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Emerging evidence from recent neuroimaging studies suggests that specific food-related
behaviors contribute to the development of obesity.The aim of this review was to report the
neural responses to visual food cues, as assessed by functional magnetic resonance imag-
ing (fMRI), in humans of differing weight status. Published studies to 2014 were retrieved
and included if they used visual food cues, studied humans >18 years old, reported weight
status, and included fMRI outcomes. Sixty studies were identified that investigated the
neural responses of healthy weight participants (n=26), healthy weight compared to obese
participants (n=17), and weight-loss interventions (n=12). High-calorie food images were
used in the majority of studies (n=36), however, image selection justification was only
provided in 19 studies. Obese individuals had increased activation of reward-related brain
areas including the insula and orbitofrontal cortex in response to visual food cues compared
to healthy weight individuals, and this was particularly evident in response to energy dense
cues. Additionally, obese individuals were more responsive to food images when satiated.
Meta-analysis of changes in neural activation post-weight loss revealed small areas of con-
vergence across studies in brain areas related to emotion, memory, and learning, including
the cingulate gyrus, lentiform nucleus, and precuneus. Differential activation patterns to
visual food cues were observed between obese, healthy weight, and weight-loss popula-
tions. Future studies require standardization of nutrition variables and fMRI outcomes to
enable more direct comparisons between studies.
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INTRODUCTION
The prevalence of obesity is increasing rapidly (1) with 33.6% of
people in the United States classified as overweight and 34.9% clas-
sified as obese in 2011–2012 (2). Obesity increases the risk for a
variety of lifestyle diseases including cardiovascular disease, hyper-
tension, diabetes, and some cancers (3), as well as reduced quality
of life (4). To minimize the substantial economic and health bur-
den of obesity, numerous approaches have been used to target
overweight and obese individuals to facilitate weight loss, includ-
ing lifestyle and surgical interventions (5). Weight-loss interven-
tions focusing on behavioral changes such as dietary modifications
and increased physical activity are commonly used; however, these
have demonstrated variable effects on weight loss and its long-term
maintenance (6). Recently, there has been interest in the possible
role that neural mechanisms play in the development and mainte-
nance of obesity. In addition, increasing attention has been given
to investigating the impact these neural mechanisms may have on
weight loss and maintenance.

It has been suggested that neural responses to specific foods
parallel those that are observed in drug dependence and chronic

addiction (7, 8). To date, neuroimaging techniques, such as func-
tional magnetic resonance imaging (fMRI), have provided a tech-
nique to report the activation of reward-related brain regions in
response to food. Visual and olfactory food cues as well as actual
food intake have been shown to activate similar brain regions to
that of illicit drugs (9–13) in susceptible individuals (14, 15). These
fMRI studies provide new insights into the neurobiology of eat-
ing behavior and food-cue responsivity, and suggest that abnormal
eating behaviors such as overeating in obesity involve alterations in
an individual’s neurocircuitry (9, 10). This could have a significant
impact on weight status, and potentially contribute to the current
prevalence of obesity. Additionally, alterations in neurocircuitry
could provide an explanation for some of the lack of effectiveness
of weight-loss interventions, as well as maintenance of weight loss
in susceptible individuals (16–18).

Many fMRI studies have attempted to identify the neural cor-
relates of eating behavior that could potentially lead to obesity.
A great deal of heterogeneity, however, is evident in study design
and methodological techniques across the available studies to date
(19–21). Previous literature on the neural processing of visual food
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cues has identified alterations in limbic, paralimbic, and frontal
brain circuits. These brain areas are associated with emotional
salience, memory, reward, and cognitive and visual processing.
Furthermore, motivational state, weight status, and energy density
of presented foods have been reported to affect neural responses
(20–24). Reviews of the literature investigating neural responses to
food cues to date have included individuals with eating disorders
or used multiple stimuli modalities such as taste. These approaches
may affect neural responses to food cues (20) or recruit multiple
anatomical centers in the brain (21, 25).

Specific meta-analysis has emerged as a method to overcome
the heterogeneity in fMRI studies. Activation likelihood estima-
tion (ALE) meta-analysis is a technique that integrates findings
of fMRI experiments to identify common or divergent activation
patterns across a range of studies, using standardized brain coor-
dinates. Existing ALE meta-analyses assessing neural activation of
healthy weight individuals to visual food cues have shown that the
hunger-state and salience of the presented food items alters activity
in brain regions associated with arousal, reward processing, atten-
tion, visual processing, and memory of previous food experiences
(22). Subsequent meta-analyses have found that overweight and
obese individuals have altered activity in brain regions associated
with related-cue processing, decision making, anticipation, caloric
appraisal, arousal, and memory (23, 24).

