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Abstract Generative models, such as predictive coding, posit that perception results from a

combination of sensory input and prior prediction, each weighted by its precision (inverse

variance), with incongruence between these termed prediction error (deviation from prediction) or

surprise (negative log probability of the sensory input). However, direct evidence for such a

system, and the physiological basis of its computations, is lacking. Using an auditory stimulus

whose pitch value changed according to specific rules, we controlled and separated the three key

computational variables underlying perception, and discovered, using direct recordings from

human auditory cortex, that surprise due to prediction violations is encoded by local field potential

oscillations in the gamma band (>30 Hz), changes to predictions in the beta band (12-30 Hz), and

that the precision of predictions appears to quantitatively relate to alpha band oscillations (8-12

Hz). These results confirm oscillatory codes for critical aspects of generative models of perception.

DOI: 10.7554/eLife.11476.001

Introduction
It has long been apparent that brain responses do not simply represent input from sensory organs,

but that they are modulated by context and expectation, giving rise to phenomena such as priming,

mismatch negativity and repetition suppression. These can be explained if perceptual systems are

based on internal generative models of the environment which are constantly updated based on

experience. Predictive coding (Rao and Ballard, 1999) is a popular account of perception, in which

internal representations generate predictions about upcoming sensory input, characterised by their

mean and precision (inverse variance) (Friston, 2005; Friston and Kiebel, 2009). Sensory informa-

tion is processed hierarchically, with backward connections conveying predictions, and forward con-

nections conveying violations of these predictions, namely prediction errors. Qualitatively, prediction

errors are the mismatch between the prediction and incoming sensory information, but the term is

often used without a quantitative definition. One quantitative formulation of prediction error is sur-

prise (Friston and Kiebel, 2009), which is the negative log probability of a sensory event, given the

prior prediction. This definition takes into account the precision of predictions, such that the same

prediction violation causes greater surprise where predictions are more precise. Prediction errors act

to produce changes in predictions, thereby updating and refining internal models of the environ-

ment, and reducing subsequent prediction errors. These variables are illustrated in Figure 1. There

is substantial overlap between predictive coding and other accounts of perception based on internal

generative models (Friston, 2008). The crucial common feature of any generative model of percep-

tion is the brain’s use of hidden states to predict observed sensory inputs, thus the methods and

findings of this study are applicable to all generative perceptual models.

The functional unit of neocortex, the canonical microcircuit (Haeusler and Maass, 2007), has

recently been interpreted in light of predictive coding models (Bastos et al., 2012), revealing
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appropriate neuronal properties and internal/external connectivity to carry out the necessary neuro-

nal computations. It is thus hypothesised that superficial cell populations calculate prediction errors,

manifest as gamma-band oscillations (>30 Hz), and pass these to higher brain areas, while deep cell

populations encode predictions, which manifest as beta band oscillations (12–30 Hz) and pass these

to lower brain areas (Bastos et al., 2012). The layer-specific separation of higher and lower fre-

quency oscillations (Spaak et al., 2012), and the forward/backward asymmetry of high/low fre-

quency oscillations (Buschman and Miller, 2007; Fontolan et al., 2014; van Kerkoerle et al., 2014,

Bastos et al., 2015), are supported by direct evidence. A number of studies have found oscillatory

gamma magnitude to correlate with the unexpectedness of incongruence of stimuli (Arnal et al.,

2011; Brodski et al., 2015; Todorovic et al., 2011), but it remains unclear exactly what computa-

tional variable they represent. While there is a strong case that beta oscillations are involved in top-

down neural communication, evidence specifically linking beta oscillations to predictions is presently

limited and indirect (Arnal and Giraud, 2012), but includes observations that there is interdepen-

dence of gamma and subsequent beta activity in both in vivo (Haenschel et al., 2000) and in silico

(Kopell et al., 2011) studies and that omissions of expected stimuli induce a beta rebound response

(Fujioka et al., 2009). An oscillatory correlate of precision, to our knowledge, has not been pro-

posed, though precision might affect the magnitude of gamma responses to prediction violations

(Feldman and Friston, 2010). While an oscillatory correlate is possible, a case has been made that

neuromodulatory connections alone, for instance from the basal forebrain cholinergic system, may

be sufficient to dynamically mediate precision in sensory hierarchies (Feldman and Friston, 2010;

Kanai et al., 2015). Direct evidence for correlates of processes inherent in perceptual inference

requires being able to quantitatively manipulate predictions during an experiment, which has not so

far been achieved.

eLife digest Our perception of the world is not only based on input from our senses. Instead,

what we perceive is also heavily altered by the context of what is being sensed and our expectations

about it. Some researchers have suggested that perception results from combining information from

our senses and our predictions. This school of thought, referred to as “predictive coding”,

essentially proposed that the brain stores a model of the world and weighs it up against information

from our senses in order to determine what we perceive.

