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Deep learning has brought about a phenomenal paradigm shift in digital steganography. However, there is as yet no consensus on
the use of deep neural networks in reversible steganography, a class of steganographic methods that permits the distortion caused
by message embedding to be removed. (e underdevelopment of the field of reversible steganography with deep learning can be
attributed to the perception that perfect reversal of steganographic distortion seems scarcely achievable, due to the lack of
transparency and interpretability of neural networks. Rather than employing neural networks in the coding module of a reversible
steganographic scheme, we instead apply them to an analytics module that exploits data redundancy to maximise steganographic
capacity. State-of-the-art reversible steganographic schemes for digital images are based primarily on a histogram-shifting method
in which the analytics module is often modelled as a pixel intensity predictor. In this paper, we propose to refine the prior
estimation from a conventional linear predictor through a neural network model. (e refinement can be to some extent viewed as
a low-level vision task (e.g., noise reduction and super-resolution imaging). In this way, we explore a leading-edge neuroscience-
inspired low-level vision model based on long short-term memory with a brief discussion of its biological plausibility. Ex-
perimental results demonstrated a significant boost contributed by the neural network model in terms of prediction accuracy and
steganographic rate-distortion performance.

1. Introduction

Steganography is the art and science of concealing a
message within a cover object (e.g., image, audio, video,
and text) in an imperceptible manner [1]. Applications of
modern steganography include copyright protection
[2–4], tamper detection [5–7], covert communication
[8–10], etc. (e distortion caused by message embedding,
albeit usually minimal and invisible, may to some extent
contaminate the cover object. In this era of data-driven
artificial intelligence, steganographic distortion might
entail uncontrollable risks to the reliability of some au-
tonomous machines since the robustness against steg-
anographic distortion is probably not taken into
consideration when building those machines. Accurate
and consistent data lay a sound foundation of modern
analytics platforms [11], and accordingly, the ability to
reverse steganographic distortion and restore data in-
tegrity is of paramount importance.

Reversible steganographic methods have undergone
rapid development over the past decades [12–22]. Although
there are various principles and practices, a reversible
steganographic method can be broadly compartmentalised
into coding and analytics modules. In general, the coding
module is devised to encode a message in an imperceptible
and reversible way, whereas the analytics module exploits
data redundancy with the aim of maximising steganographic
capacity.

Deep learning has revolutionised both academia and
industry [23]. (e phenomenal advances in deep learning
have also introduced a paradigm shift in digital steganog-
raphy [24–29]. However, research on reversible steganog-
raphy with deep neural networks remains largely
undeveloped. A possible explanation might be that perfect
reversal of steganographic distortion seems to be hardly
achievable at first glance. A coding module often involves
sophisticated designs and procedures in order to regulate
imperceptibility and guarantee reversibility. Any faulty
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operation may result in malfunctioning or failure of steg-
anographic systems. A lack of transparency and interpret-
ability in present neural networks could deter one from
employing neural networks to realise or even upgrade these
delicate reversible mechanisms. From our perspective, it is
advisable to seek an alternative use of neural networks in
reversible steganographic schemes. In contrast to the coding
module, the analytics module has no demand for complete
perfection, thereby allowing deep learning to serve its
purpose. Recently, an exploratory study on adversarial
learning for reversible image steganography was presented
[30]. (e author investigated a neural analytics module
compatible with the regular singular (RS) coding module
[31]. (e neural analytics module was configured as a bit-
plane predictor and implemented by a conditional gener-
ative adversarial network (GAN) called the pix2pix [32]. It
has been suggested that transforming the analytics module
into a neural network (neuralisation) could deliver a sig-
nificant improvement to the original RS method.

