002 corrected). Red to 

yellow colored voxels represent brain areas where auditory attend 2 > visual attend 2. The coronal slice is shown with the left (L) on the left side of the figure. The 

colorbar reflects t-values. STG, superior temporal gyrus; pre-SMA, pre-supplementary motor area; MPFC, medial prefrontal cortex; ACC, anterior cingulate cortex.

with our observation that pulse synchronization begins during the 
second pattern repetition, this represents additional evidence that 
these functional activations reflect pulse perception. On the basis of 
these data alone it cannot be ruled out that the observed activation 
of motor areas during attention to the auditory stimuli is related 
to imagination and preparation of the subsequent rehearsal/repro-
duction stages. However, our interpretation would be consistent 
with previous findings that these circuits are associated with pulse 
and meter perception during passive listening in the absence of any 
motor demands (Schubotz et al., 2000; Grahn and Brett, 2007; Chen 
et al., 2008a; Bengtsson et al., 2009; Grahn, 2009; Grahn and Rowe, 
2009). The role of the frontal motor circuit in rhythm generation 
is not surprising given the established role of these motor areas in 
human timing (Meck et al., 2008), selective attention to time (Coull 
et al., 2004), and sequencing (reviewed in Nachev et al., 2008). In 
light of this previous work, the current observations further support 
the growing understanding that pre-motor regions such as the SMA 
(Chen et al., 2008a) and basal ganglia are important for the repre-
sentation of pulse and rhythm even in the absence of movement 
(Grahn and Brett, 2007; Zatorre et al., 2007). Here, this finding has 
been extended to demonstrate that the proposed auditory to motor 
mapping is not automatic for syncopated rhythms, but requires 
attention to the rhythmic stimulus and requires time to develop.

In general, the current results confirm previous findings and 
illustrate the fundamental importance of an extended motor 
network in pulse and meter perception (Grahn and Brett, 

2007; Chen et al., 2008a; Grahn, 2009; Grahn and Rowe, 2009). 
Integrated auditory–motor activity corresponding to meter may 
help explain the universal subjective experience of the spontane-
ous urge to move to rhythmic music. This interaction may also 
explain why the most common tempo for popular dance music 
(van Noorden and Moelants, 1999), preferred and spontaneous 
tapping rates (Fraisse, 1982), and preferred gait frequency are all 
well matched (averaging around 2 Hz) (for review see Todd et al., 
1999), as well as the benefit that rhythmic stimuli have on those 
with movement disorders (McIntosh et al., 1997; Thaut et al., 
1997; Whitall et al., 2000). Moreover, auditory–motor interac-
tions are reciprocal such that movement can influence meter 
perception in infants (Phillips-Silver and Trainor, 2005) and 
adults (Phillips-Silver and Trainor, 2007). Rhythm perception 
can even be influenced without any overt motion by the illusory 
sensation of movement induced through vestibular stimulation 
(Trainor et al., 2009).

It was observed that attention modulates the brain networks 
responsible for the perception of complex, syncopated rhythms. 
Most significantly, the current observations show that attention 
is necessary for the activation of basal ganglia when listening 
to complex rhythms that do not contain energy at the pulse 
frequency. Whether attention is similarly necessary when such a 
frequency component is exogenously present is not yet clear, but 
previous work suggests that the answer to this question may be 
“no” (Grahn and Brett, 2007; Chen et al., 2008a). Additionally, 
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Table 3 | Between auditory and visual condition activations (p < 0.002 corrected).

REGION (cluster center) BA Cluster includes X Y Z Volume t-Value 

      (mm3)

AUDITORY ATTEND 2 VS VISUAL ATTEND 2

R MPFC 9 10 and bilateral anterior cingulate 32, 24 2 47 24 7808 3.58

L cingulate 31 Paracentral lobule −2 −21 40 2304 4.51

L insula 13  −38 −13 0 1664 4.29

L postcentral gyrus 40  −38 −33 56 896 4.21

L SFG 8 Pre-SMA −2 23 48 640 3.47

R basal ganglia  Caudate 2 3 8 576 3.08

L STG 41  −50 −29 12 576 3.09

L precuneus 7 19, 18, cuneus, MOG, IOG, lingual gyrus,  −18 −69 48 31104 −5.03 

  fusiform gyrus, declive

R precuneus 7 19, 18, cuneus, MOG, IOG, lingual gyrus, 2 −69 44 23040 −3.10 

  fusiform gyrus, declive

R cerebellar declive  Fusiform gyrus, lingual gyrus, 22 −73 −12 7808 −4.34 

  parahippocampal gyrus, hippocampus

R MPFC 6  26 −9 44 3712 −4.34

L precentral gyrus 6 vPMC −46 3 28 2816 −3.73

L MPFC, SMA 6 Bilateral −6 −5 56 2816 −6.28

L cerebellar declive   −6 −77 −20 896 −3.20

L hippocampus   −30 −29 −8 896 −3.15

R cerebellar declive   6 −73 −20 576 −3.82

R cuneus 23  6 −73 8 576 −3.48

AUDITORY ATTEND 2 VS AUDITORY ATTEND 1

L MPFC 9 vACC, cingulate (24, 32) −2 51 32 13312 3.05

L IFG 47 Bilateral basal ganglia (caudate), nucleus accumbens −30 15 −16 6464 3.63