Currently, the process by which the human brain integrates
food signals to produce maladaptive eating behaviors such as
overeating in obesity is largely unknown and warrants further
investigation. No studies to date have systematically reviewed the
neural responses to visual food cues across all weight categories in
individuals who do not have a diagnosed history of abnormal eat-
ing behavior such as an eating disorder. Additionally, no studies
have systematically reviewed published studies or applied meta-
analytical techniques to neural responses to visual food cues pre-
and post-weight loss. This is important as it could have implica-
tions for the development of more effective weight-loss treatments
and maintenance of lost weight.

The aim of this systematic review was to examine published
literature related to neural activation, as measured by fMRI,
in response to visual food cues by weight status. The primary
aim of the review was to determine whether differential neural
responses are observed when viewing visual food cues based on
body mass index (BMI) category. A secondary aim of the review
was to determine whether different neural activation patterns are
observed in response to viewing food compared to non-food cues
in individuals before and after weight loss.

MATERIALS AND METHODS
A review was undertaken to identify published studies in the Eng-
lish language that used fMRI as a primary outcome measure of
neural responses to visual food cues from 1973 to March 2014.
This process is outlined in Figure 1.

Initially, electronic databases were searched including: MED-
LINE, The Cochrane Library, EMBASE (Excerpta Medica Data-
base), CINAHL (Cumulative Index to Nursing and Allied Health),
Informit Health Collection, Proquest, Web of Science, Scopus, and
PsycINFO. A pre-determined list of keyword search terms was
informed and compiled from a preliminary search of the literature

FIGURE 1 | Flow diagram of studies included in the review.

and expanded medical subject headings (MeSH). Keywords were
used individually and in combination and included: fMRI, blood
oxygen level dependent (BOLD), functional imaging, BOLD sig-
nal, BOLD effect, oxyhemoglobin, and deoxyhemoglobin, reward,
overeating, addiction, process addiction, food addiction, binge,
craving, and dopamine. In addition, electronic searches were sup-
plemented by systematically checking reference lists of relevant
publications.

Following the removal of duplicate references, titles and
abstracts of identified studies were assessed by two independent
reviewers (KP and PS). A predetermined inclusion criterion was
applied to determine the study’s eligibility in the review. Studies
were included if they investigated an adult population (>18 years
of age), used visual food cues, reported weight status, and included
fMRI as an outcome measure. Studies reporting a range of BMI
categories were included to examine the relationship between
neural activation and weight status. Healthy weight individuals
were included in the review to act as a comparative group for
examining brain activation to visual food cues across all weight
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status categories. Studies involving participants with a previous
or current eating disorder including anorexia nervosa, bulimia
nervosa, and binge-eating disorder were excluded, as these par-
ticipants may have variable responses to food cues that could
be attributed to the diagnosis of an eating disorder. Additionally,
children or adolescents (<18 years of age); participants with men-
tal and neurological disorders including Prader–Willi Syndrome;
pharmacological interventions and fMRI investigations into food
intake alone were excluded in keeping with studies included in
this review (26–29). If a study included a population meeting
the exclusion criteria but reported fMRI outcomes separately for
healthy weight and overweight/obese participants, only data on
the healthy weight and overweight/obese population was reported
in the review. Articles were retrieved for all studies that met the
inclusion criteria. If eligibility was unclear, the article was retrieved
for further clarification.

Studies were quality checked by two independent reviewers
using a standardized 10-question tool (30). The assessed qual-
ity criteria included the source of funding, method of sample
selection, intervention description, study blinding, and statistical
analysis. Four of the quality criteria were designated as “impor-
tant” and needed to be met to receive a high quality rating.
These included: sample selection, comparability of study groups,
intervention description, and validity and reliability of outcome
measures. An overall classification quality was assigned to each
study. Studies were classified as positive quality if >5/10 criteria
were satisfied and all important criteria were met. If the majority of
criteria were satisfied but at least one of the important criteria was
not met, the study was classified as neutral quality. If the majority
of the criteria (>5/10) or important questions (≥2/4) were not
satisfied, the study was classified as negative quality. Criteria were
classified as unclear if the reviewers could not determine whether
criteria were met from the detail provided in the published article.
Additionally, quality-related fMRI outcomes such as cluster size
and volume were extracted and reported in the review. No studies
were excluded based on quality ratings. Data were extracted using
standardized tables developed for the review. In cases of uncer-
tainty of a study’s inclusion, quality assessment or data extraction
were resolved by the consultation of a third independent reviewer
until consensus was reached.

