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Neuroscience is witnessing increasing knowledge about the anatomy and electrophysiological 

properties of neurons and their connectivity, leading to an ever increasing computational 

complexity of neural simulations. At the same time, a rather radical change in personal computer 

technology emerges with the establishment of multi-cores: high-density, explicitly parallel 

processor architectures for both high performance as well as standard desktop computers. 

This work introduces strategies for the parallelization of biophysically realistic neural simulations 

based on the compartmental modeling technique and results of such an implementation, with a 

strong focus on multi-core architectures and automation, i.e. user-transparent load balancing.
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types of transmembrane currents as well as their irregular distri-

bution across a neuron. We propose two methods dealing with 

this issue. For solving, we use the comparatively simple, previously 

published splitcell method (Hines et al., 2008a) for splitting neurons 

into subtrees and extend the method to automatically identify a 

split compartment and distribute the workload for solving of these 

subtrees onto processors in a balanced way.

The next section will give a short introduction to parallel pro-

gramming, multi-core architectures and multithreading. The sec-

tion on “Compartmental Modeling” contains a summary of the 

compartmental modeling technique and the splitcell method. The 

section on “Details about the Sample Implementation” describes 

the sample simulator software we implemented to test our algo-

rithms. The algorithms themselves are presented in detail in the 

subsequent section, “Parallelized Simulations”. This part of the 

manuscript also contains a subsection comparing our approaches 

to previous neural simulator algorithms. The section “Results” 

presents performance results obtained with our sample implemen-

tation for models of varying complexity and memory requirements, 

followed by a discussion section summarizing the work and giving 

a short outlook.

PARALLEL PROGRAMMING AND MULTI-CORES

In the last 40 years, processor manufacturers increased perform-

ance mainly by a) creating faster and smaller transistors and 

circuits allowing for higher clock frequencies, and by b) automati-

cally exploiting parallelism inherent in the sequence of incoming 

instructions using overlapping and out-of-order execution. With 

the limited amount of instruction level parallelism in a sequential 

program and physical restrictions on the speed of transistors and 

electric signals traveling through a circuit, recent developments 

focus on providing multiple, user-visible processing units (PUs, 

also called cores). In the last few years, a new kind of architecture 

referred to as multi-cores emerged: Decreasing transistor sizes 

INTRODUCTION

With neurobiology and biochemistry advancing steadily, bio-

physically realistic modeling has become an indispensable tool for 

understanding neural mechanisms such as signal propagation and 

information processing in both single neurons and neural networks. 

The high computational complexity of such neural simulations due 

to detailed models of ion channels and synapses, combined with 

high spatial resolutions of neuronal morphology, often result in 

long run times or require the use of a whole network of computers 

(a computer cluster).

The evolution of multi-cores, a new processor architecture in 

personal computer technology where several standard processing 

units are combined on one chip, providing the user with a multiple 

of the previous available computational power, has the potential 

to overcome these limitations. Moreover, multi-cores are likely to 

replace the current single-core processors completely in the future; 

as of today, most computers are available with dual-core or quad-

core processors, only.

However, exploiting the potential of multi-cores requires man-

ual adaptation of the algorithms and the source code. This, in turn, 

requires thorough knowledge of the internals of these chips, careful 

examination and parallelization of the algorithms used and exten-

sive measurements to ensure the applicability of the parallelized 

program to a wide range of models.

This work introduces techniques for the parallelization of bio-

physically realistic neural simulations in a shared memory envi-

ronment (i.e., where the processing units access a common main 

memory) using multithreading with a special focus on the char-

acteristics of multi-core architectures.

Setting up the system of equations usually takes much more 

time than solving the equations, and parallel solving is algorith-

mically demanding; we therefore mainly focus on setting up the 

equations in parallel. Here, care must be taken to avoid workload 

imbalances due to different computational complexities of different 
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and improving manufacturing technologies are exploited to put 

multiple, full-blown PUs onto one chip. To exploit the computa-

tional capacities of this architecture, programs must be explicitly 

designed to make use of the available processing resources by 

fi rst analyzing their algorithms for potential parallelism, followed 

by writing new or modifying existing source code that identi-

fi es workload distributions and subsequently assigns jobs to the 

available cores1.

GENERAL RULES FOR PARALLELIZATION

Computer clusters and single computers with multiple processing 

chips or multi-cores all require adapting the algorithms and code 

to make use of the available processing resources. Parallel code 

must strive to meet the following requirements:

• The time spent on sequential, i.e. non-parallel, regions of the 

code must be minimized.

• The work must be distributed across the PUs in a manner as 

balanced as possible.

• Overhead due to parallelization must be minimized. This 

includes overhead for initialization routines and synchroniza-

tion operations.

Before continuing, two frequently used synchronization opera-

tions, mutexes and barriers, are introduced.

Mutexes (derived from mutual exclusion algorithm, also referred 

to as locks) are used to prevent the concurrent execution by differ-

ent processes (running instance of a program) of specifi c parts of 

the code (or, thereby, the concurrent access to common data). A 

lock can be held by one process at a time only; processes trying to 

acquire a lock must wait until the lock is released by the process 

currently holding the lock.

In contrast, barriers are special functions that, once called, only 

return when all other processes have called the function as well. 

They are used to make sure all processes have reached a certain 

point in the program.

Both mutexes and barriers are indispensable methods in paral-

lel programming. However, they come at the cost of inter-process 

communication; depending on how big the latency of the intercon-

nection technology is, they can infl uence the runtime signifi cantly 

if not used with caution. In typical message-passing environments 

(see Programming Multi-Cores) where inter-process communica-

tion usually requires sending messages across a network from one 

computer to another, latencies for small messages range between 

about 4 µs (Infi niBand, see Liu et al., 2005) and 30 µs (Ethernet, 

see Graham et al., 2005). Thus, synchronization operations quickly 

become a bottleneck. It is therefore necessary to reduce such com-

munication as far as possible, i.e. let the processes compute inde-

pendently as long as possible.

In contrast, inter-core communication on multi-cores is 

extremely fast (see next section) and allows for much fi ner-grained 

parallelization, i.e. the effi cient parallel computation even of small 

problems where synchronization operations are frequent. Still, 

 synchronizations come at a certain cost and can have a signifi cant 

effect on runtime if used extensively.

MULTI-CORE CHARACTERISTICS

In some architectures, different types of PUs are combined on 

one chip, e.g. IBM’s Cell Broadband Engine Architecture (Johns 

and Brokenshire, 2007). However, the most widespread type are 

homogeneous multi-core architectures where multiple copies of 

the same PU are placed on a single chip, e.g. Intel’s Core 2 Duo 

processors (Intel Corp., 2006), AMD’s Opteron K10 series (AMD, 

Inc., 2007a) or IBM’s POWER5 dual-cores (Sinharoy et al., 2005). 

This work will focus on the latter architecture, although most 

concepts derived in this work are applicable to heterogeneous 

multi-core architectures as well.