L STG 22 41, insula, basal ganglia (lentiform nucleus, putamen) −50 −29 4 6080 3.15

L transverse, STG 41 STG (22), insula (13) 50 −25 12 5312 3.55

L postcentral gyrus, S1 3 IPL (40) −34 −29 52 2944 3.97

L MTG 39 STG (39), angular gyrus, supramarginal gyrus −46 −61 28 2240 3.07

L MTG  20 −46 −21 −12 1792 3.42

L red nucleus  Extends bilaterally, R substantia nigra −2 −21 −4 896 4.08

L dACC 24  6 35 8 896 3.53

R MFG 9  30 31 28 896 3.26

R ITG 37  −50 −69 0 768 3.12

L paracentral lobule 31  −6 −21 44 704 3.12

L STG  Posterior insula (13) −50 −37 16 640 3.12

AUDITORY REHEARSE VS VISUAL REHEARSE

L MPFC 9 Bilateral cingulate, ACC (24, 32), pre-SMA 2 47 24 16960 3.63

R subcallosal gyrus  Bilateral basal ganglia (lentiform nucleus,  22 11 −12 14784 4.48 

  putamen, caudate)

L cingulate  Bilateral 24, 31, paracentral lobule −2 −21 40 4800 6.37

R lingual gyrus  MOG, IOG (18), cuneus 2 −69 0 4096 3.13

L MOG 18 MOG, IOG (18), lingual gyrus −26 −85 4 2944 3.38

L postcentral gyrus, S1 3  −38 −29 56 2176 3.38

L STG 41  −50 −33 12 704 3.43

R hippocampus   30 −37 0 1216 −5.86

L precuneus 7 MTG (39) −26 −61 36 768 −3.22

L fusiform gyrus   −38 −53 −4 640 −5.19
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cal work suggests that pulse and meter are essentially a form 
of attentional allocation, serving to direct processing resources 
toward expected points in time; and performance on change 
detection tasks confirms that perception is facilitated for met-

we observed that for syncopated rhythms,  sufficient time is 
needed for basal ganglia activations to develop. How can we 
incorporate these observations with our current knowledge of 
pulse, meter, and attention? Previous empirical and theoreti-

FIGURE 10 | Brain regions where BOLD signal was greater during the auditory attend 2 compared to auditory attend 1 condition (p < 0.002 corrected). Red 

to yellow colored voxels represent brain areas where auditory attend 2 > auditory attend 1. The coronal slice is shown with the left (L) on the left side of the figure. 

The colorbar reflects t-values. STG, superior temporal gyrus; LN, lentiform nucleus; Put, putamen; ACC, anterior cingulate cortex.
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rically regular sequences in both adults (Jones and Yee, 1997; 
Jones et al., 2002) and infants (Bergeson and Trehub, 2006; 
Trehub and Hannon, 2009). Within this context, the current 
results suggest that attention may be responsible not only for the 
 temporal  coordination of neural activity with external events, 
but also for the integration of brain regions necessary for task 

performance. This raises the possibility that both aspects of 
attention may be manifest in neural activity that coordinates 
brain areas in the  perception of meter and rhythm. Future work 
is needed to understand the mechanisms mediating dynamic 
attending and the relationship between rhythmic entrainment 
and network coordination.

FIGURE 11 | Brain regions where BOLD signal was significantly greater 

during the auditory rehearse compared to visual rehearse condition 

(p < 0.002 corrected). Red to yellow colored voxels represent brain areas 

where auditory rehearse > visual rehearse. The coronal slice is shown with the 

left (L) on the left side of the figure. The colorbar reflects t-values. STG, 

superior temporal gyrus; pre-SMA, pre-supplementary motor area; SFG, 

superior frontal gyrus; LN, lentiform nucleus; Put, putamen, ACC; anterior 

cingulate cortex.
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Table 4 | Visual attend 2 and rehearse compared to rest (p < 0.002 corrected).

REGION (cluster center) BA Cluster includes X Y Z Volume t-Value 

      (mm3)

ATTEND 2
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L MFG 10  −30 51 12 1216 3.82
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