Studies were grouped and analyzed by BMI using the
World Health Association (WHO) classification, i.e., underweight
(<18.49 kg/m2), healthy weight (18.00–24.99 kg/m2), overweight
(25.00–29.99 kg/m2), or obese (>30.00 kg/m2) (31). Four groups
were created for analysis including: (1) studies that compared
healthy weight individuals to overweight/obese individuals; (2)
studies investigating individuals pre- and post-weight loss; (3)
studies of healthy weight individuals only; (4) studies of over-
weight/obese individuals only. For the purposes of this study,
individuals classified as underweight using the WHO cut points
were included in the healthy weight category. Additionally, in stud-
ies where BMI spanned a number of categories, the mean BMI was
used to classify the study into a specific weight category.

META-ANALYSIS
To determine the convergence of reported coordinates across stud-
ies investigating changes in neural responses pre- and post-weight

loss, a meta-analysis was undertaken using the Brainmap Gin-
gerALE software1. The inclusion criteria for the meta-analysis were
identical to the systematic review criteria. In addition, studies were
required to report fMRI outcomes of changes in neural activation
to visual food cues pre- to post-weight loss (surgical and behav-
ioral) using either Talairach or Montreal Neurological Institute
(MNI) coordinates. Only articles reporting whole brain analysis
results were included as region of interest analysis is known to
inflate activation findings (32). Papers reporting Talairach coordi-
nates were converted to MNI coordinates prior to analysis using
the GingerALE software.

Activation likelihood estimation meta-analysis applies a statis-
tical modeling technique (32) that uses reported brain coordinates
and adjusts for between-subject and between-template variance to
generate a 3-dimensional Gaussian kernel. Subsequently, a mod-
eled activation (MA) map is created and individual maps are com-
bined to generate an experimental ALE map. The experimental
map is tested against an ALE null distribution map, represent-
ing the null hypothesis that there is random variation between
activation across the meta-analyzed studies, when the within-
study variation remains fixed. A random-effects model is applied,
which assumes convergence between different studies that is above
chance.

A statistical threshold of P < 0.05 False Discovery Rate (FDR),
corrected for multiple comparisons and a minimum cluster size of
100 mm3 was set. This is consistent with previous meta-analyses in
this area to control for publication bias with respect to the report-
ing of foci (22–24). Results of meta-analyses are presented using
the Mango software package2.

RESULTS
The search strategy identified 1586 articles, 216 articles were
screened for inclusion with 64 articles describing 60 studies
included in the final analysis (26–29, 33–92) as described in Table
S1 in Supplementary Material. The primary reasons for exclusion
were: the article did not meet inclusion criteria for study design
(n= 60); no relevant outcome was studied (n= 58); and the study
investigated a population not specified in the inclusion criteria
(n= 35). Three additional studies were excluded as they did not
report BMI or weight status of participants (93–95).

A total of 1565 participants were included across the studies
(mean 26, range 5–100). Age ranged from 18–66 years with the
most commonly studied age group being 18–35 years olds (n= 42
studies) (26, 28, 29, 33–43, 45–47, 60–66, 68–72, 74–86, 89, 91,
92). Participants were predominantly female and right handed
with 26 of the studies exclusively recruiting females (26, 29, 33,
43, 45–48, 56–59, 65, 66, 70–72, 75, 76, 78–81, 83–85, 90–92). The
majority of studies were published post 2009 (n= 53, 83%) and
used a within participants cross-over design (n= 25, 42%). No
randomized control trials were retrieved by the search criteria.

Seventeen of the included studies compared both obese and
healthy weight participants in the same study (26–28, 33–47).
Twelve reported outcomes from pre- to post-weight loss (48–59).
Methods of weight loss included bariatric surgery (n= 7) (48, 49,

1http://www.brainmap.org/index.html
2http://rii.uthscsa.edu/mango/
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52, 53, 57–59) and behavioral nutrition and lifestyle interventions
(n= 5) (51, 53–56) with follow up in these studies ranging from
one month to twelve months. Weight loss ranged from 3.4–25%
of original body mass in these studies. Five of the included stud-
ies were exclusively conducted in overweight or obese participants
(BMI≥ 25.00 kg/m2) (88–92) and 26 studied individuals with a
mean BMI in the healthy weight range (BMI < 25.00 kg/m2) (29,
60–87). However, eight of the healthy weight studies included par-
ticipants with BMI’s spanning from the underweight category to
the overweight/obese category (29, 67, 69, 74, 78, 79, 81, 82).

As outlined in Table S1 in Supplementary Material, 30 stud-
ies (50%) used participants who were fasted prior to fMRI scans
(range 2–24 h) (26–29, 40–42, 44–46, 50, 51, 54, 55, 64, 67, 73,
75, 77–82, 86, 87, 90–92). Seven studied satiated participants (43,
47, 48, 58–60, 76, 83–85) and 23 investigated neural responses in
both fasted and satiated conditions (27, 33–39, 52, 53, 56, 57, 61–
63, 65, 66, 68–72, 74, 88, 89). The most common variables other
than fMRI assessed in the included studies were hunger (n= 34
studies), appetite (n= 10 studies), and liking ratings of presented
foods (n= 10 studies).

