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Abstract

Impaired abilities in multiple domains is common in children with learning difficulties. Co-

occurrence of low reading and mathematical abilities (LRLM) appears in almost every second 

child with learning difficulties. However, little is known regarding the neural bases of this 

combination. Leveraging a unique and tightly controlled sample including children with LRLM, 

isolated low reading ability (LR), and isolated low mathematical ability (LM), we uncover a 

distinct neural signature in children with co-occurring low reading and mathematical abilities 

differentiable from LR and LM. Specifically, we show that LRLM is neuroanatomically distinct 

from both LR and LM based on reduced cortical folding of the right parahippocampal gyrus, a 

medial temporal lobe region implicated in visual associative learning. LRLM children were further 

distinguished from LR and LM by patterns of intrinsic functional connectivity between 

parahippocampal gyrus and brain circuitry underlying reading and numerical quantity processing. 

Our results critically inform cognitive and neural models of LRLM by implicating aberrations in 

both domain-specific and domain-general brain regions involved in reading and mathematics. 

More generally, our results provide the first evidence for distinct multimodal neural signatures 

associated with LRLM, and suggest that this population displays an independent phenotype of 

learning difficulty that cannot be explained simply as a combination of isolated low reading and 

mathematical abilities.

Introduction

Children with learning difficulties often manifest poor performance in multiple domains 

(Lewis, Hitch, & Walker, 1994; Devine et al., 2013); however, their learning problems are 
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typically considered within specific cognitive domains. For example, low reading abilities 

(LR) are widely thought to originate from a particular problem in representing the sound 

structure, or phonology, of language, negatively impacting the mapping of these sounds to 

orthographic representations (Wagner & Torgesen, 1987). Similarly, low mathematical 

abilities (LM) are thought to originate from difficulties in processing quantities 

(Butterworth, Varma, & Laurillard, 2011) or mapping numeric symbols to mental 

representations of magnitudes (Rousselle & Noël, 2007), resulting in calculation deficits 

relative to their peers (Szűcs & Goswami, 2013).

An often overlooked fact is that learning difficulties in reading and mathematics have co-

occurrence rates of 40% or higher (Lewis et al., 1994); however, the cognitive and brain 

bases of combined low reading and mathematical abilities (LRLM) is poorly understood. 

From a cognitive perspective, LRLM could be driven by: (a) domain-specific problems, 

separately affecting reading and mathematics-specific functions, which are expressed 

additively in children with LRLM, (b) domain-general problems, in which difficulties in 

reading and math are secondary to difficulties in general cognitive skills, such as memory, 

necessary for both domains (Gathercole et al., 2016; Mammarella et al., 2017; Szűcs, 2016; 

Wang & Gathercole, 2013), or (c) a combination of domain-specific and domain-general 

problems. Results from behavioral studies have not conclusively identified the contributions 

of domain-specific and general problems to LRLM. Studies have consistently shown that 

LRLM is associated with both domain-specific (Peterson & Pennington, 2012) and domain-

general difficulties (Landerl, Fussenegger, Moll, & Willburger, 2009); however it is unclear 

whether domain-general difficulties in LRLM are sufficient to account for both low reading 

and mathematical abilities. Therefore, it remains unknown whether cognitive and neural 

features in LRLM are comparable to additive LM and LR difficulties, or whether LRLM is 

characterized by a distinguishable set of cognitive and/or neural features.

Structural and functional brain imaging research provides an alternative approach to 

investigating commonalities and differences between individuals with LRLM and 

individuals with isolated LR and LM. Although there is extensive evidence describing the 

brain basis of both LR (Shaywitz & Shaywitz, 2008) and LM (Ashkenazi, Black, Abrams, 

Hoeft, & Menon, 2013), the neurobiological signature of LRLM has not been explored. A 

recently proposed framework identifies three hypotheses that may explain the neural bases 

of LRLM (Ashkenazi et al., 2013). First, a domain-specific hypothesis states that additive 

problems in brain areas associated with both LR (i.e., left occipito-temporal and temporo-

parietal cortices; (Hoeft et al., 2007; Skeide et al., 2016)) and LM (i.e., parietal and 

prefrontal cortices; (Price, Holloway, Räsänen, Vesterinen, & Ansari, 2007)) underlie 

LRLM. Second, a domain-general hypothesis posits that aberrations in brain structures 

serving attention or working memory, instantiated in ventro- and dorsolateral prefrontal 

cortices and medial temporal regions, underlie LRLM. Third, a phonological hypothesis 

postulates that aberrations to temporal cortex, resulting in difficulties in phonological 

processing systems, that are involved in mapping verbal codes (e.g., number words) to 

quantity representations, and in memorizing verbal arithmetic facts, preclude both normal 

reading and mathematical skill acquisition (Geary, 2004; Ashkenazi et al., 2013).
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Here, we tested these competing hypotheses using a unique dataset that included four tightly 

controlled groups of children: LR, LM, LRLM, and typically-developing (TD). We first used 

voxel- and surface-based morphometric analyses (Greve et al., 2014; Tucholka, Fritsch, 

Poline, & Thirion, 2012) to examine anatomical differences in the cortices of LR, LM, 

LRLM and TD groups. We then examined differences in intrinsic functional connectivity 

across these groups to identify functional brain circuitry that distinguishes the LRLM group. 