Nevertheless, direct evidence for the brain working in this way was still missing. While

neuroscientists had seen the brain respond when there was a mismatch between an expectation and

incoming sensory information, no one has observed the predictions themselves within the brain.

Sedley et al. now provide such direct evidence for predictions about upcoming sensory

information, by directly recording the electrical activity in the brains of human volunteers who were

undergoing surgery for epilepsy. The experiment made use of a new method in which the volunteers

listened to a sequence of sounds that was semi-predictable. That is to say that, at first, the

volunteers heard a selection of similarly pitched sounds. After random intervals, the average pitch of

these sounds changed and they became more or less variable for a while before randomly changing

again. This approach meant that the volunteers had to continually update their predictions

throughout the experiment

In keeping with previous studies, the unexpected sounds, which caused a mismatch between the

sensory information and the brain’s prediction, were linked to high-frequency brainwaves. However,

Sedley et al. discovered that updating the predictions themselves was linked to middle-frequency

brainwaves; this confirms what the predictive coding model had suggested. Finally, this approach

also unexpectedly revealed that how confident the volunteer was about the prediction was linked to

low-frequency brainwaves.

In the future, this new method will provide an easy way of directly studying elements of

perception in humans and, since the experiments do not require complex learning, in other animals

too.

DOI: 10.7554/eLife.11476.002
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In the present study, we sought to dissociate and expose the neural signatures of four key varia-

bles in predictive coding and other generative accounts of perception, namely surprise, prediction

error, prediction change and prediction precision. Here, prediction error refers to absolute deviation

of a sensory event from the mean of the prior prediction (which does not take into account the preci-

sion of the prediction). We hypothesised that surprise (over and above prediction error) would corre-

late with gamma oscillations, and prediction change with beta oscillations. The possibility of an

oscillatory code for precision was also explored.

Results and discussion
Direct cortical recordings were made from the auditory cortices of three awake humans undergoing

invasive monitoring for epilepsy localization, while they listened to a pitch stimulus with a fundamen-

tal frequency (usually referred to as ‘f0’; hereafter just ‘f’ for clarity) that varied according to simple

rules (Figure 2). Local field potential (LFP) data were decomposed using Morlet wavelets, separated

into evoked and induced components, and regressed against the four perceptual inference variables

of interest which were calculated by Bayes-optimal inversion of the sequence of f values assuming

full knowledge of the rules by which they were generated (Figure 2—figure supplements 1 and 2).

In keeping with prior hypotheses, both surprise and prediction error (the latter not taking into

account the precision of predictions) were associated with significant gamma band responses in the

Figure 1. Computational variables involved in perceptual inference. The graph displays a schematic probability

distribution (solid curve) representing the prior prediction about the fundamental frequency (f) of an upcoming

auditory stimulus (ft), where t simply refers to the number or position of the stimulus within a sequence. This

prediction is characterised by its mean (mt) and precision (Pt), which is the inverse of its variance (s2). The

incongruence between the actual ft and the prediction can be expressed either as a (non-precision-weighted)

prediction error (xt), that is, the absolute difference from the prediction mean, or as surprise (St), that is, the

negative log probability of the actual ft value according to the prediction distribution. As a result of a mismatch

with bottom up sensory information, the prediction changes (dashed line). The change to the prediction (Dmt) is

calculated simply as the absolute difference between the old (mt) and new (mt+1) prediction means. Note that the

curves on the graph display changing predictions on account of a stimulus (i.e. Bayesian belief updating) as

opposed to the more commonly encountered graph in this field of research where the curves indicate the prior

prediction, the sensory information and the posterior inference about the individual stimulus (i.e. Bayesian

inference).