Food images used in the studies were described by their authors
as “high-calorie” foods in 36 of the 60 studies (26, 28, 29, 35, 38, 40,
41, 43–50, 54–61, 64–66, 68, 69, 71, 76, 78–81, 83–88, 90–92) and
included foods such as chocolate, chips, and hamburgers. Foods
described as “low-calorie” foods were used in 32 studies (28, 35,
38, 40, 42, 44, 46–48, 50, 54–61, 64–66, 68, 69, 71, 78–81, 83–88,
90–92) and included foods such as fruit and vegetables. The actual
calorific values for foods were only reported in seven of the studies
(35, 47, 57–59, 78, 88). No studies reported the use of a dietitian
or nutritionist in the selection or classification of foods. Fifteen
studies used foods based on the appeal and salience of the food
(e.g., “hedonic,” “palatable,” and “appetizing”) (27, 33, 34, 41, 43,
52, 62, 63, 70, 73, 75, 77–79, 81, 82). Food images were selected
using pilot ratings of palatability, perceived calorific value, and
recognizability of presented images in only 19 studies (27, 36, 37,
40, 43, 44, 52, 53, 61, 68, 70, 71, 74, 77, 79–82, 86). Control images
were used in the majority (n= 48) of the included studies and var-
ied greatly, including images of cars, office equipment, landscapes,
and blurred images.

Block design was used in 38 of the studies (27, 28, 34, 35, 37–
42, 44, 46–53, 55, 56, 60–64, 67–69, 71–73, 81–85, 87–89, 91, 92)
and a 3 T magnet was used most commonly to acquire imag-
ing data (n= 43) (26, 28, 29, 34, 36, 37, 39–46, 49–53, 55, 56,
60–63, 65–69, 71–73, 75, 76, 78–82, 87, 89–92) (Table S2 in Sup-
plementary Material). The imaging plane most commonly used
to acquire images of the brain was the transverse plane parallel to
the anterior commissure posterior commissure line (AC–PC line)
(n= 18).The method of reporting fMRI results was variable across
the range of studies. All studies excluding two reported Talairach
or MNI coordinates, but only 32 (53%) studies reported cluster
size or volume of activation (35, 38, 39, 41, 43, 44, 46, 49, 50, 52,
53, 55–59, 62–64, 66–69, 72, 74, 77, 78, 81, 84–86, 88, 91).

HEALTHY WEIGHT COMPARED TO OVERWEIGHT/OBESE PARTICIPANTS
Across studies comparing overweight and obese participants to
healthy weight controls, overweight/obese individuals had greater
brain activity to foods compared to non-foods in areas associated

with a variety of functions in the context of food-cue process-
ing (96). This included areas associated with reward processing
[insula (26, 33, 41, 43, 47), orbitofrontal cortex (OFC) (26, 28,
43)], reinforcement and adaptive learning [amygdala (27, 28, 33,
43), putamen (28, 41, 47), OFC (26, 28, 43)], emotional process-
ing [insula (26, 33, 41, 43, 47), amygdala (27, 28, 33, 43), cingulate
gyrus (44, 45)], recollective, and working memory [amygdala (27,
28, 33, 43), hippocampus (27, 28, 33, 45), thalamus (33, 41), pos-
terior cingulate cortex (27, 47), caudate (28, 45, 47)], executive
functioning [prefrontal cortex (PFC) (28, 43), caudate (28, 45,
47), cingulate gyrus (44, 45)], decision making [OFC (26, 28, 43),
PFC (28, 43), thalamus (33, 41)], and visual processing [thalamus
(33, 41), fusiform gyrus (27, 43)]. Additionally, obese individu-
als displayed greater activation to food cues in areas involved in
motor learning and coordination such as hand-to-mouth move-
ments and swallowing [insula (26, 33, 41, 43, 47), putamen (28, 41,
47), thalamus (33, 41), caudate (28, 45, 47)] as well as risk aversion
[inferior frontal gyrus (41, 44)]. These increases in brain activity
were particularly evident in response to high-calorie foods com-
pared to low-calorie foods. When satiated, increased activity was
observed in obese compared to healthy weight individuals in areas
involved in decision making [PFC (34, 39), OFC, and caudate
(38)], reward anticipation [anterior cingulate (33, 38) and OFC
(33, 38)] as well as emotional processing [insula (33, 37), caudate
(38), and amygdala (33)]. Significant correlations between BMI
and activation were reported in three studies (37, 44, 47).