We predicted that a domain-specific basis for LRLM would be manifested in additive 

problems consistent with both LR and LM groups, including structural and functional 

aberrations in left occipito-temporal and temporo-parietal cortices, as well as bilateral 

parietal and prefrontal cortices (Price et al., 2007; Skeide et al., 2016). Alternatively, a 

domain-general basis for LRLM would manifest in aberrations to ventro- and dorso-lateral 

prefrontal regions subserving working memory and attention (LaBar, Gitelman, Parrish, & 

Mesulam, 1999), or medial temporal lobe regions involved in associative learning (Aminoff, 

Kveraga, & Bar, 2013). Finally, a phonological basis for LRLM would manifest as problems 

in phonological and object processing regions in temporo-parietal and occipito-temporal 

cortices similar to LR, with secondary effects in parietal and frontal regions serving 

mathematical cognition.

Materials and Methods

Participants

Our goal was to identify well-matched LR, LM, LRLM, and TD control groups from a 

cohort of 129 children, between the ages of 7 and 12, who had complete neuropsychological 

and structural brain imaging datasets from a multiyear brain imaging study of learning 

disabilities. All 129 children had full-scale IQ ≥ 80 to ensure no general intellectual 

disability (American Psychiatric Association, 2013), and no formal diagnosis of attention-

deficit/hyperactivity disorder, which is often co-morbid with learning difficulties (Margari et 

al., 2013). To ensure interpretable structural brain imaging results, we scrutinized the 

integrity of structural brain imaging data in all eligible participants and subsequently 

excluded 46 participants based on poor quality of structural images (Ducharme et al., 2016; 

see Structural MRI data acquisition and analysis).

LRLM, LR, and LM Categorization

To identify individuals with LR, LM, and LRLM in this sample of 83 eligible children, we 

used a normed-based cut-off criterion consistent with previous studies of learning difficulties 

(Bruck, 1992; Evans, Flowers, Napoliello, Olulade, & Eden, 2014; Krafnick, Flowers, 

Luetje, Napoliello, & Eden, 2014; Olulade, Flowers, Napoliello, & Eden, 2013).

The LR group consisted of children who had at least average mathematical skills (32nd 

percentile, standardized test score ≥ 93) but performed below the 30th percentile, either in a 

real word or a pseudoword reading accuracy test (standardized test score ≤ 92). The LM 

group consisted of children who had at least average reading skills (≥ 93) but mathematical 

skills that were below the 30th percentile (≤ 92). The LRLM group consisted of children who 

performed below the 30th percentile (≤ 92) either in a real word or a pseudoword reading test 

and in a basic mathematical test. The TD group consisted of children that had both at least 
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average reading and mathematical skills (≥ 93) (Table 1; see Psychometric assessment 
section for details).

Psychometric assessment

Real word reading and mathematical skills were assessed either with the Wechsler 

Individual Achievement Test (WIAT-II; Word Reading / Numerical Operations subtests; 

(Wechsler, 2001)) or the Woodcock-Johnson Tests of Cognitive Abilities (WJ-III; Letter-

Word Identification / Calculation subtests; (Woodcock, McGrew, & Mather, 2001)). 

Correlation between WIAT-II and WJ-III was R = 0.90 for the reading subscales and R = 

0.72 for the calculation subscales. Pseudoword reading skills were assessed with the Word 

Attack subtest of the WJ-III. IQ scores were determined using the Wechsler Abbreviated 

Scale of Intelligence (WASI; (Wechsler, 1999)). Working memory measures included the 

Block Recall, Digit Recall and Backward Digit Recall subtests of the Working Memory Test 

Battery for Children (WMTB-C; (Pickering & Gathercole, 2001)) or the Automated 

Working Memory Assessment (AWMA; (Alloway, 2007)).

Between-group comparisons of all demographic and psychometric data were performed 

either by running one-way analyses of variance or independent-samples T-tests. Within-

group comparisons were performed by running one-sample T-tests. Non-parametric 

Kruskal-Wallis H tests or Mann-Whitney U tests were carried out in case the data were not 

normally distributed, variance was inhomogeneous, or the sphericity assumption was 

violated. Within-group comparisons of non-normally distributed data were carried out by 

running Wilcoxon signed-rank tests.