DOI: 10.7554/eLife.11476.003
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LFP. We first established which of these variables explained the LFP data better. Figure 3 shows the

strong correlation between these variables (A), the explanatory power of each with respect to the

LFP data (B), and the unique explanatory power of each after partialling out the other variable (C).

The extremely strong correlation between surprise and prediction error (r = 0.92 over 8000 samples)

necessitated this partial analysis (C) in order to examine the independent contribution of each vari-

able to the observed LFP data. Both variables correlated positively with gamma magnitude, but sur-

prise showed a stronger correlation in all three subjects. In the partial analysis (C), residual surprise

(after partialling out prediction error) correlated positively with gamma magnitude, whereas residual

prediction error (after partialling out surprise) showed only a weak negative correlation in two sub-

jects, and no correlation in one subject. At group level, these correlations were significantly different

to each other at p<0.01 corrected, thus we concluded that surprise is the better correlate of gamma

magnitude, and used this measure for further analysis.

Figure 4 shows, at group level, the spectrotemporal pattern of induced and evoked oscillations

uniquely attributable to each of the three perceptual variables of interest: surprise (S), change in pre-

diction mean (Dm), precision of predictions (P), as well as the change in f value from one stimulus to

the next (Df). The latter measure was not a perceptual variable of interest but was included for com-

parative purposes as it approximately represents the ‘pitch onset response’ which is a robust and

familiar response in auditory neurophysiology (Griffiths et al., 2010). Data significant at p<0.05

Figure 2. Algorithm and example stimulus. (A) The stimulus is composed of a series of concatenated segments,

differing only in fundamental frequency (f). At any time, a given f population is in effect, characterised by its mean

(m) and standard deviation (s). For each successive segment, there is a 7/8 chance that that segment’s f value will

be randomly drawn from the present population, and a 1/8 chance that the present population will be replaced,

with new m and s values drawn from uniform distributions. (B) Example section of stimulus. (Bi) Dots indicate the f

values of individual stimulus segments, of 300 ms duration each. Four population changes are apparent. (Bii)

Spectrogram of the corresponding stimulus, up to 5 kHz, on a colour scale of -60 to 0 dB relative to the maximum

power value. The stimulus power spectrum does not change between segments, and the only difference is the

spacing of the harmonics.

DOI: 10.7554/eLife.11476.004

The following figure supplements are available for figure 2:

Figure supplement 1. Generative model and inversion scheme.

DOI: 10.7554/eLife.11476.005

Figure supplement 2. Example Bayes-optimal prior predictions generated by model inversion.

DOI: 10.7554/eLife.11476.006

Figure supplement 3. Regressor correlations.

DOI: 10.7554/eLife.11476.007
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corrected (based on a non-parametric permutation approach [Maris and Oostenveld, 2007]) are

shown in the left column of each group, and all data in the right column. Individual subject data are

shown in Figure 4—figure supplement 1. As these perceptual variables were highly correlated (Fig-

ure 2—figure supplement 3), instantaneously and over time, regression for the main analysis was

based on the residuals after partialling out these correlated influences, such that only the unique

explanatory contribution of each variable, with respect to the LFP data, was measured. While the

correlation values observed were small in absolute terms (Pearson’s r < 0.1), reassuringly these r val-

ues were of the same scale of magnitude as those for change in frequency (Df), which represents a

robust auditory response. Furthermore, the LFP data variance explained by the entire model (Fig-

ure 4—figure supplement 1) was around 1%. In accordance with our hypotheses, surprise (S) corre-

lated positively, across subjects, with gamma oscillations, beginning at around 100 ms from segment

onset, and this was significant by 200 ms. Also in accordance with our hypothesis, changes to predic-

tions (Dm) correlated positively with beta oscillations coinciding with the onset of the subsequent

stimulus segment (about 100 ms after), which again was significant. Prediction precision (P) corre-

lated positively with delta-alpha (2–12 Hz) frequency oscillations (for the whole 0–300 ms period

from segment onset), although this was only significant in the alpha frequency range, and fell slightly

below significance in the delta-theta range. Given the strong negative correlation between P and

the preceding values of S and Df, it seemed likely that the low-frequency correlates of these were

being mutually attenuated by the partialisation process. For this reason, and to search for correlates

of the commonalities between key variables, we repeated the analyses with only the contemporane-

ous value of Df being partialled out (Figure 4—figure supplement 3). This analysis found highly sig-

nificant correlates of precision (P) in the full delta-alpha range, spanning the previous, current and

subsequent segments, but we cannot attribute the delta-theta component to P with absolute confi-

dence. To respect the exploratory nature of our search for oscillatory correlates of P, a further varia-

tion of the analysis (Figure 4—figure supplement 4) omitted P altogether (including the

partialisation of other variables with respect to it). Results were quantitatively stronger (due to

reduced partialisation), but qualitatively similar except that S contained a strong negative delta-

alpha band correlation coincident with the subsequent stimulus segment. As S for one segment is

negatively correlated with P of the subsequent segment, it is thus not presently clear how much of