WEIGHT CHANGE INTERVENTIONS
In three studies using a nutrition and lifestyle intervention, brain
activation at the commencement of the intervention was asso-
ciated with degree of weight-loss success and maintenance. This
included areas associated with reward processing and anticipation
[insula, anterior cingulate cortex, nucleus accumbens (55), and the
OFC (56)], decision making [PFC (54) and OFC (56)], and impul-
sivity [nucleus accumbens and the anterior cingulate cortex (55)].
Participants who had successfully lost and maintained weight-loss
displayed differential neural responses to food cues to those of
healthy weight participants in areas involved in emotion, memory,
and visual processing [cingulate gyrus, parietal cortex (51)], and
to that of obese participants in regions associated with emotion,
impulse control, and reward-based learning [PFC and the anterior
cingulate (50)].

In studies reporting pre- to post-bariatric surgery outcomes,
reductions in activity were reported in the insula and putamen.
These areas are implicated in interoceptive processing (52, 58) and
reinforcement learning (57, 59), respectively. Further, activation of
the hypothalamus, which regulates hunger and subsequent food
intake, following gastric bypass surgery resembled the responses
of healthy weight individuals more closely than responses of obese
individuals. More successful weight loss in gastric bypass surgery
was associated with increased baseline neural activity of the dor-
solateral PFC (49) and unique changes in activity were found
depending on the method of weight loss (i.e., behavioral or sur-
gical) (53). A relationship between BMI and activation of areas
involved in reward anticipation and impulsivity [anterior cingu-
late cortex (49) and middle frontal gyrus (52)] was identified in
two studies.
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HEALTHY WEIGHT PARTICIPANTS
The most common finding across studies of healthy weight par-
ticipants was that motivational state (i.e., fasted or satiated state)
affected brain activation to food. Fasting often increased responses
to high-calorie foods in areas associated with processing of reward
and stimuli salience [OFC (66, 69, 71, 72), striatum (65, 69, 72),
insula (69, 71)], decision making [OFC (66, 69, 71, 72), striatum
(65, 69, 72)], implicit learning [OFC (66, 69, 71, 72), putamen
(66, 71)], and the processing of visual cues [fusiform gyrus (68,
71, 74)]. Gender differences were identified in responses to food
cues with females displaying greater activation in a variety of brain
regions implicated in attention, emotion, recollective memory, and
decision making (67, 68, 74).

OBESE PARTICIPANTS
In obese participants, food compared to non-food images
activated areas including the PFC, insula, amygdala, nucleus
accumbens (91, 92), and cerebellum (89). These areas are associ-
ated with numerous roles which could affect food cue processing
including executive functioning, reward processing, and antici-
pation, reinforcement learning, memory modulation, and motor
control. Females showed greater activation in the caudate and OFC
when fasted and greater activation in the anterior cingulate cortex
when satiated (88). Abdominal adiposity predicted brain activity
in one study (92).

RESULTS OF THE ALE META-ANALYSIS
As only one study reported increases in brain activation following
weight loss, only studies reporting decreases in neural activation
from pre- to post-weight loss were included in the meta-analysis.
Five studies describing seven experiments were identified that met
the meta-analysis inclusion criteria with 45 participants and 41 foci
(55–59). The meta-analysis identified 13 clusters, which survived
statistical thresholds, as demonstrated in Figure 2. The largest
cluster was the left superior temporal gyrus (MNI: −40, −48, 6),
as described in Table S3 in Supplementary Material. Other clusters
surviving statistical thresholds included right middle frontal gyrus
(MNI: 32, 34, 34), left lentiform nucleus (MNI: −12, 0, −2), left
cingulate gyrus (MNI: −4, −34, 26,), and right precentral gyrus
(MNI: 40, 0, 42).

DISCUSSION
This is the first systematic review to investigate neural responses to
visual food cues across all weight categories and provide a meta-
analysis of neural changes before and after weight loss. This review
highlights that neural responses to visual food cues differ depend-
ing on the weight status of individuals, and changes in neural
activation patterns are observed pre- to post-weight loss. More
specifically, obese individuals compared to healthy weight had
increased activation to foods compared to non-foods, and this
was most pronounced in response to energy dense foods. This
was evident in brain regions associated with the anticipation of
the rewarding value of the food, emotion and memory associated
with previous experiences with the food, and visual processing of
the food cues. Obese individuals were more responsive to food
cues in the satiated state compared to healthy weight individuals.
Additionally, weight loss reduced neural responses in areas related

FIGURE 2 | Axial (z), coronal (y ), and sagittal (x ) views of decreased
activation in studies comparing neural activation to visual food cues
from pre- to post-weight loss, as detected by fMRI. FDR corrected
P < 0.05, cluster size >100 mm3, region of interest studies excluded. Figure
shows decreased activation from pre- to post-weight loss in the cingulate
gyrus, middle frontal gyrus, and precuneus.

to executive functioning, impulsivity, and reinforcement learning
to visual food cues, despite differences in the modality of the inter-
vention. However, inconsistent activation patterns were reported
across studies, which may be attributable to the variety of partici-
pant groups recruited, pre-scan preparation, and the chosen fMRI
parameters (e.g., block design vs. event-related). The fMRI find-
ings of the current review are consistent with previous published
reviews in the area (19–21).