Before going into further detail, a note about caches must be 

made because they play a very important role in developing soft-

ware for multi-cores. In the context of processors, a cache refers to a 

very fast (compared to main memory) on-chip memory where pre-

viously accessed data from main memory is temporarily stored to 

reduce the latency of subsequent memory read and write accesses. 

A good way to ensure cache-effi ciency is to layout data in main 

memory both in a packed way and in the sequence of program 

accesses. This allows the processor to perform so-called prefetching 

of data when it realizes the program traverses an array.

The use of multiple caches requires a mechanism referred to as 

cache-coherency protocol to ensure integrity when different cores 

access the same location in main memory. Depending on what 

type of cache-coherency protocol is used, communication between 

cores that share a cache may be much faster than between cores that 

access separate caches (explained later in this section).

Figure 1 opposes a single-core processor with memory and I/O 

controllers attached via the front side bus (FSB) to two modern 

quad-core processors, Intel’s Xeon X5355 and AMD’s Opteron K10 

2347. Three important characteristics of homogeneous multi-core 

processors and consequences arising therefrom can be observed:

• All cores are full-blown copies of a single-core’s PU; this makes 

programming for multi-cores a comparatively simple task 

because a single program can be used on all four cores, and 

porting existing applications is simple from a programmer’s 

point of view.

• All cores on a chip share external resources like main memory, 

main memory bandwidth as well as processor-external hard-

ware and hardware bandwidth (network controllers, hard 

disk drives etc.). While the access to shared resources simpli-

fi es programming and allows for fast interaction between the 

cores, it also bounds the effi ciency of parallel programs that 

require a high memory or I/O bandwidth and low latency for 

every core.

• Inter-core communication is very fast compared with com-

puter clusters where latencies range between 4 and 30 µs. The 

latency of inter-core communication strongly depends on 

whether cores share a cache or not and the exact cache-cohe-

rency protocol used.

For instance, the inter-core latency on Intel’s Xeon X5355 can 

be as low as 26 ns if two cores communicate via a shared cache 

but is much higher if the two cores do not share a cache (between 

1This is not necessarily the case for programs that are interpreted by another pro-

gram such as MATLAB or IDL code; here, the intermediate software layer may au-

tomatically identify workload distributions for simple operations such as matrix 

multiplications and execute them in parallel transparently for the original program 

(ITT Visual Information Solutions, 2007; Moler, 2007).
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500 and 600 ns depending on whether the two cores are on the 

same or on different chips) because communication is performed 

by exchanging data via the comparatively slow main memory 

(Intel Corp., 2007). In contrast, on AMD’s Opteron K10 2347, 

the set of cores used does not infl uence the inter-core latency 

signifi cantly; on our test system, we measured latencies of 240 

and 260 ns for two cores sharing a cache or not, respectively. 

This is because AMD processors use a different way for ensuring 

cache coherency (AMD, Inc., 2007b) where cores can commu-

nicate directly without accessing main memory even if they are 

located on different chips.

The main intention of this work is to evaluate, in the context 

of neural simulations, how the advantages of multi-core architec-

tures can be exploited and when their limitations infl uence effi -

ciency. This requires mentioning another computer architecture 

fi rst, symmetric multi-processing (SMP). Here, multiple processor 

chips (possibly multi-core chips) are combined in one computer 

in a manner similar to how cores are combined on a multi-core 

chip. The main differences are a) that multi-cores are becoming 

ubiquitous devices, while SMP systems never saw widespread use 

except for some scientifi c areas and in servers, b) that cores on the 

same chip can communicate much faster, and c) that the number 

of processors/chips in one SMP system is low (usually two, seldom 

more than four) while multi-core chips are likely to comprise up 

to 32 or more cores on a chip in the near future. Therefore, albeit 

there are no differences between these two architectures from a 

programmer’s point of view, the higher number of cores and the 

low inter-core communication latency pose new scalability require-

ments, while at the same time allowing for fi ner grained paralleliza-

tion strategies. Nevertheless, the principles derived in this work are 

applicable to SMP systems as well.

PROGRAMMING MULTI-CORES

Parallel programming paradigms can be divided into two classes, 

message-passing and shared memory programming. In message-

passing, every process accesses its own memory region and com-

municates with other processes by explicitly sending and receiving 

messages. This is the standard programming model for all kinds 

of computer clusters but is also frequently used on hybrid archi-

tectures (networks of multiprocessor systems) or even on shared 

memory systems.

Shared memory programming, on the other hand, is based on 

processes communicating with each other by accessing common 

physical memory regions to change and read shared variables. This 

model can take various forms, for instance two different programs 

that share a small region of memory to exchange information. 

The most common method of shared memory programming in 

scientifi c computing is multithreading; here, multiple instances 

of the same program, so called threads, are executed in parallel, 

all residing in the same memory space (i.e. sharing all memory 

regions2), although different threads may be at different points in 

the program at one time.

This paper user multithreading for two reasons. First, it is a 

standard method for concurrent programming on desktop com-

puters and is available on most modern operating systems without 

requiring the installation of additional libraries. Second, using mul-

tithreading instead of message-passing for compartmental model 

simulations is a rather novel approach that deserves exploration. 

The exact method is a slight modifi cation of the Fork&Join model, 

e.g. used by OpenMP (OpenMP Architecture Review Board, 2002). 

The program is executed in a single-threaded manner, except for 

A B

C

FIGURE 1 | (A) Processor with a single core featuring Level 1 instruction and 

data caches (L1I and L1D), Level 2 cache (L2), and main memory (RAM) 

accessed via the Front Side Bus (FSB); the core is equipped with subunits 

for e.g. vector arithmetics, fl oating point processing, memory management 

and an interrupt controller. (B) A multi-core processor with four cores 

where two cores share a L2 cache, respectively. (C) A multi-core processor 

where all cores have a private L2 cache but a L3 cache shared between all 

four cores.

2The only exceptions are the stack and Thread Local Storage.
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parallel regions of the code, where the fi rst thread invokes other 

threads to take part in the parallel computation of this region.

The next section will introduce the mathematical and algorith-

mic basis of most types of realistic neural simulations, compart-

mental modeling.

COMPARTMENTAL MODELING

This work focuses on a popular technique in neural simulations: 

compartmental modeling based on an electric equivalent circuit of 

a neuron. There, a neuron’s morphology is represented by a set of 

cylinders of different length and diameter, so-called compartments, 

that are electrically coupled with axial conductances. The accuracy 

of this spatial discretization method depends solely on the user’s 

requirements; cells can be modeled with only one compartment 

or in a highly detailed fashion using up to tens of thousands of 

compartments; also, different regions of a cell may be modeled 

with varying precision.

Figure 2A depicts the compartmental representation of a VS1 

cell from the blowfl y’s visual system, reconstructed from a cobalt-

fi lled cell (Borst and Haag, 1996).