Figure 3. Comparison between surprise and prediction error. (A) Correlation between surprise (S) and non-

precision-weighted prediction error (x), with each dot indicating an individual stimulus segment and the line

indicating a linear regression fit. (B/C) Mean Pearson product moment correlation coefficients (r) between St or xt,

and gamma oscillation magnitude (30–100 Hz) in the 90–500 ms period following the onset of stimulus segment t.

Regression coefficients were calculated for each time-frequency point, after partialling out the influences of current

and preceding/subsequent values of all other regressors, and then averaged across time and frequency; these

processing steps diminished the absolute size of the correlation values. In C, the influence of S on x, and x on S,

was also partialled out, thus exposing the unique contribution of each variable to explaining the observed neural

response. Partial S showed a higher mean correlation, across subjects, with gamma magnitude than partial x

(p<0.01).

DOI: 10.7554/eLife.11476.008
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this low-frequency correlation is with S (negatively), and how much with P (positively). However,

given its sole significant association in the main analysis (Figure 4) is with P, and that a low-fre-

quency correlate of S is not expected based on prior literature, we favour the interpretation that

low-frequency oscillations are a correlate of the precision of prior predictions. Evoked results are

shown in the right hand sections of Figure 4 plus its figure supplements 3 and 4. Unlike the induced

results, there was no qualitative distinction between the timing or frequency profiles of the different

variables (this is particularly evident in Figure 4—figure supplement 4). The only significant evoked

responses in the main analysis (Figure 4) were to Df and Dm, while S only showed significant evoked

correlates when P was omitted from the analysis (Figure 4—figure supplement 4).

Figure 4. Spectrotemporal profiles associated with key perceptual inference variables. Each plot illustrates the mean Pearson product moment

correlation coefficient (r), across stimulus-responsive electrodes and across subjects, between induced oscillatory amplitude, at each time-frequency

point, and the regressor of interest, that is, a time-frequency ‘image’ of the oscillatory correlates of a particular perceptual variable. Time is represented

on horizontal axes, and frequency on vertical. Dashed lines indicate the division between the previous (t-1), current (t) and subsequent (t+1) stimulus

segment (vertical lines), and between frequency bands (horizontal lines). Each row of plots represents one regressor. The left-hand group contains

induced correlates, and the right-hand group evoked, with the left-hand column in each group showing data points significant at p<0.05 corrected.

Regressors are partialised with respect to each other, such that only the unique contribution of each to explaining the overall oscillatory data is

displayed. (A) Spectrotemporal correlates of the three fundamental variables for perceptual inference. Note that the grey area in the upper left plot

reflects the spectrotemporal region of interest (ROI) analysis used for correlates of surprise (i.e. >30 Hz). Outside of the ROI analysis, no significant

correlates were observed below 30 Hz. (B) The variable ‘pitch change’ indicates the overall response to a changing stimulus and is included to illustrate

the magnitude and time-frequency distribution of a typical and robust auditory response. d = delta (0–4 Hz), q = theta (4–8 Hz), a = alpha (8–12 Hz), b =

beta (12–30 Hz), g = gamma (30–100 Hz).

DOI: 10.7554/eLife.11476.009

The following figure supplements are available for figure 4:

Figure supplement 1. Individual subject induced correlates.

DOI: 10.7554/eLife.11476.010

Figure supplement 2. Total variance explained by the model.

DOI: 10.7554/eLife.11476.011

Figure supplement 3. Results without mutual partialisation.

DOI: 10.7554/eLife.11476.012

Figure supplement 4. Results with prediction precision omitted.

DOI: 10.7554/eLife.11476.013

Figure supplement 5. Electrode positions.

DOI: 10.7554/eLife.11476.014

Figure supplement 6. Distribution of correlations across electrodes.