When comparing healthy weight and overweight/obese partici-
pants, increased reward-related responses to food (e.g., insula and
OFC), particularly high-calorie foods, compared to non-food were
found in obese participants. It has been suggested that obesity may
be linked to an increase in neural-related reward anticipation from
food cues, and a decrease in reward during food consumption.
This could potentiate overeating to compensate for imbalances
in the neural reward pathways and subsequent diminished expe-
rience of reward (7, 97). Although only three studies reported a
correlation between neural responses and BMI (37, 44, 47), the
increased responses reported in these studies of obese partici-
pants compared to normal-weight participants may explain some
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individual’s vulnerability to overeating, food cues, and possible
diet failures (7, 10). Similar findings have been reported by Garcia-
Garcia et al. and Asmaro et al. who noted differential activation
patterns between obese and healthy weight individuals to the sight
of food, particularly in reward-related regions. However, individu-
als with binge-eating disorder and studies using taste stimuli were
also included in previous reviews, which may have recruited addi-
tional areas of the brain and potentially confound the findings of
these studies.

This review extends current literature regarding neural
responses to visual food cues by examining brain activation by
weight status category (i.e., healthy weight, overweight/obese) as
well as pre- and post-weight-loss responses. Results from weight
loss studies suggest that gastric bypass surgery reduces reward
responses from pre- to post-surgery (49, 52, 57–59). Although
consistent reductions in neural activation were observed irrespec-
tive of method of weight loss, changes in activation via surgical
weight loss differed to activation changes observed in behavioral
weight loss that focused on diet and exercise (53). Interestingly, in
both behavioral and surgical interventions, brain activity prior to
weight loss in areas related to reward anticipation and impulsivity
(e.g., anterior cingulate cortex and nucleus accumbens), and deci-
sion making (dorsolateral PFC) predicted degree of weight loss
success. This provides insight that both surgical and behavioral
weight loss may be underpinned by a neural mechanism as well as
restriction of the amount of food consumed. In addition, individ-
uals who had maintained successful weight loss showed increased
neural activity in regions associated with inhibitory control com-
pared to obese individuals and increased responses in areas related
to memory compared to healthy weight individuals (50, 51, 55, 56).
The findings of the review highlight that neural-related mecha-
nisms may make some people more predisposed to weight regain,
despite successful loss of weight. This may have important impli-
cations for obesity follow up and treatment, and provides evidence
that neural mechanisms may affect weight loss success or predict
proneness to relapse. The high cost of MRI precludes large scale
scanning of subjects engaged in weight-loss programs, but use of
fMRI in focused clinical trials could be used to validate changes in
neurocircuitry patterns associated with successful maintenance of
weight loss.

The results of the meta-analysis revealed that there were some
small regions of convergence of brain responsivity across weight-
loss interventions. Deactivation was observed from pre- to post-
weight loss in areas involved in emotion and memory (e.g., cingu-
late gyrus and precuneus), visual processing (e.g., superior occip-
ital gyrus), learning centers (e.g., lentiform nucleus and cingulate
gyrus), and motor regions (e.g., precentral gyrus and lentiform
nucleus) (96). This may imply that individuals who have expe-
rienced weight loss regardless of modality also have changes in
neural activation associated with memory and emotion of previ-
ous experiences with the food as well as alterations in the pro-
cessing of external food inputs. This also suggests that individuals
who have experienced weight loss have corresponding changes in
activation based on behaviors that are implicitly learned or rein-
forced during weight-loss interventions. Additionally, it appears
that weight loss could result in changes in the planning and reg-
ulation of movements associated with eating such as reaching to

obtain the food, chewing, and swallowing. Although several areas
survived statistical thresholds, volume of activation was small.
This suggests that while there were commonalities across studies
regarding reductions in neural activity to food cues across weight-
loss interventions, the areas of congruence are minimal. This is
likely due to the overall number of studies included and the pool-
ing of different modalities of weight loss into a single meta-analysis
and thus results should be interpreted accordingly.