Ion channels, ion pumps, synapses and membrane capaci-

tance are all modeled with electric equivalent circuits that aim 

to imitate the real behavior as good as possible or computa-

tionally feasible. Figure 2B shows how a single compartment is 

represented by a circuit comprising axial currents I
axial

, capacitive 

currents I
cap

, and a current I
mech

 modeling the sum of various 

neural mechanisms such as ion channels and pumps, chemical 

synapses and gap junctions3, and voltage or current clamps. For 

every compartment i with adjacent compartments j ∈ adj
i
 and 

directed currents as illustrated in Figure 2B, this results in a 

current balance equation,

I I Ii i icap mech axial, , ,+ + =∑ 0

yielding

C V g V V I Vm i ij j i

j

m i

mi i

= − − ,...
∈ ∈
∑ ∑( ) ( )

adj mechs

The set of all equations representing the compartmental model of a 

neuron forms a system of coupled ordinary differential equations, 

one for every compartment. Such systems are solved by apply-

ing a temporal discretization scheme, for instance forward Euler, 

backward Euler or Runge–Kutta methods, to every equation. The 

simulation is then carried out by starting at t = 0 and advancing 

in time step by step, i.e. from time t to t + Δt to t + 2Δt and so on. 

For every time step t → t + Δt, the neural simulation software sets 

up all equations based on voltages V(t), rate variables etc. defi ned 

at time t and solves the system for V(t + Δt).

Depending on the temporal discretization method used, solv-

ing the system for the new membrane potentials requires either a 

matrix-vector multiplication and a vector-vector addition, only 

(explicit methods), or a linear system of equations (LSE) must be 

solved (implicit methods). This work will focus on implicit meth-

ods because parallelization is rather simple for explicit methods 

and because implicit methods provide a higher degree of numerical 

stability which is often crucial for neural simulations. When using 

an implicit method such as the backward Euler method,

V t t
V t t V t

t
( )

( ) ( )
+ Δ =

+ Δ −

Δ

which is also NEURON’s default method, and applying an approxi-

mation to the mechanism terms (for details, see Section 4.3 and 

Appendix A in Eichner, 2007 or pp. 168–169 in Carnevale and 

Hines, 2006), the equations can be rewritten in matrix-vector form 

with some right-hand side term rhs as

G V rhs⋅ + Δ =( )t t

Figure 3A shows a numbered graph whose circles represent com-

partments, while the lines represent electrical couplings between 

the compartments. The corresponding layout of G is illustrated in 

Figure 3B, where X denotes non-zero entries. G can thus be seen as 

the adjacency matrix of the underlying, tree shaped neuron.

For n compartments, G ∈ ×Rn n is a sparse matrix with all ele-

ments being zero except for about 3n elements, namely diagonal 

elements (i,i) and off-diagonal elements at (i,j) and (j,i) for two 

axially connected compartments i and j; i.e., the matrix layout 

refl ects the connectivity structure of the model. For example, 

an unbranched cable yields a strictly tridiagonal matrix G. 

Hines (1984) discovered that solving LSEs corresponding to tree 

A B

FIGURE 2 | (A) Compartmental model of a VS1 cell from the blowfl y’s visual system. The magnifi cation inset emphasizes how cylinders are used to model the cell. 

(B) Example of an electric equivalent circuit used to simulate a compartment. The circuit in the picture is the one used by NEURON.

3Electrical synapses/gap junctions can be modeled in a manner similar to the axial 

terms; however, this prohibits the usage of a highly optimized Gaussian elimination 

method presented in the next section. Therefore, we assume gap junctions to be 

modeled as mechanisms with the respective approximation.
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 structured grids can be performed such that the required time 

is linear in the number of compartments [O(n), as opposed to 

the usual complexity of O(n3)] if they are numbered in a special 

way and the solver algorithm exploits the sparse structure of the 

resulting matrix.

In short, the compartments are numbered increasingly using 

depth-fi rst search, starting with 0 at some arbitrarily chosen root 

compartment. Then, Gaussian elimination requires only O(n) non-

zero elements above the diagonal to be eliminated (fi ll-in does not 

occur) instead of the usual O(n2), and the sparse structure allows 

to reduce the weighted addition of two rows required for elimina-

tion to the weighted addition of only two fl oating point values. 

The complexity of back-substitution, usually O(n2), can also be 

reduced to O(n) because the number of left-diagonal elements in 

every row is limited to one.

A closer look at the data dependencies of Gaussian elimination 

reveals that there are several possibilities in what order the com-

partments may be processed (i.e., in what order above-diagonal 

elements are eliminated). While one might start with compart-

ment 8, proceeding with compartment 7, 6 and so on, another 

possibility is to process compartments 4, 3, 6 and 5, then proceed 

with compartment 2 etc. The governing rule is that a compartment 

may only be processed once all subordinate compartments in leaf 

direction have been processed. The same applies, with inverse data 

dependencies, to back-substitution.

This observation is visualized in Figure 4. Part A shows the 

data dependency graph for Gaussian elimination, while part B 

depicts the data dependency graph for the back-substitution 

algorithm. Although the data-dependencies impose some restric-

tions on the order of how compartments are processed, there is 

nonetheless a certain degree of freedom in choosing a sequence 

of compartments during Gaussian elimination or back-substi-

tution. Again, the choice of the root compartment (and thus 

the exact data dependency graph) is left to the programmer. 

These observations will play an important part in parallelizing 

Gaussian elimination. For a more detailed explanation of these 

fi ndings, see Eichner (2007). Iterative methods for solving the 

LSE such as Gauss-Seidl or conjugate gradients (Hestenes and 

Stiefel, 1952) are not considered because of the superior perform-

ance of Hines method.

DETAILS ABOUT THE SAMPLE IMPLEMENTATION

We implemented our algorithms in a stand-alone application for 

Linux. The source code is based on the numerical core of NEURON 

(Carnevale and Hines, 1997, 2006). Specifi cally, we re-implemented 

the fi xed-step backward Euler scheme and ported a set of mecha-

nisms to our application by modifying the C source code generated 

by NEURON’s nrnivmodl to suit our needs. The program is miss-

ing a user interface; it runs simulations by reading in a confi guration 

fi le that contains the matrix and information about what mecha-

nisms are used on what compartments and mechanism specifi c 

parameters. This confi guration fi le completely describes the model 

and can be generated by an arbitrary frontend. As we wanted to 

simulate existing NEURON models and reproduce the results, we 

patched NEURON 6.0 such that it generates the confi guration fi le 

upon initializing a model; the fi le is then used by our application 

to perform the simulation.

We checked the validity of our results by printing the voltage 

at every time step for every 100th compartment and comparing 

it to the corresponding value NEURON computes. The results 

never deviate more than 1 µV from NEURON’s results for the same 

model; in most cases, the deviations are smaller than 0.001 µV4.