DOI: 10.7554/eLife.11476.015
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In light of the above results, this study provides the first direct demonstration that beta oscilla-

tions are involved in updating the content of sensory predictions. We have also found that the preci-

sion of predictions is correlated to the magnitude of alpha oscillations, and possibly delta and/or

theta also, thereby raising the possibility of an oscillatory mechanism for the control of precision.

Interestingly, this correlate of precision was not time-locked to the stimuli (evoked), despite delta-

theta oscillations showing strong phase entrainment by stimuli when predicting stimulus timing

(Arnal and Giraud, 2012), and the period of the stimulus segments (300 ms) falling within the delta-

theta range. Possibilities include that there is an evoked correlate closely shared by both surprise

and precision which the present methods are unable to disambiguate, or that this time-locking of

low-frequency oscillations is entrained preferentially by low-level stimulus features (such as changes

in stimulus power spectrum) as opposed to the higher level feature of temporal pitch employed in

the present study. Existing generative accounts of perception have not proposed a specific oscil-

latory correlate for the precision of predictions in predicting what a sensory stimulus will be. How-

ever, the present findings are not without precedent, as theta (4–8 Hz) and alpha (8–12 Hz)

oscillations are implicated in mechanisms to predict when a stimulus will occur, with theta phase

aligning to the expected stimulus onset (Arnal and Giraud, 2012), and alpha magnitude has been

found to correlate with the probability of a stimulus change occurring (Bauer et al., 2014). Both

theta (Canolty et al., 2006) and alpha (Jensen and Mazaheri, 2010) oscillations modulate higher

frequency oscillations, through phase-amplitude coupling, and thereby segregating sensory

responses into specific temporal windows. There is also antagonism between theta/alpha and beta/

gamma oscillation magnitudes (Spaak et al., 2012) which, in the context of a theta/alpha code for

precision, might indicate that over coarse time scales neuronal populations alternate between states

of precise predictions (with theta/alpha predominating) and states of prediction violation (with beta/

gamma predominating). However, the present results would suggest more than simple reciprocal

antagonism and reveal the specific computational role of each oscillation type. While an oscillatory

code for precision could have far-reaching implications, we must respect the fact that this is a novel

finding and thus requires corroboration from additional studies with alternative methodology.

Perhaps most strikingly, we have shown that the key variables theoretically necessary for sensory

inference have distinct oscillatory profiles, with little to no overlap between these, which show

remarkable consistency across subjects. Furthermore, each oscillatory frequency band correlates

with a distinct computational variable. Thus, the present findings may be able to retrospectively aid

in the interpretation of a large number of studies examining induced oscillations. As generative

accounts of perception are generic across stimulus dimensions and sensory modalities, and perhaps

even all of brain function (for instance, if action is understood as a method of resolving prediction

errors [Friston et al., 2006]), the applicability of the results may be very broad indeed. The present

paradigm is instantly portable to any sensory modality and, given the absence of any training or task

requirement, to any species.

Materials and methods

Stimulus algorithm
The basis of the experiment was an algorithm (Figure 2A) in which stimulus segments varied across

only one perceptual dimension, and values were drawn randomly from populations, that is, Gaussian

distributions, each characterised by its mean (m) and standard deviation (s). These populations con-

stituted hidden states that were not directly observable, but whose parameters (i.e. m and s) could

be inferred. The populations were randomly changed according to simple rules, such that subjects

could be expected to unconsciously learn these rules in order to minimise uncertainty about upcom-

ing stimuli. The rules were that for each stimulus segment, there was a 7/8 chance that its value

would be drawn from the existing population, and a 1/8 chance that a new population would come

into effect. Once a new population came into effect, it became the ‘existing’ population. Each popu-

lation had its m and s drawn randomly from uniform distributions. The 1/8 transition probability, and

the other parameters described below, were chosen in order to maximise the dissociation between

the perceptual inference variables under study.
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Auditory implementation of algorithm
The algorithm was implemented in the auditory domain, with stimuli taking the form of harmonic

complexes, containing only unresolved harmonics (by high-pass filtering from 1.8 kHz). Each har-

monic had a random phase offset, which was preserved across all segments, stimuli and subjects.