Contemporary reversible steganographic schemes for
digital images are based primarily on the histogram-shifting
(HS) method on account of its sterling rate-distortion
performance [33–40]. In general, this type of scheme con-
sists of two procedures: histogram generation and histogram
modification, linked to the analytics module and the coding
module, respectively. (e objective of histogram generation
is to compute from an image a frequency distribution of
which the data values are as concentrated as possible or,
alternatively, the entropy is as small as possible. A more
sharply distributed histogram would normally result in a
finer steganographic rate-distortion performance. A simple
example is the frequency distribution of pixel intensities.
However, the distribution of pixel intensities is apparently
diverse and not necessarily concentrated, and the entropy of
such distribution might not be minimal. A better option is to
consider the histogram of prediction errors. Providing a
well-behaved predictor, the frequencies of prediction errors
typically have a peak around zero and fall off exponentially
from the peak on both sides (following a zero-mean Laplace
distribution). (e more accurate the predictor is, the more
sharply distributed the histogram will become. To this end,
scientists have proposed various approaches for pixel in-
tensity prediction [41–46].

Given a fixed HS coding module, we can reasonably
confine our attention to the design of an accurate pixel
intensity predictor. (rough experimental analysis, we
found that although conventional (non-neural) predictors
could estimate smooth image patches with a high degree of
precision and are arguably less computationally demanding,
their ability to predict textural patches is far from satis-
factory. In view of this problem, we propose to employ a
deep neural network model to refine prior estimation from a
conventional predictor. While many deep neural network
models may be employed to carry out the refinement, this
task seems closest to low-level vision task (e.g., noise removal
and super-resolution imaging) [47–53]. (erefore, we ex-
plore a seminal low-level vision model, theMemNet [54], of
which the foundation is long short-term memory (LSTM)
[55]. LSTM models were designed to mitigate the vanishing

gradient problem encountered when training deep neural
networks. (e problem was overcome with the use of an
internal mechanism called the gate unit which regulates the
flow of information and learns to maintain important hidden
states over extended time intervals. Although LSTM models
are typically used for sequential data (e.g., time series,
natural languages, and audio signals), the MemNet is a
computer vision model that deals with low-level image
features (e.g., edges, contours, and textures). Due to its state-
of-the-art performance in image denoising and image super-
resolution, we may reasonably expect to see an improvement
delivered by the MemNet in the visual quality of pre-esti-
mated images.

In this paper, we study a neural analytics module
compatible with the HS coding module. While there are
wide variations across HS methods (e.g., multiple histo-
grams, multidimensional shifting, and optimal bin selec-
tion), we eliminate intricate mechanisms and focus on a
prototype coding module in order to underline the per-
formance gain contributed by the neural network model.
(e proposed neural analytics module comprises a pre-
processing stage that generates a pre-estimated image via a
linear predictor and a post-processing stage that refines the
prior estimation via an LSTM-based vision model. Experi-
mental results from large-scale assessments validated the
effectiveness of the neural network model and demonstrated
a significant improvement in steganographic rate-distortion
performance.

(e remainder of this paper is organised as follows.
Section 2 reviews a prototype HS coding module and for-
mulates some principal concepts. Section 3 presents the
proposed neural analytics model which utilises an LSTM-
based vision model for refining the prior estimation from a
linear predictor. Section 4 validates the effectiveness of the
neural network model and evaluates steganographic per-
formance through simulation experiments. (e paper draws
conclusions in Section 5.

2. Coding Module

In this section, we revisit the coding module of a prototype
HS method. We start with a workflow of the encoding and
decoding processes, as illustrated in Figure 1. Suppose that a
sender, Alice, wants to communicate a message to a receiver,
Bob, through a reversible steganographic scheme. For a
cover imageX, Alice defines a set of context pixels preserved
for predicting the other set of query pixels. (e prediction
can be fulfilled by either a conventional predictor or a neural
network, resulting in a reference image X̃. By subtracting X̃
fromX, cover residuals (prediction errors) are obtained.(e
HS coding module is applied to embed a message into cover
residuals, yielding stego residuals along with an overflow
map for later use in the reverse process. (e stego image X′
is finally generated by adding the stego residuals to X̃.
Addition may cause the problem of pixel intensity overflow;
pixel intensities that are unexpectedly small or large wrap
around the minimum andmaximum after addition. In order
to handle this exception, an overflow map is pre-calculated
to flag pixels of which intensity would be off-boundary after
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message embedding. (e overall collection of sent data
includes a stego image and a compressed overflow map. At
the receiving end, Bob computes X̃ from X′ via a shared
prediction mechanism.(e reference image will be the same
because only the query pixels have been modified and the
context pixels in X and X′ are unchanged. (e remaining
decoding procedures for message extraction and image
recovery are virtually a reverse process of the encoding
procedures. Next, we explain the details of the coding
module under the assumption that the reference image X̃
has already been obtained.