The program uses the Native POSIX Thread Library implemen-

tation (Drepper and Molnar, 2005) of the POSIX threads stand-

ard (IEEE Portable Applications Standards Committee, The Open 

Group, ISO/IEC Joint Technical Committee 1 2004) for managing 

threads and synchronizations. Additional threads are created by the 

fi rst thread in an initialization function and invoked when parallel 

regions are encountered. Then, the threads are notifi ed of the code 

and the data they must process.

One important technical aspect is how inter-core communica-

tion for notifying or waiting for other threads is implemented. 

Threads can wait passively by relinquishing their processor to 

the operating system, waiting to be invoked again at some later 

A B

FIGURE 3 | (A) Numbered graph representing a set of connected 

compartments. (B) Layout of the corresponding matrix G.

A B

FIGURE 4 | Data dependency graphs for (A) Gaussian elimination and (B) 

back-substitution of an LSE with a matrix as depicted in Figure 3.

4Examining our and NEURON’s assembler code produced by the compiler for the 

passive mechanism leads us to the hypothesis that a different order of fl oating point 

operations generated for effectively the same computations is responsible for these 

deviations.
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point in time when a signal from another thread arrives. The other 

 alternative is to wait actively by spin-waiting on some shared vari-

able to be changed by another thread. While the passive waiting 

method is fairer because the processor is only utilized when any-

thing useful is computed, it bears a certain overhead due to the 

invocation of the operating system. In contrast, the active waiting 

method is much faster but fully occupies the processor even when 

no actual computation is performed. When the relative importance 

of the notifi cation method is high, i.e. for small models, the operat-

ing system visible method becomes ineffective. We implemented 

and benchmarked both methods but decided to only show results 

obtained with the spin-waiting method. In summary, both meth-

ods give identical performance for larger models but spin-waiting 

is much more effective for smaller models. The implementation’s 

source code, the confi guration fi les used in this paper, the result fi les 

and corresponding documentation for building and running the 

program are freely available from http://fneuron-mc.myselph.de.

PARALLELIZED SIMULATIONS

In most neural simulations, setting up the equations and computing 

the actual conductances as a result of the previous voltage distribution 

takes up the majority of the time. Our experience is that about 40% of 

the time is spent on equation setup when only a passive mechanism 

is used, while additional active membrane mechanisms increase this 

value to between 80–95% or even more. Fortunately, it is rather simple 

to gain proper parallel performance for mechanism setup. At the same 

time, parallelizing the equation solver is diffi cult from both an algo-

rithmic and from a programmer’s point of view, while the infl uence 

on the performance of the program is usually rather small.

Therefore, this work will focus on parallel equation setup fi rst 

without considering solving the equations. Then, a simple but effec-

tive algorithm for parallel solving of single cells and networks of 

cells is presented.

Although handling equation setup and solving as independent 

tasks seems like an obvious choice, this is nonetheless one of the 

main novelties presented in this paper which was not employed 

by previous approaches to parallel neural simulations; it will be 

compared to existing techniques in the section “Comparison to 

Existing Approaches”.

PARALLEL EQUATION SETUP

While the setup of an equation consists of computing capacitive and 

axial terms as well, it is the calculation of transmembrane currents of 

all kinds modeled by mechanisms that is responsible for the majority 

of the runtime spent on this compartment. To simplify the follow-

ing considerations, two terms must be introduced. A mechanism 

or mechanism type comprises the code used for computation of the 

transmembrane current contributions of this mechanism. A mecha-

nism instance is the result of an instantiation of a mechanism type 

for a specifi c compartment, encapsulating the data this mechanism 

needs to compute its current contribution to this compartment.

The transmembrane current for compartment i is a combination 

of the capacitive current C
m
V

i
 and the contribution of all mecha-

nism instances mechs
i
 on this compartment:

I I Vi m i

m i

mech

mechs

,
∈

= ,...∑ ( )

Mechanism types range from fairly simple mechanisms like the 

linear model for passive ion channels to complex and therefore 

computationally intensive mechanism types for ionic currents 

with the conductance governed by voltage- or ion-concentration 

dependent fi rst-order kinetics, or models for synaptic mechanisms 

with highly detailed models of both transmitter release and postsy-

naptic ion channel kinetics. In particular, the kind and the location 

of mechanisms used in a model depend on the user’s requirements 

of accuracy as well as the knowledge about the modeled cell’s elec-

trophysiological properties.

The number and the complexity of mechanisms used on a specifi c 

compartment are model-specifi c; while the blowfl y’s HS network 

simulated in the section “Automatic Cell Splitting and Distribution” 

uses passive ion channels only, the more elaborate CA1 pyrami-

dal cell model in the section “Mechanism Computation” uses up 

to six mechanism types per compartment for different kinds of 

ion channels. Whether parallel execution is worthwhile depends 

on several parameters such as the number of compartments, the 

number and the complexity of the involved mechanisms, and the 

number of threads and cache architecture used. We will approach 

this question in the “Results” section.

This work is based on the assumption that there are neither 

inter-compartmental nor intra-compartmental dependencies 

imposed upon mechanism computation, i.e. the order in which 

different mechanism instances on the same compartment or on 

different compartments are computed does not affect the result5. In 

other words, the contribution of a mechanism to a compartment’s 

transmembrane current may be computed in parallel to other 

mechanism currents on this or other compartments. Care must 

be taken when two mechanism instances on the same compartment 

are computed by different cores, however. While the computation 

itself can be performed in parallel, synchronizations must be used 

at some point to prevent the concurrent modifi cation of the equa-

tion by these cores.

This leaves many possibilities for distributing mechanism 

instance computation onto the available cores; however, several 

constraints must be taken into account:

(1) Different mechanisms are often used on different sets of 

compartments, e.g. passive ion channels and synaptic mecha-

nisms on dendritic compartments, active ion channels on 

somatic and axonal compartments.

(2) Different mechanism types have different computational 

requirements. Taking into account the fi rst point as well, 

this means simply splitting up the set of compartments into 

equally large subsets for every core does not necessarily give 

a proper load balance.

(3) The overhead spent on synchronizations between cores for 

ensuring no equation is accessed concurrently by different 

cores must be minimized. Although inter-core commu-

nication as required for synchronizations is very fast on 

multi-cores, it can still lead to problems if used extensi-

vely. For instance, it is not feasible to use lock and unlock 

5Mechanism currents at the next time step are estimated based on known values 

from the current time step. This approximation, which is specifi c to implicit metho-

ds, is explained in Sections 4.3 and Appendix A in Eichner (2007) and pp. 168–169 

in Carnevale and Hines (2006).

http://fneuron-mc.myselph.de
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 operations around every single write access of a mechanism 

to an equation.

(4) To avoid equation variables being transferred between diffe-

rent core’s caches, a compartment should be processed (i.e. 

computing its mechanism instances and solving its equation) 

by as few cores as possible (also, this reduces the amount of 

synchronizations).