The variable dimension was fundamental frequency (f0; hereafter just ‘f’ for simplicity), which is the

major determinant of perceived pitch. Population m was limited to the range 120–140 Hz, and s to

the range 1/128–1/16 octaves. Stimulus segments were 300 ms in duration and were smoothly

concatenated to avoid any transients at the transitions between segments. This was achieved by

defining instantaneous frequency at every point in the stimulus, by calculating the cumulative sum of

this, and then by creating harmonics individually in the time domain as follows in Equation 1:

aT ¼ sin 2prþ 2ph
1

s

X

T

t¼1

ft

0

@

1

A (1)

where a is the amplitude of the waveform, T is the current time point (measured in samples), t is all

previous time points, r is the random phase offset for the harmonic, h is the number of the harmonic,

s is the sampling rate and f is the instantaneous frequency. This procedure was repeated for every

harmonic, from below the high-pass to above the Nyquist frequency. To prevent aliasing, the stimu-

lus was generated at 88.2 kHz sampling rate, then downsampled to 44.1 kHz. The segment duration

of 300 ms was chosen as the minimum duration that would capture most of the transient response

to the onset of pitch within a stimulus, based on previous work (Griffiths et al., 2010). 8000 stimulus

segments were presented to each subject, consisting of four blocks of 2000 segments. Blocks were

generated by the same rules but were each independently randomly generated. See Figure 2B for

an example section of the stimuli.

Subjects and stimulus delivery
Subjects were three patients undergoing invasive electrode monitoring for localisation of medically

refractory epilepsy prior to resective surgery. Subjects were not known to have any major cognitive

deficits or clinically significant hearing impairment, and none had lesions in the region of auditory

cortex. Informed consent for experimentation was obtained from all subjects, and research proce-

dures were approved by the University of Iowa Institutional Review Board. Stimuli were presented

diotically, via insert earphones (ER4B; Etymotic Research, Elk Grove Village, IL) through molds fitted

to the subject’s ear, at the loudest comfortable volume. During the experiments, subjects engaged

in an irrelevant auditory task to maintain attention, but a specific performance on this task was not

required. This task involved detecting a change to the timbre of individual stimulus segments (64 tar-

gets over 8000 segments), which was unrelated to their frequencies or underlying population param-

eters. Subject 1 performed well on the task, and subjects 2 and 3 performed poorly, with high false

alarm rates. The first 100 stimulus segments, and 10 segments following each target and false alarm,

were removed from analysis.

Data acquisition and preprocessing
Recordings were made from one hemisphere in each subject (Subjects 1 and 3: right, Subject 2: left).

All subjects had an 8-contact depth electrode placed along the axis of Heschl’s gyrus, including

anatomically and physiologically defined primary auditory cortex, and a subdural grid overlying

superior temporal gyrus. Local field potential data were downsampled to 1 kHz, and electrical noise

was filtered out. Time-frequency decomposition was performed with Morlet wavelet convolution,

oversampled at 2 Hz frequency resolution and 10 ms time resolution, in the time range -300 to 600

ms from segment onset (i.e. spanning previous, current and subsequent segments) and frequency

range 2–100 Hz. The upper frequency bound was limited to 100 Hz in light of previous observations

of a lack of qualitative response difference to pitch stimuli between the 80–100 Hz range and higher

frequencies (Griffiths et al., 2010). The number of cycles per wavelet increased linearly from 1 cycle

at 2 Hz to 10 cycles at 100 Hz. The absolute value (i.e. amplitude) of the wavelet coefficients was cal-

culated for artefact rejection purposes, and these were normalised for each frequency (i.e. shifted/

scaled to mean 0 and standard deviation 1). For each trial, both the mean (across time and fre-

quency) and maximum normalised amplitude value was recorded, and the frequency histograms of
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these were plotted. Thresholds for trial rejection were set, by visual inspection, at the upper limit of

the normal distribution of responses, beyond which trials were assumed to contain artefacts. After

removal of segments at the start of the experiment, following target segments, and with outlying

amplitude values, 89, 86 and 87% of segments remained, for the three subjects, respectively. Data

were processed for all electrodes either in Heschl’s gyrus or over the superior temporal gyrus. The

procedure for selecting electrodes for the final analysis is described later.