2.1. Histogram of Prediction Errors. Let us denote by Xi,j a
pixel at position (i, j) and X̃i,j its predicted counterpart,
where Xi,j, X̃i,j ∈ [0, 255]. For each query pixel, a prediction
error is calculated by

Ei,j � Xi,j − X̃i,j, (1)

where Ei,j ∈ [−255, 255]. (en, we count the occurrence of
each error value and construct a histogram of prediction
errors. We select one or more bins on the histogram as the
steganographic channel. A bin is a container into which
errors of the same value are grouped together. Selecting bins
as the steganographic channel indicates defining which
values of the prediction errors can be used to carry the
message. In general, an increase in the number of selected
bins will help to enhance steganographic capacity while
simultaneously aggravating steganographic distortion. Let
us denote by hε a bin for error value ε. According to the law
of error [56], the frequency of an error could be expressed as
an exponential function of its magnitude, disregarding its
sign. In other words, small deviations would be observed
more frequently than large deviations in normal circum-
stances. Hence, we may reasonably assume that the fre-
quency of errors follows a zero-mean Laplacian distribution
(i.e., double exponential distribution), in which the peak bin
occurs around zero and the height of bins decays expo-
nentially with the absolute magnitude of errors. Accord-
ingly, we may explicitly define a channel selection rule that
selects from h0 and moves outwards in both positive and
negative directions.

2.2. Encoding and Decoding. A summary for the HS coding
mechanism is presented visually in Table 1. While the code
chart allows us to develop a simpler understanding of the
coding mechanism, we provide mathematical details to
avoid confusion.

Let θ denote a threshold for the steganographic channel
such that

θ �

0, if h0 is selected,

1, if h0 and h±1 are selected,

2, if h0, h±1, and h±2 are selected,

· · ·


(2)

According to the threshold, we derive the following three
intervals:

U1 � 0{ },

U2 � ±1, ±2, ±3, . . . , ±(θ){ },

U3 � ±(θ + 1), ±(θ + 2), . . . , ±255{ }.

(3)

(e encoding process begins by shifting the bins selected
as the steganographic channel (inner bins) and the
remaining unselected bins (outer bins) outwards in order to
empty out bins for carryingmessage digits. Shifting the inner
and outer bins is equivalent to modifying prediction errors
that fall into different intervals. We shift the value of each
error by

E⇑i,j �
2Ei,j, if Ei,j ∈ U1 ∪U2,

Ei,j + sgn Ei,j( ) · (θ + 1), if Ei,j ∈ U3.

 (4)

For an intended message, we divide it into two segments
and convert them into the binary and ternary numeral
systems, respectively. (en, we embed them depending on
the error value that is currently observed. A pre-scanning is
required in order to determine the length of each segment.
Let us denote by mtrit a ternary message digit and by mbit a
binary message digit, where mtrit ∈ −1, 0, 1{ } and
mbit ∈ 0, 1{ }. We embed a ternary digit (log23 bits) if the
error value is 0, embed a binary digit (1 bit) if the error value
other than 0 originally falls into the steganographic channel,
and skip the current error otherwise, as given by

– +
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Cover residuals Stego residuals

Message
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Overflow map
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Figure 1: A workflow for a reversible steganographic scheme based on histogram shifting. (a) Encoding process. (b) Decoding process.
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Ei,j′ �

mtrit, if E⇑i,j ∈ U1,

E⇑i,j + sgn E⇑i,j( ) ·mbit, if E⇑i,j ∈ 2 ·U2,

E⇑i,j, otherwise,


(5)

where

2 ·U2 � ±2, ±4, . . . , ±2θ{ }. (6)

Finally, we add each modified prediction error to the
estimated pixel at the corresponding position to obtain a
stego image:

Xi,j
′ � X̃i,j + Ei,j′ . (7)

It is worth noting that pixel intensities after addition are
not guaranteed within range of possible values from 0 to 255.
(erefore, an overflow map is pre-calculated to flag pixels
whose intensity might be out-of-bound. For pixels that may
incur overflow, we skip the process of message embedding
and record the positions by marking with flags on the map as

Ωi,j �
⊥(false), if Xi,j

′ ∈ [0, 255],
⊤(true), otherwise.