Structural MRI data acquisition and analysis

T1-weighted spoiled gradient recalled inversion recovery images were acquired on a 3T 

General Electric Signa scanner at a single site. Data from 26 participants was acquired with 

the following protocol using a 1-channel head coil: repetition time TR = 8.36ms; echo time 

TE = 1.78ms; inversion time TI = 300ms; flip angle FA = 15°; bandwidth = 122.11kHz; 

voxel size = 1.5×0.9×1.1mm3). Data from 13 participants was acquired with an 8-channel 

head coil; repetition time TR = 5.90ms; echo time TE = 1.95ms; inversion time TI = 400ms; 

flip angle FA = 11°; bandwidth = 244.14kHz; voxel size = 0.9×0.9×1.0mm3). Data from the 

remaining 9 participants was acquired with a slightly different protocol but the same 8-

channel head coil; repetition time TR = 8.36ms; echo time TE = 1.78ms; inversion time TI = 

300ms; flip angle FA = 15°; bandwidth = 122.11kHz; voxel size = 1.5×0.9×1.1mm3). 

Importantly, the distribution of protocols over the four study groups did not differ (Χ2(3) = 

0.08, P = 0.994): Protocol 1: NLR=6, NLM=6, NLRLM=6, NTD=7; Protocol 2: NLR=1, 

NLM=3, NLRLM=4, NTD=1; Protocol 3: NLR=4, NLM=3, NLRLM=2, NTD=4.

All T1 images were visually inspected for artifacts and anatomical abnormalities (Ducharme 

et al., 2016) before their qualities were rated automatically by quantifying noise, 

inhomogeneity and resolution using the Computational Anatomy Toolbox (CAT) (http://

dbm.neuro.uni-jena.de/cat) implemented in the Statistical Parametric Mapping 12 (SPM 12) 

software (http://fil.ion.ucl.ac.uk/spm/). To be included in further analyses, an image had to 

yield at least a summarized rating of ≥ 73.33 (considered as satisfactory within the CAT 
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framework). Image quality did not differ significantly between groups (F(3,43) = 0.98, P = 

0.412).

The images were first normalized to an age-specific template in Montreal Neurological 

Institute (MNI) space. This template was generated from the T1 data of the sample by 

employing the Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra 

(DARTEL) algorithm. Next, the images were segmented into gray matter, white matter, CSF, 

dura, non-brain soft tissue and air. Tissue probability maps used as priors for the 

segmentation were created from the T1 data of an independent reference sample with a 

comparable age and sex distribution using the Template-O-Matic Toolbox Version 8 (https://

irc.cchmc.org/software/tom/downloads.php).

We computed gray matter volume maps that were modulated for non-linear effects to 

preserve local volumetric values, while accounting for individual differences in total 

intracranial volume. Total intracranial volume did not differ significantly between groups 

(F(3,43) = 0.42, P = 0.740). Finally, the volumetric images were smoothed with an 8mm 

full-width at half-maximum (FWHM) Gaussian kernel. In the analysis, we also employed 

surface-based methods, which more accurately reflect cortical geometry and have proven to 

be more powerful and reliable in detecting effects than volume-based methods, with fewer 

subjects required to achieve similar levels of significance (Greve et al., 2014; Tucholka et al., 

2012). We estimated cortical thickness by applying a projection-based thickness method 

(Dahnke, Yotter, & Gaser, 2013) and local surface complexity by applying spherical 

harmonic constructions (Yotter, Nenadic, Ziegler, Thompson, & Gaser, 2011), both of which 

are implemented in CAT. In accordance to the matched filter theorem, the cortical thickness 

data were smoothed using a 10mm FWHM Gaussian kernel whereas the cortical surface 

complexity data were smoothed using a 20mm FWHM Gaussian kernel to optimally capture 

features in distances between sulci and gyri (about 20-30mm in the adult brain). All images 

were statistically analyzed as between-group T-contrasts in the framework of the flexible 

factorial design implemented in SPM 12. Between-group T-contrasts were set up to test for 

additive effects of LR (−LR +LM −LRLM +TD and +LR −LM +LRLM −TD), additive 

effects of LM (+LR −LM −LRLM +TD and −LR +LM +LRLM −TD) and specific effects of 

LRLM (+LR +LM −LRLM +TD and −LR −LM +LRLM −TD) on gray matter 

macrostructure. To correct for multiple testing, we combined a height threshold of P < 0.001 

with a spatial extent threshold of P < 0.05 that was corrected by applying the false-

discovery-rate (FDR) method. Significant clusters were identified anatomically based on the 

Automated Anatomical Labeling Atlas (http://www.gin.cnrs.fr/AAL). Image quality was 

unrelated to cortical surface complexity (R = −0.02, P = 0.916).

Functional MRI data acquisition and analysis

Resting-state fMRI data were acquired using T2*-sensitive gradient echo spiral-in/ spiral-out 

pulse sequences on a 3T General Electric Signa scanner at a single site. Data from 21 

participants was acquired using a 1-channel head coil with the following protocol: field of 

view = 200×200; matrix size = 64×64×31; number of volumes = 240; voxel size = 

3.1×3.1×4mm3). Data from 10 participants was acquired using an 8-channel head coil and 

the following parameters; field of view = 220×220; matrix size = 64×64×29; number of 
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volumes = 180; voxel size = 3.1×3.1×4mm3). Data from the remaining 8 participants was 

acquired using the same 8-channel head coil and the following parameters; field of view = 

220×220; matrix size = 64×64×29; number of volumes = 180; voxel size = 3.4×3.4×4mm3). 