Several techniques were evaluated and compared; the follow-

ing two methods were found to account best for the mentioned 

restrictions.

Splitting up Mechanism Types

A very simple method that guarantees load balance is to split up the 

set of mechanism instances of every mechanism into ncores subsets 

that contain the same amount of compartments. Every core then 

computes its part of every mechanism instance set.

Two mechanism instance sets assigned to different cores may 

affect in part the same compartments; in particular, this results 

in the equations of some compartments being modifi ed by two 

different cores, a possible source of concurrent write accesses. 

This problem is illustrated in Figure 5. Here, some distribution 

of mechanism instances for different mechanism types across a 

compartmental model is shown. The hatching indicates to which 

of two cores the subset is assigned. For some compartments, the 

mechanism instances are computed by more than one core, e.g. 

some of the axonal compartments are processed by both the second 

and the fi rst core. If the fi rst core is ahead of the second core (e.g. 

because other running programs or hardware events interrupted 

the second core for some time), a situation may occur where the 

fi rst core accesses an axonal compartment during the passive 

mechanism computation which is at the same time accessed by the 

second core computing this compartment’s Active K instance. 

Similar confl icts could occur for the synaptic current computation 

in dendritic compartments.

The simplest way to prevent such accesses is to perform a barrier 

operation after every mechanism type computation, illustrated in 

the pseudo code listing in Figure 6. As the instances of a specifi c 

mechanism are distributed across the cores in a balanced manner, 

the time spent on waiting in the barrier function for other cores is 

usually very low. However, this overhead may still pose a problem 

when the model complexity per time step is rather low relative to 

the time spent on inter-core communication. This is the case for 

rather small models or models with a high amount of different 

mechanisms with only few instances each. The synchronization 

overhead could be mitigated by determining where confl icts can 

actually occur and only use barrier functions there (in Figure 5: 

only after Active K and Passive), but many models still require 

a high amount of synchronizations.

A second possibility is to let the mechanisms store their com-

puted values in extra arrays instead of adding them to the equa-

tions. Then, no synchronizations are needed between mechanism 

types, and the values are collected and added to the equations after 

all mechanism types have been computed. We implemented this 

method but found it to be inferior to the default method in the cases 

we tested, possibly due to the increased memory requirements.

Splitting up the Set of Compartments with Dynamic Load Balancing

Using synchronizations can be avoided in the fi rst place if a com-

partment’s mechanism instances are all computed by one core 

only, i.e. the set of compartments is split up into ncores sets, and 

every core processes all mechanism instances on compartments in 

its set. The heterogeneity of mechanism complexity and mecha-

nism distribution does not allow for simply splitting up the set of 

compartments into equally large consecutive subsets for each core, 

as one core might be assigned a computationally more demanding 

part of the cell than another core. Using non-consecutive subsets, 

e.g. distributing small subsets in a striped manner, would lead to 

cache-effi ciency problems. The set of equations a core accesses 

during solving would be largely different from the set it accesses 

FIGURE 5 | Mechanism type level parallelization. Height of mechanism 

type bars indicates per-compartment complexity. Distribution of different 

mechanisms (height indicates complexity) across the cell is often spatially 

inhomogeneous. Here, computation of the mechanism instances on one 

specifi c compartment is often performed by different cores and requires 

synchronizations after each mechanism type.

for (i=0; i<number_mechs; i++) {

    barrier();

    for (t=1; t<number_threads; t++) {

        send_job_to_thread(t, mech[i].function,

                           mech[i].start[t], mech[i].end[t]);

        mech[i].function(mech[i].start[0], mech[i].end[0]);

  }

}

FIGURE 6 | Pseudo-code listing for mechanism type level parallelization. The fi rst thread waits for the other threads to be ready, then assigns them jobs in the 

form of a mechanism function and parameters that defi ne the fi rst and the last mechanism instance this thread must compute. Finally, the fi rst thread calls the 

mechanism function itself.
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during equation setup, leading to a high amount of inter-core 

communication between the stages of setting up an equation and 

solving it, and vice-versa. What is needed is some estimate of the 

complexity of a compartment, so a distribution algorithm can 

calculate the size of consecutive compartment subsets assigned 

to a core.

Figure 7 shows how a balanced assignment of compartments to 

cores might look like. Although the set of compartments assigned to 

the fi rst core is much smaller, the distribution of mechanisms across 

the cell makes this assignment the fairest in terms of mechanism 

complexity balance. No synchronizations are required because an 

equation is accessed by one core, only. The main question is how 

to identify these sets because the complexity of a mechanism is 

not known in advance.

Hines et al. (2008a) estimated a per-mechanism-type  complexity 

before the actual simulation by performing a dummy simulation 

with 100 compartments for every mechanism type; mechanism 

complexity and mechanism distribution were then taken into 

account when distributing parts of cells onto nodes in a computer 

cluster. This requires additional simulations before the actual simu-

lation and is only worth the overhead for longer simulations.

This work proposes a dynamic load balancing technique where 

the sets of compartments assigned to cores are resized during 

runtime to gain the best possible workload balance. After a fi xed 

number of time steps, e.g. nsteps = 20, a per-mechanism-instance 

complexity mc
m
 is estimated for every mechanism type m based on 

the accumulated time spent on this mechanism type on every core 

c, t
m,c

 in the last nsteps timesteps and the number of mechanism 

instances of mechanism type m, | |Mm :

mc

t

nsteps M
m

m c

c

ncores

m

=
× | |

,
=

∑
1

Following this, a per-compartment complexity co
i
 is calculated 

for every compartment i based on the mechanism types mechs
i
 

used on this compartment:

co mci m

m i

=
∈
∑
mechs

When assigning only consecutively numbered compartments 

to a core, the fi rst set of a out of ncomp compartments may then 

be determined by the following formula:
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ncores
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i
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= =
∑ ∑≈
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This technique has proven slightly superior to splitting up mech-

anism types (because of the missing synchronization operations) 

and signifi cantly superior to simply splitting up the set of com-

partments without subsequent load-balancing (see Results). The 

technique is multithreading specifi c, i.e. it is not easily applicable to 

message-passing architectures such as computer clusters. Resizing 

sets during runtime is simple when the PUs share main memory 

because only loop indices must be changed; in message-passing 

environments, each PU has its own main memory, and resizing 

working sets requires parts of cells being loaded/unloaded during 

simulation and data such as voltages or rate variables must be sent 

to other PUs. This is possible in principle but diffi cult to implement, 

even more on top of an existing simulation program.

PARALLEL EQUATION SOLVING

Although equation solving usually represents only a small part 

of the overall runtime, it is nonetheless necessary to evaluate and 

exploit its parallel potential. First, there exist a signifi cant number 

of models where compartments only with (computationally cheap) 

passive ion channels comprise the majority of the cell or even the 

whole model. Then, solving becomes a signifi cant portion of the 

execution time. Second and more importantly, with the very good 

parallel performance of mechanism computation, equation solv-

ing would quickly become the time-limiting factor, especially for 

higher numbers of cores.