Estimation of perceptual inference variables
Ideal prior predictions, for each stimulus segment were calculated by inverting the algorithm used to

generate the frequency values for the stimulus. Human subjects tend to implicitly make near-optimal

inferences based on available sensory evidence and past experience (Ernst and Banks, 2002;

Körding and Wolpert, 2004), but in the present study, all that was assumed was an approximate

concordance between the subjects’ actual inferences and the optimal inferences that we modelled.

This seems highly probable given the simplicity of the algorithm and its conformation to Gaussian

statistics. Prediction calculation was achieved as follows, using a model inversion scheme illustrated

in Figure 2—figure supplement 1:

1. A discrete three-dimensional model space was generated (represented as a three-dimensional
matrix; Figure 2—figure supplement 1A, left), with dimensions corresponding to population
m, population s, and f value. Any given value in the matrix indicates P(f|�,s), that is, the proba-
bility of a given frequency given a particular � and s. The columns (all f values for a given �

and s combination; Figure 2—figure supplement 1, upper-right) thus constitute the forward
model (by which stimuli are generated), and the planes (all combinations of � and s for a given
f value; Figure 2—figure supplement 1, lower-middle) constitute the inverse model (by which
hidden parameters can be estimated from observed f values).

2. 2) For each segment, the model was inverted for its particular f value, yielding a two-dimen-
sional probability distribution for the hidden parameters (Figure 2—figure supplement 1,
lower-middle). Steps 3-6 were then worked through for each stimulus segment in order, start-
ing at the beginning of the stimulus.

3. These probability distributions, for each segment subsequent to the most recent estimated
population change (as defined later), were multiplied together, and scaled to a sum of 1. The
resulting probability distribution (Figure 2—figure supplement 1, lower-right) thus reflects
parameter probabilities taking into account all relevant f values

4. This combined parameter probability distribution was then scalar multiplied with the full model
space, in order to weight each of the forward model columns (each corresponding to a partic-
ular parameter combination) by the probability of that parameter combination being in effect.
The resulting weighted model space was then averaged across parameter dimensions, to yield
a one-dimensional (forward) probability distribution, constituting an optimal prediction about
the f value of the next stimulus segment, provided a population change did not occur before
then. A probability distribution applicable if a population change were to occur was calculated
the same way, but without weighting the forward model columns (so as to encompass every
possible parameter combination).

5. It was assumed that a population change occurred immediately prior to the first stimulus seg-
ment. To infer subsequent population changes, for each segment the probability of observing
the present f value was compared for the two probability distributions (the distribution assum-
ing a population change, and the distribution assuming no change), that is, P(f|c) and P(f|~c),
respectively, with c denoting a population change. The probabilities were compared, in con-
junction with the known prior probability of a population change (1/8), using Bayes’ rule, as
stated in Equation 2:

P cjfð Þ ¼
P ðf jcÞP ðc

�

P ðfÞ
(2)

Here, P(c|f) is the chance that a population change occurred at that particular time. Given that
P(c) is known to be 1/8, and P(f), the total probability of the observed f value, can be rewritten
P(f|c)P(c)+P(f|~c)(1-P(c)), the above equation can be rewritten as Equation 3:

P ðcjfÞ ¼
1

1þ 7P ðf j~cÞ
P ðf jcÞ

(3)
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6. For each segment, the above calculation of P(c|f) was made not only with respect to the imme-
diately preceding segment, but also a number of segments preceding that, up to a maximum
of 4. Therefore, for segment t, it was possible to conclude that a population change had
occurred immediately prior to t, t-1, t-2, t-3, or none of the above. A population change was
judged to have occurred at the time point with the highest value of P(c|f), provided this value
was greater than 0.5. Using more than 4 lags did not appreciably alter the estimates obtained
by model inversion. Importantly, any retrospective inference of population changes did not
retrospectively alter any prior predictions generated by the model (e.g. at time t, if a popula-
tion change were inferred to have occurred at time t-3 then the priors for t-2, t-1 and t were
not affected, but only the priors for t+1 onwards).

7. Once the above steps were worked through for each stimulus segment in order, the optimal
prior predictions were used to calculate the perceptual inference variables of interest. Predic-
tions themselves were summarised by their mean (�) and precision (1/variance). Changes to
predictions (Dm) were calculated as the absolute change (in octaves) in � from one prediction
to the next. Surprise (S) was calculated as the negative log probability of the observed f value
given the prior prediction, and prediction error (irrespective of prediction precision) was calcu-
lated as the absolute difference (in octaves) between the observed f value and the mean of the
prior prediction. Mathematically, surprise is directly proportional to prediction precision multi-
plied by prediction error. Finally, Df was calculated as the absolute difference between the cur-
rent and preceding value of f.