All other parameters, including TR = 2.000ms and TE = 30ms was the same across all 

participants. The distribution of protocols over the four study groups did not differ (Χ2(3) = 

1.35, P = 0.718): Protocol 1: NLR=4, NLM=5, NLRLM=5, NTD=6; Protocol 2: NLR=0, 

NLM=3, NLRLM=4, NTD=1; Protocol 3: NLR=4, NLM=3, NLRLM=0, NTD=3.

fMRI data were available for 41 out of 48 subjects. First, all images were visually inspected 

for artifacts and anatomical abnormalities. Next, to ensure comparability of the data, all 

datasets containing 240 volumes were reduced to 180 volumes by cutting off the last 60 

volumes. Additionally, the two most ventral slices of all datasets containing 31 slices 

(covering the brainstem ventral to the cerebellum) were cut off so that all datasets comprised 

of 29 slices. Two cutoff criteria for head motion were defined a priori to minimize the 

confounding influence of head motion: 1. Mean distance between consecutive frames, i.e., 

mean framewise displacement (FD), had to be <0.2 mm. Maximum distance between 

consecutive frames, i.e., maximum FD, had to be <0.8 mm. Two datasets could not be 

included in further analyses because they violated the former criterion. The final sample of 

39 participants comprised 9 LR, 11 LM, 9 LRLM and 10 TD individuals. Maximum FD in 

the final sample of 39 participants was 0.79 mm, and mean FD was 0.12 mm (SD = 0.05 

mm). Mean FD was not significantly correlated with the variables of interest (word reading 

skills: R = 0.12, P = 0.483; mathematical skills: R = −0.12, P = 0.500) and did not differ 

significantly between groups (Χ2(3) = 2.10, P = 0.553).

Preprocessing was conducted using SPM12 and the FMRIB software library (FSL) version 

5.0 (http://fsl.fmrib.ox.ac.uk). The first 4 volumes of each dataset were discarded to allow 

for MR signal stabilization. Then, the remaining images were slice-timing corrected by 

interpolating them and resampling them to the slice at the mid-time point of each TR. Next, 

the images were motion-corrected by: (1) realigning them to the first volume, (2) regressing 

out 3 translational and 3 rotational parameters of each volume and its preceding volume as 

well as the square of each of these values, and (3) regressing out the FD of each volume. 

Mean signals of the white matter and the cerebrospinal fluid and linear and quadratic trends 

of the gray matter signal were also regressed out in this model to control for physiological 

noise. Residual time series were temporally band-pass filtered with an ideal rectangular filter 

(0.01 – 0.1Hz). Subsequently, all images were resampled to a spatial resolution of 

1.5×1.5×1.5 mm3 and normalized to the MNI template specified above. The images were 

spatially smoothed by applying a 6 mm FWHM Gaussian kernel.

ROIs for the functional connectivity analysis were created using the MarsBar toolbox (http://

marsbar.sourceforge.net). A sphere of radius 3mm was placed at the peak MNI coordinate in 

the right parahippocampal gyrus (rPHG) (+33 −39 −12) obtained from the cortical surface 

complexity analysis. Four additional spheres were placed at the peak MNI coordinates of 

brain areas that repeatedly revealed activation differences in previous task-based fMRI 

studies when comparing children with low reading or low mathematical ability, respectively, 

against TD individuals (see Results for details). Established reading-related ROIs included 

left-hemisphere posterior fusiform gyrus (lpFFG; MNI coordinates: −31 −69 −10; (Hoeft et 
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al., 2007)) and planum temporale (lPT; MNI coordinates: −44 −28 +10; (Blau et al., 2010)), 

and mathematics-related areas included right-hemisphere intraparietal sulcus (rIPS; MNI 

coordinates: +33 −50 +52; (Price et al., 2007)) and left-hemisphere prefrontal cortex (lPFC; 

MNI coordinates: −13, +54, −2; (Price et al., 2007)).

Custom Matlab scripts (https://www.mathworks.com) were used for carrying out the 

following analysis steps. Hemodynamic time courses of each ROI were computed by 

averaging the BOLD signals of all voxels within the spheres. Subsequently, we created 

single-subject functional connectivity matrices by calculating bivariate Pearson correlations 

between the signal-intensity time courses of each pair of seeds. This was done first for the 

rPHG and the 2 reading-related ROIs and then separately for the rPHG and the 2 

mathematics-related ROIs. After converting the single-subject R matrices to Z matrices by 

applying Fisher's R-to-Z transformation, between-group comparisons of the functional 

connectivity indices were performed by running independent-samples T-tests. The 

significance threshold of P < 0.05 was FDR-corrected.