The following two sections will treat two ways of parallel solv-

ing, fi rst how whole cells in a network of neurons, then how single 

cells may be solved in parallel. Finally, these two approaches will be 

combined in a simple algorithm which was found to deliver proper 

results in all models tested for this paper.

Whole Cell Balancing

In the section “Compartmental Modeling”, it was shown how the 

combination of equations for all compartments in a cell results in 

a system of coupled equations for every time step. Different cells 

may be seen as independent, i.e. not coupled, systems of equations. 

Although cells may be semantically connected by chemical synapses 

or gap junctions, these connections are modeled using mechanisms 

instead of off-diagonal elements in the connectivity matrix6. Thus, 

current fl owing between two cells is accounted for during equation 

setup; solving the system of equations for different cells may be 

performed independently.

The complexity of solving the system of equations for a cell is 

linear in its number of compartments. Therefore, the resulting 

FIGURE 7 | Compartment level parallelization. Solid line separates the two 

sets of compartments assigned to different cores. This boundary is chosen 

such that the overall complexity per core is very close to the average.

6Representing connections between cells with off-diagonal elements works only 

for currents linear in the voltage difference, i.e. I g V Vij j i= −( ) . This holds true for 

axial resistances and could be used for gap junctions as well but does not work for 

chemical synapses. Modeling gap junctions with off-diagonal entries prohibits the 

usage of the effi cient solver algorithm presented in the section “Compartmental 

Modeling”, however, while not increasing accuracy signifi cantly.



Frontiers in Neuroinformatics www.frontiersin.org July 2009 | Volume 3 | Article 21 | 9

Eichner et al. Neural simulations on multi-core architectures

problem is to distribute the computation of solutions for n cells 

with different numbers of compartments onto ncores processing 

units such that the imbalance between cores is minimized; here, 

imbalance is defi ned as the difference between the two process-

ing units with the highest and the lowest load. Although this 

appears to be a rather simple task at fi rst glance, it is an NP-com-

plete problem known as Number Partitioning Problem (Hayes, 

2002). This means that fi nding the solution requires checking an 

amount of cells-to-cores assignments increasing exponentially 

with the number of cells [O(ncoresn)]. Fortunately, heuristic algo-

rithms with a much lower complexity exist that give reasonably 

good solutions.

The distribution algorithm used in this paper is very simple – the 

cells are fi rst sorted in decreasing order according to their size (in 

compartments), then they are subsequently assigned to the core 

with the so far lowest number of compartments. Sophisticated algo-

rithms like Karmarkar–Karp (Karmarkar and Karp, 1982; Korf, 

1997) exist as well but were not tried because the performance 

reached by the above mentioned algorithm was found to deliver 

satisfactory load balance.

Whole-cell balancing has been employed frequently in paral-

lel neural simulations, although not independently from equa-

tion setup (see “Comparison to Existing Approaches” for details). 

A much more interesting and challenging problem is to solve a 

single cell in parallel which is the focus of the next section.

Cell Splitting

It is important to once again emphasize that this work concentrates 

on the rather complex problem of parallelizing the process of solv-

ing LSEs. When explicit integration methods are used (which is the 

case for many simulators, e.g. the default in GENESIS), the system 

of equations may be solved by simply performing a matrix-vector 

multiplication, followed by a vector-vector addition, both tasks 

that are very effi cient in parallel.

Implicit methods result in an LSE; solving LSEs in parallel has 

been a hot topic in research for a long time. In the special case of 

sparse matrices representing a tree-shaped connectivity structure, a 

method developed by Hines et al. (2008a) allows for parallel solving 

of a cell by two PUs. This paper uses a similar, slightly enhanced 

version of this algorithm which is based on the following two facts. 

First, an arbitrary compartment may be chosen as the root compart-

ment (see Compartmental Modeling). Second, subtrees of the root 

compartment may be solved in parallel, besides a synchronization 

operation between Gaussian elimination and back-substitution 

(see Figure 4).

The main question is how to choose a root compartment given 

a specifi c neuron because this choice governs the number and size 

of the subtrees and thus the load balance achieved by splitting 

a cell. Most importantly, load balancing, including cell splitting, 

should be automated, i.e. require no user-interaction. The  following 

algorithm is designed for the special case when only one cell is 

simulated; the case of parallel solving in networks of neurons is 

dealt with in the next section.

For single-cell simulations, the size of the largest subtree of the 

root compartment usually governs the load balance after distrib-

uting the single subtrees onto cores. Therefore, an algorithm that 

identifi es the root compartment whose largest subtree is minimal 

among all possible root compartments seems to be a good solution. 

The algorithm presented here starts at an arbitrary compartment 

and traverses the tree by descending into the largest subtree of each 

visited compartment. It stops when the size of the largest subtree 

of the current compartment is lower than or equal to half of the 

overall number of compartments. This is the compartment whose 

largest subtree is smaller than or equal to all other compartments’ 

largest subtrees (a proof is given in Eichner, 2007).

Figure 8 illustrates how an unnumbered graph (A) represent-

ing a neuron may be numbered such that the size of the largest 

subtree is minimal (B). The resulting subtrees (colored, part 

C) are then distributed onto the available cores with the same 

heuristic method that was introduced in the previous section 

for whole cell balancing. While Gaussian elimination may pro-

ceed simultaneously in the subtrees, all threads (at most three) 

must access the variables representing the root compartment’s 

equation, which is therefore not assigned to any core and not 

colored. This requires using mutexes for preventing concurrent 

write accesses to the root compartment’s equation and a barrier 

function to ensure every core has seen the changes of all other 

cores to that equation before using its values to continue with 

back-substitution.

Combining Cell Splitting and Whole Cell Balancing

A more common scenario is simulating more than just one cell. 

Trying to decide what cells to split and with what root compart-

ment, i.e. sizes of subtrees, reveals several obstacles.

First, choosing a root compartment such that single cell 

Gaussian elimination is as effi cient as possible may not be the best 

global choice, i.e. when taking all other cells and subsequent load 

balancing of whole cells and subtrees into account. Second, trees 

cannot simply be split such that the number of subtrees and the 

subtree sizes connected to the root compartment fulfi ll a certain 

requirement – even the rather simple constraint of choosing a root 

compartment such that its subtrees may be partitioned into two 

equally large sets often cannot be met as Figure 9 shows. Third, 

whole-cell balancing alone is NP-complete, so balancing subtrees 

and non-split whole cells is NP-complete as well.