An example section of the stimulus, along with Bayes optimal prior predictions generated by the

above algorithm, are shown in Figure 2—figure supplement 2. As the regressors (the variables cal-

culated above) were highly correlated with each other, both instantaneously and over neighbouring

segments (see Figure 2—figure supplement 3), these were partialised with respect to each of the

other regressors, and the preceding and subsequent two values of both the other regressors and

themselves. This conservative approach removed a lot of explanatory power from these regressors,

but was necessary to be able to uniquely attribute observed neural correlates to a specific process.

Importantly, the partialisation did not qualitatively alter the results, except in obscuring the distinc-

tion between correlates of S and Dm. Non-partialised results are shown in Figure 4—figure supple-

ment 3.

Correlation analysis
Electrodes were included for further analysis (i.e. included in the averaging process) if they showed a

significant response to the stimulus as a whole, based on the single largest response value in time-

frequency space. Analysis was based on a 300 ms time window, which was randomly displaced by

up to +/- 300 ms for each segment in each permutation (and undisplaced for the actual data) before

averaging across segments. The electrodes selected using this procedure are displayed in Figure 4—

figure supplement 5. In all subjects, electrodes were included from both primary and non-primary

auditory cortex.

For each partialised regressor, complex time-frequency data were subject to a two-stage regres-

sion approach. First, the complex (i.e. with phase data retained) for every electrode-time-frequency

point were regressed against it to yield a pair (real and imaginary) of Pearson product moment cor-

relation coefficients (r). The modulus of these constituted the evoked (time-locked) response. To cal-

culate the induced response, the residuals from this regression (i.e. discarding the evoked

component) were converted to amplitude (by taking their modulus), and the regression was per-

formed again. All r values were subjected to a Fisher Z transformation prior to further analysis.

Inspection of these responses found no qualitative differences between the responses observed in

different divisions of auditory cortex, hence the correlations were averaged over electrodes for fur-

ther analysis. To quantify the distribution of correlation strengths, the pattern, across time and fre-

quency, of induced correlation coefficients for each regressor was averaged across electrodes and

subjects. This pattern was used as a filter, in that it was scalar multiplied with the correlation coeffi-

cient pattern for each electrode for each subject, then averaged across time and frequency to yield

a single correlation value for that electrode/subject combination. These values, for each regressor,

for each subject, were divided by the largest absolute correlation value for that regressor, in order

to represent relative correlation strengths on a scale of -1 to 1. These correlation values are dis-

played in Figure 4—figure supplement 6, and show no systematic dissociation between the ana-

tomical distributions of the correlations for the different regressors.
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Statistical analyses were all performed using a permutation approach (Maris and Oostenveld,

2007), using 100 permutations (in each of which the experimental parameter of interest was

removed through randomization, e.g. by shuffling regressor values across stimulus segments) and a

significance threshold of p<0.05 corrected. In each permutation, the statistical measure of interest is

calculated, and the largest value within each permutation is added to a null distribution, from which

a statistical threshold for significance is set. The measure of interest in this approach varied accord-

ing to the analysis being performed (see below), and included the values at individual time-frequency

points averaged across electrodes, mean values across time and frequency at individual electrodes,

and mean values across both time-frequency points and electrodes.

To compare surprise and prediction error, for each of these regressors, the mean of the correla-

tion coefficients (across time, frequency, electrode and subject) was calculated within the time win-

dow 90–500 ms from segment onset and the frequency window 30- 100 Hz. This was performed

once with the regressors partialised as previously described (i.e. for current and adjacent values of

Df, P and Dm), and again with additional partialisation of each regressor with respect to the other.

This latter analysis measures the unique contribution of each regressor in explaining the observed

data over and above the other, and was the analysis subjected to statistical analysis.

For the main correlation analysis, significance testing was performed on average correlation val-

ues across the three subjects. Points in time-frequency space exceeding the permutation-derived

threshold were considered significant. Due to the strong prior hypothesis about gamma oscillations

correlating with surprise or prediction error, the statistical analysis was repeated for these regressors

but with only frequencies in the gamma range (30–100 Hz) being included in the analysis.
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