Binary logistic regression

To examine whether the strength of functional connectivity of the rPHG to brain circuitry 

known to support reading and mathematical function distinguish LRLM group membership, 

binary logistic regression was performed. We first calculated connectivity strength between 

ROIs identified in the functional connectivity analysis, and then calculated Pearson 

correlation coefficients for each subject for the following six connections: (1) rPHG to lFFG; 

(2) rPHG to lPT; (3) lFFG to lPT; (4) rPHG to rIPS; (5) rPHG to lPFC; and (6) rIPS to lPFC. 

We then used binary logistic regression to model the relationship between the dependent 

variable, which was group membership in either LM vs. LRLM or LR vs. LRLM, and the 

independent variables, which were Z-scores describing the strength of connectivity for the 

six aforementioned connections. Separate regression models were run for LM vs. LRLM and 

LR vs. LRLM analyses. SPSS software (IBM) was used for all regression analyses.

Results

Group characteristics: reading and mathematical skills

Reading skills differed significantly between groups (Χ2(3) =36.91, P < 0.001, Cohen's D = 

3.9) with LR scoring significantly below LM (Z = 4.07, P < 0.001) and TD (Z = 4.07, P < 

0.001) but above LRLM (Z = 3.03, P = 0.002) (Figure 1A). Additionally, mathematical skills 

differed significantly between groups (Χ2(3) =34.66, P < 0.001, Cohen's D = 3.39) with LM 

scoring significantly below LR (Z = 4.07, P < 0.001) and TD (Z = 4.16, P < 0.001) but not 

LRLM (Z = 0.61, P = 0.543) (Figure 1B). Within-group differences between reading and 

mathematical skills were only significant in LR (Z = 2.93, P = 0.003) and in LM (Z = 3.06, 

P = 0.002) but not in LRLM (Z = 1.34, P = 0.181) and TD (Z = 0.67, P = 0.504) (Table 2). 

These results show clear dissociation between LR, LM, LRLM and TD groups, with LR and 

LM groups showing domain specific weaknesses and LRLM showing significant 

weaknesses in both reading and mathematical domains.
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Whole-brain gray matter morphometry

Gray matter volume, cortical thickness and cortical surface complexity were computed for 

LR, LM, LRLM, and TD groups. A significant difference of group means was found in 

cortical surface complexity, but not in gray matter volume and cortical thickness (height 

threshold of P < 0.001 and a family-wise-error (FWE) corrected spatial extent threshold of P 

< 0.05). A significant effect was identified as a specific reduction in surface complexity of 

LRLM compared to LR, LM and TD. This effect was localized to the right parahippocampal 

gyrus (rPHG) (MNI coordinates: +33 −39 −12; 554 vertices; Cohen's D > 0.8; Cohen's 

DMAX = 1.26; achieved power: 0.60- 0.91; Figure 2).

To examine whether reduced cortical folding of the LRLM vs. the LR sample reflects overall 

lower reading abilities in the LRLM sample, we performed a post hoc analysis of variance 

on these two samples with the factor group and cortical surface complexity as the dependent 

variable. Group differences remained statistically significant after covarying out reading test 

scores (F(2, 20) = 6.72, P = 0.006).

Intrinsic functional connectivity of math and reading circuits in LRLM

Structural findings indicated LRLM being characterized by abnormalities in rPHG, a region 

known to be involved in long-term memory formation (Aminoff et al., 2013; Kirchhoff, 

Wagner, Maril, & Stern, 2000; Nenert, Allendorfer, & Szaflarski, 2014; Schon, Hasselmo, 

Lopresti, Tricarico, & Stern, 2004). However, it is unclear how deficiencies in this region 

might impact domain-specific reading and mathematics in this population. Therefore, our 

next goal in the analysis was to investigate the possible role of rPHG in domain-specific 

functions by examining intrinsic brain connectivity linking rPHG to brain regions known to 

support reading and mathematics. We focused our analysis on functional interactions 

between rPHG and two structures that have been implicated in reading, including left-

hemisphere posterior fusiform gyrus (lpFFG; (Hoeft et al., 2007)) and planum temporale 

(lPT; (Blau et al., 2010)), as well as two structures that have been implicated in 

mathematical function, including right-hemisphere intraparietal sulcus (rIPS; (Price et al., 

2007)) and left-hemisphere prefrontal cortex (lPFC; (Price et al., 2007)).

Results show that functional connectivity between rPHG and cortical structures implicated 

in reading and mathematical function distinguished the LRLM group from LR, LM, and TD 

groups. First, analysis of functional connectivity between rPHG and reading-related cortical 

structures revealed weaker connectivity between rPHG and lpFFG in the LRLM group 

compared to LR, LM and TD groups (P < 0.05, FDR corrected; Cohen's D = 0.50-0.89; 

Figure 3A). Additionally, the LRLM group also showed weaker connectivity compared to 

the LR group for both the rPHG to lPT and lFFG to lPT connections (P < 0.05, FDR 

corrected; Cohen's D = 0.67 and 1.43; Figure 3A, left matrix). Next, functional connectivity 

analysis between rPHG and mathematics-related cortical structures showed that the LRLM 

group had reduced connectivity between rPHG and rIPS compared to LR, LM and TD 

groups (P < 0.05, FDR corrected; Cohen's D = 0.78-1.06) (Figure 3B).