A B C

FIGURE 8 | (A) Yet unnumbered tree-shaped graph representing the 

connectivity of some neuron. (B) Same graph, numbered such that the largest 

subtree connected to the root compartment (compartment 0) is as small as 

possible. (C) Same graph and numbering as for the middle graph, but 

restructured and colored to emphasize the distinct subtrees that may be 

solved in parallel.
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A heuristic approach seems reasonable that combines cell 

splitting and whole-cell balancing. The technique presented in 

this section is a combination of splitting neurons and distributing 

a number of neurons onto a set of processors. First, all cells are 

ordered according to their sizes. Then, the cells are split one after 

another, largest cell fi rst, until the imbalance resulting from whole 

cell balancing of the subtrees of split cells and whole cells left is 

low enough, i.e. below a certain threshold. In our implementa-

tion, we use a maximal imbalance of 2% of the overall number of 

compartments. This method makes sure that unnecessary split-

ting of cells is avoided because every split cell results in additional 

synchronization overhead.

A more sophisticated method presented in Hines et al. (2008a) 

computed a large set of possible root compartments for every cell 

along with the sizes of the connected subtrees and an estimate 

of their mechanism-dependent complexity in advance and made 

use of this information to split and distribute subtrees to PUs. 

This method requires considerable overhead as well as a mecha-

nism-complexity estimate before the actual simulation is started. 

Most importantly, this method is designed for message-passing 

architectures where both dynamic load balancing is very diffi cult 

and the load balance achieved plays a much more important role 

as the net section will show.

The basic anatomy of a time step using compartment level paral-

lelization and cell splitting is illustrated in Figure 10. When mecha-

nism type level parallelization is used instead, the equation setup 

stage is divided into several parallel regions separated by barriers, 

one for reseting the equation variables, one for every mechanism 

type used. Similarly, the last step, update mechanism variables, where 

voltage dependent variables of mechanisms (e.g. gating variables 

for ion channels) are computed, then requires one barrier for each 

mechanism type.

COMPARISON TO EXISTING APPROACHES

Previous attempts for parallel neural simulations were, to the 

authors’ best knowledge, mostly based on the message-pass-

ing paradigm (Bower and Beeman, 1998; Hines et al., 2008a,b; 

Migliore et al., 2006). A notable exception is NEST (Gewaltig and 

Diesmann, 2007); this neural simulation software supports mul-

tithreading. However, its main application area are large networks 

of simple neurons each modeled with one or few compartments 

of the Integrate&Fire or Hodgkin–Huxley type, only, instead of 

anatomically and electrophysiologically detailed models.

In contrast, this work is based on biophysically detailed simula-

tions with multithreading. The former restriction to message-passing 

environments lead to the far-reaching decision to not treat paral-

lelization of equation setup and solving as independent tasks for 

several reasons:

• The simplest way to enhance an existing non-parallel neural 

simulator for message-passing environments is to support 

inter-cell-communication, i.e. sending and receiving synap-

tic currents, via messages as well. Also, this delivers good load 

balance for larger models and/or smaller clusters.

• For higher numbers of processors and/or lower numbers of 

cells, the most straightforward way to enhance the imple-

mentation is to support some kind of cell splitting and only 

transfer a set of split-compartment specifi c values between 

Gaussian elimination and back-substitution (see Hines et al., 

2008a). Thus, both equation setup and solving for a specifi c 

compartment are performed on the same PU.

• One of the main limiting factors in message-passing environ-

ments is communication latency; therefore, keeping the num-

ber of messages at a minimal level like the above mentioned 

techniques is crucial.

FIGURE 9 | A VS2 cell’s compartmental model from the blowfl y’s visual 

system (Borst and Haag, 1996) split such that the largest subtree is 

minimized. Red indicates location of the root compartment. This cell cannot 

be split in a manner such that its subtrees can be partitioned into two equally 

large sets.

FIGURE 10 | Flowchart illustrating how a time step is performed with multiple threads. While several barriers must be used to separate confl icting parts of the 

program, mutexes are used during triangularization when two threads access the same root compartment of a split cell.
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large models with thousands or tens of thousands of compart-

ments, not a very common case in every-day neural modeling. 

The main reason is that communication overhead for synchroniza-

tion and data exchange quickly becomes the limiting factor when 

model size decreases. Multi-cores are fundamentally different in 

that inter-core communication only becomes a limiting factor 

once the model is so small that parallel simulation is not going 

to be of much use, anyway, because simulation times are short 

enough in the fi rst place.

RESULTS

All measurements were performed on two systems running Ubuntu 

Linux 7.04, one equipped with two Xeon X5355 quad-cores, the 

other one with two Opteron K10 2347 quad-cores. They are 

 illustrated in Figure 11 along with some benchmark results that 

are the topic of the next section.

INFLUENCE OF CACHE ARCHITECTURE AND MODEL COMPLEXITY

The performance of algorithms and their implementations 

depends on many variables of both the input problem (the 

model) and the underlying architecture. To evaluate the infl u-

ence of these parameters, we generated artifi cial models, each 

consisting of eight equally large neurons, each in turn modeled 

as eight connected cables, with a Hodgkin–Huxley mechanism 

on every compartment and one current injection mechanism 

per cell. This prevents cell splitting to infl uence the runtime. 

Between models, we varied the number of compartments and 

the number of simulated time steps while keeping the product 

of these two terms (and, thus, the computational work) at a 

constant value of 5 × 223. This allows us to emphasize the relative 

infl uence of architectural characteristics such as cache size and 

interconnection latency.

Panels A and C in Figure 11 depict the results obtained on our 

two test architectures; their structure, i.e. cores, caches and memory 

connection, are shown right to the results in Panels B and D. The 

model size, and thus the memory requirements, increase from left 

to right; the specifi c values for the number of compartments and 

the number of time steps are shown on the abscissa. For every 

model size, a number of bars are illustrated, each indicating the 

simulation runtime for a specifi c number of threads and what cores 

these threads were assigned to (i.e. cores with shared or separate 

caches, cores on the same or different chips etc.). Our aim is to 

show how runtime decreases with the number of threads and how 

this decrease depends on model size, cache size, cache architecture 

and memory requirements.

For the small 128-compartment model, the infl uence of 

inter-core communication for synchronizations is rather strong. 

Detailed benchmarks (not shown) indicate that when using two 

cores with separate caches on the Intel system, the two threads 

spend a total of about 20% of the overall runtime on waiting for 

other threads; on the AMD system, the cumulative synchroniza-

tion time for two threads can be up to 40%. The reason for this big 

infl uence of  synchronizations on the runtime is that their amount 

is proportional to the number of time steps and the number of 

cores. Accordingly, the cumulative time spent on synchronizations 

for the model with 512 compartments is approximately halved, 

thus having a much lower infl uence on the runtime. Even for 128 

Message-passing programming can be diffi cult when existing 

programs are enhanced that were not designed with message-

 passing in mind from the beginning on. For instance, allowing 

equation setup and solving for a specifi c compartment to take place 

on different PUs as employed by the techniques introduced in this 

paper is rather diffi cult in message-passing environments. There, 

parts of the equations must be transferred between setup PU and 

solving PU before solving, and parts of the solution vector again 

must be transferred from the solving PU to the PU that sets up the 

equation again for the next time step.