 (8)

(e overflow map can be compressed and sent along or
else embedded into the image as a part of the payload. For
simplicity, we opt for the first approach in our imple-
mentation. Nevertheless, for fair evaluations, we deduct
from the overall payload the size of the compressed overflow
map when assessing steganographic capacity.

Decoding is simply the reverse process of encoding. It
begins by generating the reference image X̃ using the
same set of context pixels as in the encoding process. For
pixels where Ωi,j � ⊥, we calculate the prediction errors
by

Ei,j′ � Xi,j
′ − X̃i,j. (9)

Following the threshold and the coding mechanism, we
divide pixels into the intervals:

U1
′ � 0, ±1{ },

U2
′ � ±2, ±3, . . . , ±(2θ + 1){ },

U3
′ � ±(2θ + 2), ±(2θ + 3), . . . , ±255{ }.

(10)

A ternary or binary digit is extracted based on different
interval conditions such that

m̂trit � Ei,j′ ∀Ei,j′ ∈ U1,

m̂bit ≡ Ei,j′ (mod2) ∀Ei,j′ ∈ U2,
(11)

and the cover image can be recovered by

Êi,j �

0, if Ei,j′ ∈ U1
′ ,

Ei,j′
2

⌊ ⌋, if Ei,j′ ∈ U2
′ ,

Ei,j′ − sgn Ei,j′( ) · (θ + 1), if Ei,j′ ∈ U3
′ .


(12)

3. Analytics Module

(e previous coding module works under the assumption
that a prediction mechanism has been developed and it is
time to unveil and deliver the analytics module for esti-
mating a reference image from the preserved context pixels.
We begin by dividing pixels into the context and the query
according to a pre-determined pattern. Next, we introduce a
pre-processing stage for generating a prior reference image.
(en, we explore a neural network model based on the long
short-term memory for refining the pre-processed image
into a posterior reference image.

3.1. Prior Estimation. (e initial step of pixel prediction is
typically to define the set of preserved pixels for estimating a
query pixel, namely, the context. Amongst various ways to
define the context and the query, the chequerboard pattern
can be regarded as the most common one. Consider a
chequerboard pattern that divides pixels into a black set and
a white set, as illustrated in Figure 2. We may appoint the
black set as the query and the white set as the context, or the
other way round, which can be written mathematically as

Xi,j ∈
black(query), if i + j is even,

white (context), if i + j is odd.
{ (13)

(ere are a variety of strategies for predicting the query
pixels given the context pixels, but the most näıve strategy is

Table 1: Code charts with different thresholds for the steganographic channel (grey cells).

θ � 0
E −254 · · · −3 −2 −1 0 +1 +2 +3 · · · +254
E⇑ −255 · · · −4 −3 −2 0 +2 +3 +4 · · · +255
E′ −255 · · · −4 −3 −2 −1 0 +1 +2 +3 +4 · · · +255

θ � 1
E −253 · · · −3 −2 −1 0 +1 +2 +3 · · · +253
E⇑ −255 · · · −5 −4 −2 0 +2 +4 +5 · · · +255
E′ −255 · · · −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 · · · +255

θ � 2
E −252 · · · −3 −2 −1 0 +1 +2 +3 · · · +252
E⇑ −255 · · · −6 −4 −2 0 +2 +4 +6 · · · +255
E′ −255 · · · −6 −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 +6 · · · +255

4 Security and Communication Networks



to estimate by the mean of four immediate context pixels,
formulated as

X̃i,j �
Xi−1,j +Xi+1,j +Xi,j−1 +Xi,j+1

4
. (14)

(is approach is, however, far from optimal due to a
relatively restricted receptive field and limit of linearity. In
other words, estimation is based solely on a linear combi-
nation of immediate local neighbours and any information
outside the local field is completely ruled out.