Functional connectivity fingerprints showing group connectivity between rPHG and nodes 

of reading and mathematics circuits were constructed for LR, LM, LRLM and TD groups 
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(Figure 3C). Results show a distinct connectivity profile for the LRLM group (red) with 

pronounced weaknesses in connectivity between rPHG and lFFG and rIPS compared to the 

other three groups.

Functional connectivity discriminates LRLM group membership

The final goal of the analysis was to examine whether the strength of intrinsic connectivity 

between rPHG and brain circuitry known to support reading and mathematical function is 

sufficient to discriminate LRLM group membership. First, we performed a multinomial 

logistic regression analysis using group as the dependent variable (with the categories LR, 

LM and LRLM) and functional connectivity values for six connections (see off-diagonal 

connections in Figure 3 matrices) as covariates. Functional connectivity indices significantly 

distinguished between the three groups (Χ2(6) = 24.05, P = 0.020). Finally, to determine the 

degree to which differences between LRLM and the remaining groups contributed to this 

effect, we performed binary logistic regression using two separate models. In the first 

regression model, group membership in LM vs. LRLM acted as the dependent variable, and 

functional connectivity values served as covariates. In the second regression model, we set 

group membership in LR vs. LRLM as the dependent variable. Results from binary logistic 

regression analyses showed that the strength of these functional connections discriminates 

the LRLM group from both the LM group (Χ2(6) = 15.37, P = 0.018) and the LR group 

(Χ2(6) = 23.51, P < 0.001).

Discussion

Low reading and mathematical abilities are typically considered within their respective 

domains; as such, little is known regarding the brain mechanisms underlying frequent co-

occurrence of these difficulties in school-aged children. Here, we have identified a distinct 

neural signature for children with low abilities in reading and mathematical cognitive 

domains. Specifically, we have shown that LRLM is both neuroanatomically distinct from 

LM and LR groups based on reduced cortical surface complexity in the rPHG and 

functionally distinct from these groups based on unique profiles of intrinsic functional 

connectivity linking the rPHG and specialized regions for reading and mathematical 

processing. Together, these results provide novel support that children struggling with 

combined reading and mathematical difficulties display a distinct neurocognitive profile 

relative to both LR and LM groups, and suggest that cognitive and neural models of LM and 

LR require additional refinement to distinguish and characterize this large sub-population of 

children with multiple difficulties.

Phenotypic specificity of LRLM

Our sample of children with LRLM showed reduced reading abilities compared to children 

with LR but comparable math skills compared to individuals with LM. This particular 

cognitive profile is consistent with results reported from several independent samples across 

different languages (Supplementary Tables S1 and S2). The consistency of this finding 

suggests that reduced reading abilities in individuals with comorbid reading and math 

difficulties compared to children with LR reflects an important feature of this population, 

and that the samples described in the current study are appropriate representations of these 
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low performing groups. Nevertheless, we performed additional analyses to examine the 

possibility that reduced cortical folding in the LRLM vs. LR sample does not simply reflect 

overall lower reading abilities in the LRLM sample, and results continued to show reduced 

cortical folding in the LRLM compared to LR group after controlling for behavioral 

differences in reading ability.

A role for the rPHG and memory systems in LRLM

Whole-brain gray matter morphometry analysis showed that LRLM children had 

significantly reduced surface complexity of rPHG, a key node of the brain's memory system 

(Aminoff et al., 2013; Kirchhoff et al., 2000; Nenert et al., 2014; Schon et al., 2004), 

compared to LR, LM and TD children (Figure 2); however all groups showed comparable 

cortical thickness in this region. The cortical surface complexity measure applied here is 

particularly sensitive to local differences in cortical folding (Yotter et al., 2011), suggesting 

that in individuals with LRLM, the rPHG surface is misfolded despite normal thickness.

We then tested the hypothesis that such morphometric abnormalities in the medial temporal 

lobe contribute to aberrant functional connectivity between the PHG and domain-specific 

regions subserving reading and mathematics (Figure 3). From a functional neuroanatomical 

perspective, it should be noted that the rPHG has been consistently implicated in the 

associative encoding of complex visuospatial information in long-term memory (Aminoff et 

al., 2013; Kirchhoff et al., 2000; Nenert et al., 2014; Schon et al., 2004). However, the rPHG 

is seldom associated with LR or LM, and structural alterations in this region have only been 

sporadically reported in the context of learning disorders (Rotzer et al., 2008; Rykhlevskaia, 

Uddin, Kondos, & Menon, 2009). What, then, might be the role of the rPHG in LRLM? 