Significant differences were found depending on the partic-
ipant’s motivational state across all weight categories, although
fasting times were inconsistent across studies. Obese individuals
were found to have activation consistent with continued reward
processing (e.g., PFC, OFC, caudate) and emotional responses
(e.g., insula, caudate, amygdala) to food cues following a meal
compared to healthy weight controls. That is, obese individuals
appear to be more reactive to high-calorie foods and have contin-
ued reward processing even following a meal. These findings are
consistent with previous literature in this area (21, 23, 24). This
is significant as it could provide a neural mechanism for overeat-
ing in obese individuals, with neural stimulation even in the state
of satiety. In the fasting state, obese individuals were found to
have increased activation in areas associated with the anticipa-
tion of reward while healthy weight controls were found to have
greater activation in areas associated with cognitive control. This
suggests that BMI and the hunger-state will greatly affect an indi-
vidual’s natural desire for food and food reward responsiveness, as
well as food choices and subsequent caloric intake (14). This pro-
vides preliminary data that could be used in weight interventions
regarding meal timing to avoid excessive anticipation for food and
subsequent overeating. In addition, notable gender bias was found
in the current review, with females displaying differential activa-
tion patterns compared to males in regions associated with reward
anticipation, food motivation, and inhibitory control based on
motivational state, i.e., fasted or satiated. (67, 68, 74, 88). This
may indicate that gender influences an individual’s susceptibility
to addictive-like eating behaviors.

The term ‘food addiction’ has emerged and is being used
increasingly in lay literature (98, 99) in association with specific
eating patterns and rising levels of obesity (22, 30, 77, 96, 100). It
has been postulated that food addiction is associated with specific
food-related behaviors including: tolerance to large amounts of
food, persistent desire, or craving for specific foods and lack of
control over the amount of food consumed (77). In this way food
addiction would share similar clinical characteristics that overlap
with drug dependence and other common types of addiction, as
defined by the Diagnostic and Statistical manual of Mental Dis-
orders version 5 (DSM-V) (29, 77, 101–103). Although, there is
debate regarding to the inclusion of food addiction as a DSM-V
eating and feeding disorder (3), currently no universally accepted
definition for food addiction exists. Findings from this review pro-
vide preliminary support for the food addiction hypothesis. Areas
of the reward network including the mesolimbic and nigrostriatal
regions, which have been implicated in other addictions includ-
ing drug and alcohol abuse, were activated in response to visual
food cues. However, there is a great deal of variation in the brain
areas activated across reviewed studies, as well as the experimental
conditions used (e.g., motivational state, images presented, fMRI
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parameters). This indicates that further research utilizing a stan-
dardized approach is required to substantiate study findings to
either support or refute the existence of food addiction as a dis-
tinct phenomenon. This is in line with the findings of Ziauddeen
et al. (19) who concluded that while neural activation in healthy
weight individuals is somewhat consistent across studies, activa-
tion in obese, and binge eaters is too varied to categorically confirm
the existence of food addiction.

Although little evidence exists to confirm the types of food
associated with food addiction, it is commonly assumed that“junk
foods” high in calories, sugar, and fat such as chocolate and potato
chips are typical foci of addictive-like tendencies such as craving
(27, 76, 104). The range of classifications given to food images
in this review such as “high” and “low” calorie foods and “palat-
able” and “bland” foods appears subjective and arbitrary, with no
studies consulting a dietitian or nutritionist. Only seven stud-
ies specifically identified actual calorific values of foods and the
majority of studies did not pilot test images or provide ratio-
nale for their selection of presented foods. The selection of foods
in research studies is important to ascertain if it is a universal
chemical component of food (e.g., selection based sugar or fat
content), a whole category of food (e.g., selection of ‘junk food’),
or more simply a personal preference (e.g., selection by adminis-
tering a pre-scan survey) that could make a food more likely to be
overeaten. This could provide further insight into whether food
addiction is a plausible phenomenon. Furthermore, the range of
control images presented were variable and included cars, land-
scapes, and blurred images. As these images were not standard-
ized across studies, it is unknown as to whether these assorted
images may elicit different neural patterns from one another
based on their perceived valence and arousal. The variability of
food images used in studies has been previously acknowledged
and a database of standardized pictures based on image charac-
teristics and nutrient composition has recently been developed
(105). Future studies should consider the use of such a database to
facilitate the standardization of images and comparability across
studies.