In order to manage this issue, we may refine this pre-
processed output by a nonlinear neural network model. We
refer to the pre-processed image as the prior image X̃pre and
the refined image as the posterior image X̃post. Also, the pre-
processor (linear non-neural model) is termed the prior
predictor and the post-processor (nonlinear neural model) is
termed the posterior predictor. We model this refinement
process as a special type of low-level vision task and employ a
vision model, the MemNet, to improve the visual quality of a
pre-estimated reference image en route from input to output
through hidden layers:

X̃post � MemNet X̃pre( ). (15)

Our implementation of the MemNet involves minor
modifications. Consequently, the following description de-
tails the network architecture in order to ensure under-
standing, reproducibility, and replicability.

It is worth noting that the chequerboard-based pre-
diction mechanism can be operated in two rounds,
resulting in a dual-layer embedding scheme [57]. Suppose
that the black set is assigned as the query and the white set
as the context in the first round. After the first-layer
embedding, the black set will be modified to carry a
message segment. For the second-layer embedding, the
white set will be assigned as the query and the modified
black set as the context. Decoding is carried out in a first-
in last-out manner; that is, pixels in the white set are
recovered first and then used to recover pixels in the black
set. We would like to emphasise that the dual-layer em-
bedding scheme is not considered in our simulation

experiments since our primary aim is to analyse the
performance gain from neuralisation and an extended
dual-layer embedding scheme would have few implica-
tions for the findings of this study.

3.2. Long Short-TermMemory. A fundamental component of
the MemNet is the memory cell, which consists of neurons
connected in a recurrent form and a gating mechanism that
regulates persistent memories (i.e., important hidden states).
From a practical and engineering standpoint, a slavish adher-
ence to biological plausibility is not necessary for building
neural network models; nonetheless, a neurobiological per-
spective may afford some interesting insights and provide
guidance at a high level of abstraction [58]. Anatomical evidence
has shown that recurrent synapses typically outnumber feed-
back and feedforward synapses, and it is believed that recurrent
circuitry might play a crucial role in shaping the responses of
neurons in the visual cortex [59]. Neuroscience studies also
suggest that themammalian brain has an evolvedmechanism to
avoid catastrophic forgetting called synaptic consolidation,
whereby previously acquired knowledge, or memory, is durably
encoded by rendering a proportion of synapses less plastic and
thus stable over a long period of time [60].

Recurrent connections could be modelled as a recurrent
neural network (RNN) [61]. For processing image data, it would
be more convenient to construct a residual neural network
(ResNet) [62] in such a way that the same weights are shared
amongst layers. In fact, there is an intriguing equivalence be-
tween an RNN and a ResNet with weight sharing [63]. It can be
seen from Figure 3 that a ResNet with weight sharing ap-
proximates an RNN when being unfolded into a feedforward
network. Apart from a biological interpretation, recurrent
connections can reduce the number of trainable parameters
(i.e., weights and biases) substantially and thereby result in a
comparatively lightweight model for storage. A gating mecha-
nismmimicking synaptic consolidation could be represented by
a convolutional layer that learns weights for preserving or
erasing memories. After passing through the convolutional gate
unit, a series of ephemeral recollections (short-term memories)
become a recollection that persists (long-term memory).