Perhaps becoming literate and acquiring arithmetic skills both require, and result in, visual 

memory formation, including associative encoding of symbolic stimuli. Specifically, these 

associative processes require that visual symbolic stimuli be paired with mental 

representations of phonological information during reading acquisition and with magnitude 

information during mathematical skills acquisition. Consistent with this view, several 

previous studies have demonstrated a key role for medial temporal lobe structures in both 

reading and mathematical learning. For example, in the reading domain, increased gray 

matter volume in the right medial temporal lobe has been shown to accompany vocabulary 

learning (Bellander et al., 2016). Similarly, in the mathematical domain, the developmental 

trajectory from the reliance on counting to more mature memory-based fact retrieval 

strategies for calculation is marked by increased neocortical functional connectivity of the 

right hippocampus (Qin et al., 2014). Moreover, it has been shown that hippocampal volume 

predicts performance improvements in reading and mathematics (Hoeft et al., 2011; Supekar 

et al., 2013). Based on this evidence, we suggest that the PHG plays an important role in the 

associative encoding of both orthographic and numeric symbolic stimuli, and that reduced 

structural integrity of this neural structure adversely affects these key associative processes 

in LRLM.

Implications for neural models and theories of LRLM

A primary goal of the current study was to test differential predictions of neural models of 

LRLM described in a theoretical framework proposing domain-specific, domain-general, or 
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phonological processing pathways to theses difficulties (Ashkenazi et al., 2013). Structural 

results from gray matter morphometry showed reduced cortical surface complexity in rPHG, 

and, given the putative role of the rPHG in visuo-spatial memory, are consistent with a 

domain-specific model of LRLM. However, results from functional connectivity and logistic 

regression analyses revealed distinct patterns of intrinsic connectivity linking rPHG to 

domain-specific cortical regions implicated in reading and mathematics in LRLM. Together, 

these results support a hybrid neural model of LRLM, fusing elements of the domain-

specific and domain-general models. Specifically, LRLM is characterized by a primary 

problem in a domain-general structure underlying visuo-spatial memory (rPHG) (Aminoff et 

al., 2013; Kirchhoff et al., 2000; Nenert et al., 2014; Schon et al., 2004); however, weak 

intrinsic functional interactions between the rPHG and domain-specific regions serving 

reading and mathematics further distinguishes LRLM from LR and LM children. We 

suggest that simplistic models of LRLM may be insufficient to account for the heterogeneity 

of cognitive profiles seen within this population with comorbid learning difficulties. An 

important direction for future work informing cognitive (Landerl et al., 2009; Wilson et al., 

2015) and neural models (Ashkenazi et al., 2013) of LRLM is to incorporate a 

multidimensional approach to studying cognitive function in this population that 

simultaneously considers interactions between domain-specific and domain-general 

function.

Developmental origins of neural basis of LRLM

When assessed together, surface-based and volumetric methods allow for the distinction 

between cortical thickness and gyral complexity as they provide complementary information 

about the timing and nature of disrupted neurodevelopmental processes (Schaer and Eliez, 

2009). Atypical cortical surface complexity is thought to arise early in development 

(Giménez et al., 2006; Haukvik et al., 2012; Kesler et al., 2006; Schaer et al., 2009) while 

changes in cortical thickness undergo constant maturation through adulthood via pruning 

and learning-dependent plasticity (Shaw et al., 2006, 2008). Our finding of reductions in 

cortical surface complexity, but not thickness, is suggestive of early focal problems in 

LRLM individuals. This finding might also explain why LRLM children are vulnerable to 

difficulties in multiple cognitive domains. Whether such aberrations in the medial temporal 

lobe manifest early in development, and how this weakness in turn disrupts the 

communication between relevant cortical networks supporting reading and mathematical 

information processing remains to be investigated using appropriate longitudinal study 

designs in younger children (Kraft et al., 2016; Skeide et al., 2016). In addition, further 

research is also needed to examine whether early disruption of medial temporal lobe 

organization also contributes to learning difficulties in multiple other cognitive domains.

Diagnostic distinction between “low abilities” and “learning disabilities”

Here we have applied a relatively liberal criterion for grouping children with learning 

difficulties. However, unlike previous studies applying similar diagnostic criteria (Olulade et 

al., 2013; Evans et al., 2014; Krafnick et al., 2014), participants of our study were not 

labeled “learning disabled”; rather these children were characterized as “low reading and 

mathematical abilities.” Nevertheless, we argue that the reported findings are relevant to our 

understanding of learning disabilities given the empirical evidence for quantitative rather 

Skeide et al. Page 11

Dev Sci. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



than qualitative differences between disabilities and low abilities. In particular, several recent 

functional and structural MRI studies suggest that the core neural indices of reading 

disability can be robustly identified across liberal and conservative criteria (e.g., Clark et al., 

2014; Finn et al., 2014). Moreover, several available data sources indicate that the trajectory 

from average to below-average performance is continuous, rather than categorical in nature 

(Peterson & Pennington, 2012); therefore, we argue that applying the criteria described in 

our manuscript will provide important and novel information regarding structural and 

functional brain differences underlying reading and mathematical abilities. Nevertheless, 

follow-up work is needed to determine whether our results generalize to clinical samples 

involving subjects with an official diagnosis of reading disability (developmental dyslexia) 

or mathematical disability (developmental dyscalculia).