The design of an experimental paradigm for fMRI studies
requires extensive planning including behavioral predictions of
cognitive tasks and the formulation of a hypothesis to inform the
task conditions and image acquisition parameters. Ideally, fMRI
experiments cover the whole brain with the highest spatial res-
olution achievable in the shortest time. The trans-axial plane is
usually chosen to cover the whole brain in as few slices as possible.
In some cases, the acquisition plane is angled to avoid regions of
high magnetic susceptibility (e.g., air-tissue and bone-tissue inter-
faces) that can adversely affect image quality, such as in targeting
the reward network. The block design has dominated fMRI due to
its ease of implementation, robustness of results, increased statisti-
cal power,and relatively large BOLD signal relative to baseline (106,
107). However, blocked paradigms have poorer temporal resolu-
tion and are susceptible to stimulus correlated movement artifacts.
Event-related paradigms measure responses to single events (typi-
cally over 0.5 s), and then combine a large number of those events
to improve statistical power. This is advantageous to detect tran-
sient variations in hemodynamic responses, reduce the subject’s
ability to predict the next event, and allows for post hoc sorting

of trials and correlations with other variables (106, 107). Gener-
ally, blocked paradigms are most useful to localize activation in
brain regions associated with a particular task while event-related
paradigms allow for a more in depth investigation of the response
profile in an identified brain region.

Across the reviewed studies, fMRI results were not reported in a
consistent method. Talairach or MNI coordinates, used to describe
the location of brain structures independent from individual dif-
ferences in the size and overall shape of the brain, were reported in
the majority of studies. Using the standardized coordinates allows
the comparison of brain region activation with other studies,
increasing the power of results when combined and can provide
a method for meta-analysis (25). Cluster size or volume indicates
that the area of neural activation reported in the study is large
enough to be statistically plausible rather than just an error in mea-
surement, improving the quality of the study (108). Only half of
the studies included in the review reported cluster size or volume.

This review is limited by the heterogeneity of study variables
used across the reviewed articles, making direct comparisons
between studies difficult. As a limited number of studies met the
inclusion criteria for the meta-analysis comparing pre- and post-
weight loss activation changes, a single exploratory meta-analysis
was undertaken combining both surgical and behavioral weight-
loss interventions. The pooling of different methods of weight
loss could impact the findings of the meta-analysis. However, this
data provides insight into neural activation following weight loss,
regardless of modality, which needs to be substantiated in future
research when more studies have been published in this area. The
quality of reporting BMI was inconsistent across studies, with par-
ticipant groups containing BMI ranges that corresponded with
more than one of the WHO categories (54). This could affect
possible relationships between fMRI outcomes and weight status.
As BMI can be affected by numerous factors including muscle
mass, adiposity or body fat percentage is a more reflective mea-
sure of obesity assessment and should be considered for use in
future studies. The majority of reviewed articles studied adult
female participants exclusively, potentially limiting the general-
izability of the study findings to other population groups. Finally,
the broad age range of the study participants could be a potential
limitation of the review, with previous studies showing age-related
changes in neural activity including reduced sensitivity of brain
areas associated with satiety (109).

Strengths of this review include the standardization of popu-
lations studied and stimuli used to visual food cues exclusively.
The use of different stimuli modalities including food consump-
tion (104, 110–122), odors (123–125), and intravenous infusion
(126) recruits additional areas of the brain including taste, tex-
ture, olfactory, and food intake centers, potentially confounding
results. Only visual food cues have been included in the current
review in order to minimize the activation of additional areas of the
brain. Additionally, the exclusion of different populations, includ-
ing children and adolescents (127, 128), eating disorders including
binge-eating disorder, anorexia nervosa and bulimia nervosa (129–
134), and neurological disorders (39, 135), reduces the chance of
additional confounding factors contributing to the variations in
neural responses to visual food cues. This exclusion criterion is
consistent with previous literature in the field (28, 38, 43).
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It is recommended that future studies report detailed nutri-
tional information of images presented during scanning and BMI
classification using the WHO guidelines. This field of research
requires the involvement of a multidisciplinary team including
imaging specialists, neuroscientists, psychologists, and dietitians
to ensure high quality study design. Further, studies should use val-
idated eating behavior questionnaires and use within participant
cross-over study design to investigate the impact of motivational
state on neural responses. Weight-loss studies using fMRI as an
outcome measure should routinely report brain coordinates, clus-
ter size and threshold. Future meta-analyses in this area should
investigate responsivity to food cues by specific mode of weight
loss (i.e., surgical or behavioral) as these are likely to elicit different
changes in neural responses.

CONCLUSION
This review found that neural activation differed based on weight
status with obese individuals displaying increased responses to
food compared to non-food and continued responsivity to food
following a meal. This suggests that neural activity to food cues
could be an additional mechanism contributing to the pathogene-
sis of overeating and subsequent weight gain. Regions of activation
differed across the reviewed studies due to a wide range of study
conditions used and inconsistency in reporting of findings. The
meta-analysis undertaken revealed changes in brain activation
patterns following weight loss. However, the small cluster sizes sug-
gest that there is minimal congruence of neural activation across
weight-loss studies. Future fMRI studies examining neural activa-
tion in response to visual food cues should standardize reporting
of nutrition variables and fMRI outcomes to allow for more direct
comparisons between studies.
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