Architectural details of the MemNet are described as
follows. (e MemNet is composed of a pre-processing layer
fpre, an LSTM module, and a post-processing layer fpost, as
illustrated in Figure 4(a) and expressed symbolically by

MemNet(A) � fpost LSTM fpre(A)( ) + A( ), (16)

where fpre and fpost are both convolutional layers with kernel
size 3, stride 1, and padding 1. (e post-processing layer takes
not only the output of the LSTM module but also the original
input. Shortcuts or skip connections are essential to deep
neural networks. It has been shown that when the model gets
deeper, skip connections allow the information from shallow
layers to propagate more effectively to deep layers [64]. From
our viewpoint, bypassing the intermediate layers and con-
necting the prior image directly to the last layer could guide the
neural network to learn delicate textural information in images,
namely, minute differences between the prior estimation and
the ground truth (i.e., the pristine image).(e distance between

Xi,j–1

Xi,j+1

Xi–1,j Xi+1,jXi,j

Figure 2: An illustration of the chequerboard pattern which di-
vides pixels into the query and the context.
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the refined output and the ground truth is measured by the ℓ1
norm.(emodel is trained to minimise this loss function with
the backpropagation algorithm [65].

(e LSTM module comprises interconnected memory
cells. Each current cell takes long-term memories produced
from all previous cells as the input, as illustrated in
Figure 4(b). Let l denote the number of memory cells andLt

the output from the t-th memory cell. (e LSTM module
inputs the 0-th memory and outputs the l-th memory:

Ll � LSTM L0( ), (17)

where

L0 � fpre(A). (18)

A memory cell has several residual units connected to
each other in a recurrent manner (with weight sharing) and a
gate unit placed at the end of the cell, as illustrated in
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Figure 4: Architectural details of the MemNet. (a) MemNet. (b) Long short-term memory. (c) Memory cell. (d) Residual unit.
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Figure 4(c). (e outputs from all residual units (i.e., short-
term memories) along with the outputs from previous cells
(i.e., long-termmemories) go through a gate unit to produce
a persistent memory for subsequent cells, as expressed by

L1 � fgate1
S

1
1 S
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where

S
1
t � Rest Lt−1( ),

S
2
t � Rest Rest Lt−1( )( ),
⋮

S
s
t � Rest Rest . . .Rest Lt−1( ) . . .( )( ).

(20)

Residual unit is illustrated in Figure 4(d) and laid out as
follows:

Res(A) � fres fres(A)( ) + A. (21)

(e structure of both fres and fgate follows the basic
building block, composed of a convolutional layer [66–68], a
batch normalisation [69], a ReLU activation function [70],
and a dropout regularisation [71], written as

f(A) � Dropout(ReLU(BN(Conv(A)))). (22)

In implementation, the convolutional layer of fres was
configured to kernel size 3, stride 1, and padding 1, whereas
the convolutional layer of fgate was set to kernel size 1, stride
1, and padding 1.We applied a dropout rate of 0.1 tofres and
fgate.

4. Experimental Results

In this section, we present experimental results based on
large-scale statistical evaluations. Our primary aim is to
demonstrate the performance difference between the prior
(linear non-neural) and posterior (nonlinear neural) pre-
dictors. We begin by validating the effectiveness of the
neural network model for refining the visual quality of pre-
estimated images. (en, we examine the error distribution
with regard to entropy and cumulative frequency. In order to
understand how the visual quality of reference images and
the entropy of error distribution would influence stegano-
graphic capacity, we carried out regression analysis. (is
section ends with an evaluation of steganographic rate-
distortion performance.

4.1. Experimental Setup. (e image samples for training and
testing the MemNet were from the BOSSbase [72], which
contains a collection of 10, 000 greyscale photographs
covering a wide variety of subjects and scenes. All the images
were resampled to a resolution of 256 × 256 pixels through
the Lanczos algorithm [73]. (e number of convolution
kernels per layer was configured to 64, the number of total

memory cells was configured to 3, and the number of re-
sidual units per cell was configured to 3. (e kernel weights
were initialised by the Xavier initialisation [74]. (e model
was trained on 8, 000 images over 100 epochs by the Adam
optimiser [75] with an initial learning rate set to 10− 3 and
scheduled to decay exponentially after every epoch. Large-
scale assessments were conducted on 2, 000 test images. (e
inference process was simulated on selected standard test
images from the USC-SIPI database [76].

4.2. Visual Quality Analysis. Starting from Figures 5 and 6,
we can catch a glimpse of the extent to which the model can
refine the pre-processed images. It can be observed that the
visual quality of posterior images is better than that of prior
images, especially at the edges and in textural areas. (e
same outcome is reflected in the peak signal-to-noise ratio
(PSNR) of images, measured in decibel (dB). Results suggest
that the neural network model indeed has a stronger ability
to model nonlinearity and complex pattern.