Conclusion

Here we have described, for the first time, a distinct brain signature of co-occurring low 

reading and mathematical ability in the developing brain. Results indicate that LRLM is 

distinguished by structural aberrations within a domain-general medial temporal lobe region 

and intrinsic functional connectivity reductions in circuits linking specific medial temporal 

lobe regions to domain-specific regions critical for reading and mathematics. Our findings 

inform models of LRLM by suggesting that this population displays an independent 

phenotype of learning difficulty that cannot be explained as a combination of isolated low 

reading and mathematical ability.
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Research Highlights

• Cortical morphometry and intrinsic functional connectivity were examined in 

children with low reading and/or mathematical abilities (LRLM) and typically 

developing children.

• Children with LRLM showed reduced cortical folding in right 

parahippocampal gyrus compared to comparison groups.

• Children with LRLM showed aberrant patterns of intrinsic functional 

connectivity between right parahippocampal gyrus and brain regions that 

support reading and numerical processing.

• Evidence for an independent neural signature of co-occurring low reading and 

mathematical abilities characterized by aberrations to both domain-general 

and domain-specific brain regions.
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Figure 1. 
Group-wise word reading skills (A) and mathematical skills (B). From left to right: Yellow 

bar: children with low reading ability (LR), orange bar: children with low mathematical 

ability (LM), red bar: children with both low reading and mathematical ability (LRLM), blue 

bar: typically developing (TD) children with at least average ability. Horizontal lines within 

the bars represent the group median. Vertical lines at the top and the bottom of the bars 

depict the standard deviation. Dots indicate single cases that are more than 1.5 standard 

deviations away from the group mean. Asterisks mark significant between-group differences 

(single asterisk: P < 0.005; double asterisk: P < 0.001).
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Figure 2. 
Whole-brain cortical surface complexity results. Compared to children with isolated low 

reading ability (LR), low mathematical ability (LM) and typically developing children (TD), 

children with co-occurring difficulties (LRLM) showed significantly reduced cortical surface 

folding of the right parahippocampal gyrus (MNI coordinates: +33 −39 −12; 511 vertices). L 

= left, R = right, A = anterior, P = posterior. The color bar illustrates the P-values of the T-

contrast (+LR +LM −LRLM +TD) that was thresholded at height P < 0.001 with false-

discovery-rate (FDR) corrections at a spatial extent threshold of P < 0.05. Effect sizes at 

each vertex yielded Cohen's D > 0.8. Group-wise medians (horizontal lines within the bars) 

and standard deviations (vertical lines at the top and the bottom of the bars) of the cortical 

surface complexity (Z scores) within the cluster are visualized in the boxplot. From left to 

right: Yellow bar: children with low reading ability (LR), orange bar: children with low 

mathematical ability (LM), red bar: children with both low reading and mathematical ability, 

blue bar: typically developing (TD) children. Asterisks mark significant between-group 

differences (single asterisk: P < 0.005; double asterisk: P < 0.001).
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Figure 3. 
Intrinsic functional connectivity in combined LRLM group vs. the three other groups. (A) 

Schematic illustration of the right parahippocampal gyrus (rPHG) seed region (brown 

sphere), and two target regions (black spheres) know from the literature to be related to 

reading (lFFG: left posterior fusiform gyrus, lPT: left planum temporale). (B) Schematic 

illustration of the right parahippocampal gyrus (rPHG) seed region (brown sphere), and to 

target regions know from the literature known to be related to mathematical processing 

(rIPS: right intraparietal sulcus, lPFC: left prefrontal cortex) (black spheres). The 

corresponding matrices display the results of pair-wise group comparisons of Pearson 

correlation coefficients quantifying the associations of mean hemodynamic signal 

timecourses for each pair of regions. The color bars depict the T-statistics of the 

independent-sample T-tests. Significant group differences passing a false-discovery-rate 

(FDR) corrected threshold of P < 0.05 are indicated by asterisks. LR = children with isolated 

low reading ability, LM = children with isolated low mathematical ability, LRLM = children 

with co-occuring difficulties, TD = typically developing children. (C) Polar plot showing the 

mean functional connectivity (Z values) between the rPHG seed region and all four target 

regions for all four groups.
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Table 1
Groupinclusion table

LR LM LRLM TD

Full-scale IQ > 80 > 80 > 80 > 80

Word reading skills ≤92 ≥ 93 ≤ 92 ≥ 93

Mathematical skills ≥ 93 ≤92 ≤ 92 ≥ 93

Dev Sci. Author manuscript; available in PMC 2019 November 01.
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