4.3. Entropy Analysis. Figure 7 shows that the posterior
error distribution is more concentrated and its entropy
smaller, whereas the prior error distribution is compara-
tively more diffuse. However, it is striking that the height of
the peak bin (usually h0) on the posterior histogram is not
always higher than the height of the same bin on the prior
histogram. A possible explanation would be that some
image samples contain a relatively large number of smooth
patches on which a naı̈ve linear predictor may perform
sufficiently well.

4.4. Cumulative Frequency Analysis. In order to better un-
derstand how the prior and posterior prediction errors dis-
tribute, we analyse their cumulative frequencies. Figure 8
presents cumulative distribution function (CDF) plots, where
the 95th percentile gives the maximum error value below which
95% of errors fall. It is evident that the rate of convergence of the
posterior error distribution is faster than that of the prior error
distribution, confirming again that posterior errors are more
concentrated and the magnitude of these is smaller on average.

4.5. Large-Scale Assessment. In addition to evaluating the
performance on individual selected images from the USC-
SIP database, we provide a large-scale assessment based on a
large number of test samples from the BOSSbase. Figure 9(a)
depicts the probability density of PSNRs of prior and
posterior images. Figure 9(b) shows the probability density
of entropies of prior and posterior error distributions.
Figure 9(c) reveals the average rates of convergence of prior
and posterior errors. On average, the visual quality of the
posterior errors is higher, the distribution of them is more
peaked, and the convergence rate is faster.

4.6. Regression Analysis. While we have shown that our
neural network model offers better visual quality and smaller
entropy, it is still unclear how these factors may benefit

Security and Communication Networks 7



(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

Figure 5: Visual comparisons between the prior and posterior predictors based on images from the USC-SIPI database. Numerical data
express the PSNRs. (a) Ground truth/aeroplane. (b) Ground truth/Lena. (c) Ground truth/mandrill. (d) Ground truth/peppers. (e) Prior/
32.9055 dB. (f ) Prior/34.5666 dB. (g) Prior/28.5752 dB. (h) Prior/35.3336 dB. (i) Posterior/36.3609 dB. (j) Posterior/37.6200 dB. (k) Pos-
terior/29.3495 dB. (l) Posterior/39.9355 dB.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 6: Continued.
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steganographic capacity. As a consequence, we carried out
regression analysis amongst the PSNR of reference images,
entropy of prediction errors, andmaximum embedding rate,
measured in bits per pixel (bpp). Figure 10 plots the results
using the test samples from the BOSSbase with different
threshold values θ which regulate the steganographic
channel. As expected, the general trends suggest that the
embedding rate is directly proportional to the PSNR of
reference images and inversely proportional to the entropy
of prediction errors.

4.7. Rate-Distortion Evaluation. We evaluate capacity and
distortion by rate-distortion curves, as plotted in Figure 11.
It can be observed that the maximum embedding rate in-
creases with the increase of the threshold (the width of
steganographic channel). (e reason is straightforward: an
increase in the threshold implies an increase in the number
of bins for carrying the message. In addition to this, the
observations suggest that the maximum embedding rate
tends to be smaller for images containing more complex
textures. It is because the prediction errors of such images

(i) (j) (k) (l)

Figure 6: Visual comparisons between the prior and posterior predictors based on images from the BOSSbase. Numerical data express the
PSNRs. (a) Ground truth/0021. (b) Ground truth/0916. (c) Ground truth/1366. (d) Ground truth/1953. (e) Prior/31.5765 dB. (f ) Prior/
32.4795 dB. (g) Prior/34.9142 dB. (h) Prior/28.4180 dB. (i) Posterior/33.6192 dB. (j) Posterior/34.6770 dB. (k) Posterior/37.5122 dB. (l)
Posterior/31.7238 dB.
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Figure 7: Prediction error distributions. Numerical data express the entropy of distribution. (a) Aeroplane: prior/2.9529; posterior/2.6493.
(b) Lena: prior/2.8683; posterior/2.5383. (c) Mandrill: prior/3.9392; posterior/3.8131. (d) Peppers: prior/2.7781; posterior/2.4074
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Figure 8: Cumulative distribution function of prediction error distributions. Numerical data express the 95th percentile. (a) Aeroplane:
prior/20; posterior/12. (b) Lena: prior/16; posterior/10. (c) Mandrill: prior/30; posterior/28. (d) Peppers: prior/15; posterior/7.
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are less concentrated and thus fewer bins are covered within
the steganographic channel. (ere is a gradual and steady
decline in the visual quality of stego images as embedding
rate increases. (e difference between the rate-distortion
performances of the prior and posterior predictors is subtle
for a small threshold value, but it becomes significant as the
threshold value grows, with the posterior outperforming the
prior. (e underlying explanation for the trend may be that

the naı̈ve predictor and the neural network model have
similar abilities to estimate smooth patches, for which both
methods can often estimate perfectly. Nonetheless, the latter
excels over the former when estimating textural patches, for
which neither methods can offer accurate prediction but the
neural network gives smaller error magnitude in general.
Figure 12 lists stego images generated by embedding a
simulated message into the cover images. (e intended
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Figure 9: Statistical comparisons between prior and posterior predictors with respect to PSNRs of reference images, entropies of prediction
error distributions, and cumulative distribution functions. (a) Prior/34.29 dB; posterior/37.27 dB. (b) Prior/2.863; posterior/2.546. (c) Prior/
17; posterior/13.
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Figure 10: Regression analysis amongst PSNR of reference images, entropy of prediction errors, and maximum embedding rate at different
threshold values that regulate the steganographic channel. (a) θ� 0. (b) θ� 1. (c) θ� 2. (d) θ� 3.
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Figure 11: Rate distortion curves of applying prior and posterior predictors at different threshold values that regulate the steganographic
channel. (a) Aeroplane. (b) Lena. (c) Mandrill. (d) Peppers.
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message is often assumed to have been compressed and
encrypted and thus can be reasonably simulated by a ran-
dom bit stream and a random trit stream.

5. Conclusions

(is paper studies a neural analytics module compatible with
the HS coding module. We propose a novel prediction
mechanism which follows a two-step pipeline: first a pre-
estimated image is generated by a conventional linear
predictor and then the prior estimation is refined by an
LSTM-based vision model called the MemNet. It is believed
that this neural network model is to some extent biologically
plausible and we have validated the effectiveness of the
model for refining the prior estimation in terms of the visual
quality and the entropy of error distribution. Furthermore,
the impact of refinement to steganographic capacity has
been analysed and a better rate-distortion performance was

achieved. We envision that by joining this neural analytics
module with a state-of-the-art HS coding module, the
steganographic performance can be further improved. It is
also interesting to investigate the possibility of combining
different pre-processing predictors and post-processing
neural network models to achieve a higher prediction ac-
curacy. We hope this paper can prove instructive for future
research on reversible steganography with deep learning.
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(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

Figure 12: Stego images generated by embedding a random bitstream with different threshold values that regulate the steganographic
channel. Numerical data express the PSNRs and maximum embedding rates. (a) θ� 0, 51.52 dB, 0.1652 bpp. (b) θ� 0, 51.51 dB, 0.1607 bpp.
(c) θ� 0, 51.29 dB, 0.0470 bpp. (d) θ� 0, 51.50 dB, 0.1554 bpp. (e) θ� 1, 46.72 dB, 0.3240 bpp. (f ) θ� 1, 46.71 dB, 0.3248 bpp. (g) θ� 1,
45.62 dB, 0.1057 bpp. (h) θ� 1, 46.68 dB, 0.3191 bpp. (i) θ� 2, 44.46 dB, 0.4039 bpp. (j) θ� 2, 44.53 dB, 0.4150 bpp. (k) θ� 2, 42.48 dB,
0.1581 bpp. (l) θ� 2, 44.53 dB, 0.4210 bpp.
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