In addition to programming issues, such an approach is not 

guaranteed to deliver proper performance because of both com-

munication latency and bandwidth; overhead for message- passing 

might very well ruin what is gained by a better load balance dur-

ing the equation setup stage. However, this depends on various 

parameters such as the model size, the number of PUs, the per-

formance of cell splitting and the interconnection technology. Such 

an approach has not been implemented or tested and is a topic of 

further research.

The choice made thus far to bind equation setup and solving 

for a compartment to a specifi c PU results in a major limitation. 

Because the distribution of compartments onto PUs is governed 

by the dependencies of Gaussian elimination and back-substitu-

tion, load balancing problems in the solver stage are very severe 

because they apply to the much more time intensive mechanism 

computation stage as well. Proper balance in the solver stage is 

therefore of much more interest in message-passing based imple-

mentations and lead to techniques like splitcell and the sophisticated 

but complex multisplit method (Hines et al., 2008b). This reveals 

why decoupling equation setup and solving is such an important 

concept in this work.

Another advantage of multithreaded programming can be 

observed when recalling the dynamic load balancing technique. 

It would be very hard to implement such a technique in a mes-

sage-passing environment because not only would cells or parts of 

cells have to be loaded/unloaded during the simulation, but also 

would it be necessary to transmit data such as ion channel states 

or ion concentrations from the originally responsible process to 

the one taking over computation of these mechanism instances. In 

a multithreaded environment, however, dynamic load balancing 

reduces to simply changing thread specifi c start and stop indices 

of a loop over compartments.

There are more advantages to using a shared memory sys-

tem. The simplicity of programming these systems, e.g. by using 

OpenMP to enhance existing C/C++/Fortran source code, com-

bined with the intentional simplicity of the algorithms presented 

in here, makes these concepts applicable to custom simulation 

software. This is supported by the fact that virtually every mod-

ern operating system supports multithreading, while message-

passing requires the installation of additional libraries and a 

comparatively complex run-time environment (regardless of 

the necessity to accommodate and administrate a computer 

cluster).

The most important novelty is the support for small models, 

however. The effi ciency of simulating models in a parallel way 

directly depends on model size and inter-process communication 

latency. In general, computer clusters can only be used for rather 
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 compartments, however, using two cores that share a cache on the 

Intel system gives a nearly linear speedup because of the low inter-

core latency (the cumulative synchronization time is only 10% of 

the overall runtime).

We did not observe a similar effect on the AMD system; instead, 

we were surprised to see that using two cores with a shared L3 cache 

even leads to a lower runtime than using two cores with separate 

L3 caches on different chips, although in theory, communication 

should be slightly slower in the latter case. On the other hand, the 

AMD system exhibits better scaling for higher numbers of cores, 

even allowing for a speedup of 3.2; this means simulating 1 s of 

the 128 Hodgkin–Huxley compartments at a reasonable time step 

of 0.025 ms takes only about half a second.

For a wide range of model sizes, that is, from above 512 up to 

about 65.536 compartments (data for the latter not shown), we 

observe nearly linear and sometimes even superlinear speedups 

for two, four and eight threads. For this region of model sizes, the 

data fi ts largely into the cache(s) of the processor(s). The effect of 

the limited cache capacity can be seen clearly in the single-threaded 

case, where performance results are nearly constant up to a specifi c 

model size [16.384 (not shown) for the AMD, 32.768 for the Intel 

processor], refl ecting the constant overall complexity. However, 

for larger models, the memory requirements signifi cantly exceed 

the capacity of the core’s cache as estimated from the memory 

requirements per compartment (below 100 bytes). Thus, more data 

must be fetched from main memory, leading to a lower perform-

ance of the program. The same effect can be observed for two or 

more cores on the Intel system, depending on the cumulative cache 

size available to these cores – if two cores with their own caches are 

used, the cache size is effectively doubled, leading to a slightly better 

performance for these core combinations. This can be observed in 

Figure 11 for 131.072 compartments simulated on the Intel system; 

the effect is much less visible on the AMD system.

Another interesting observation is that on the Intel system, the 

bandwidth of the internal on-chip bus may be a limiting factor 

for large models. For the two largest models shown with 131.072 

and 524.288 compartments, using combinations of two or four 

cores that lie on two chips gives better results than using the same 

A B

C D

FIGURE 11 | Results for simulations (A,C) on two test systems (B,D) of 

artifi cially generated models where computational complexity is held 

constant by varying both model size and number of time steps 

simultaneously, thus emphasizing the infl uence of inter-core 

communication and memory bandwidth. Legend right to the diagrams 

indicates number of threads, cache organization (number of L2 caches for Intel 

processor/number of L3 caches for the AMD processor) and whether the cores 

used are located on one or two chips. The connection between two chips on the 

AMD system (D) is illustrated by a thick line modeling the HyperTransport 

interconnect (HyperTransport Consortium, 2007).
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number of cores located on one chip only, even if the cache size 

is the same.

The above results must be interpreted with the fact in mind 

that to rule out the effect of cell splitting, we used eight cells, thus 

avoiding the otherwise involved synchronization overhead. Also, 

the Hodgkin–Huxley mechanism was distributed homogeneously 

across the cell. In the next two sections, we will look at the infl uence 

of more heterogeneous mechanism placement and how iterative 

cell splitting helps for models with fewer cells.

MECHANISM COMPUTATION

The measurements in Figure 11 did not take into account cell split-

ting nor multiple mechanisms and their heterogeneous distribu-

tion across a cell. Using artifi cial models again to test how well 

our sample implementation handles these challenges was not an 

option because the distribution of mechanism type complexities 

and mechanism instances is highly model specifi c.

Instead, we use a previously published hippocampal CA1 pyram-

idal cell model consisting of 600 compartments that was used in 

Migliore et al. (1999). In this work, distal dendritic compartments 

with a diameter lower than 0.5 µm or a distance larger than 500 µm 

from the soma were modeled with passive ion channels (and one 

with synapses), only. Other compartments, in contrast, are modeled 

using up to four different voltage-dependent ion channels, passive 

channels and current injections. Thereby, the overall mechanism 

complexity is distributed across the cell in a non-uniform man-

ner, allowing to evaluate the performance of the dynamic load 

balancing technique introduced before. The automatic cell splitting 

algorithm split the CA1 model into two equally large pieces. In the 

single-threaded experiments, about 95% of the runtime were spent 

on mechanism setup.

Figure 12 shows the results for the two test systems and different 

numbers of threads. In the case of the rather small CA1 model, combi-

nations of cores with rather low inter-core latency either yield slightly 

better (Intel X5355) or similar (AMD K10 2347) results; to keep 

Figure 12 simple, we only show the results obtained on the apparently 

best combination of cores for a fi xed number of threads.

The fi gure shows a red line for the linear speedup along with 

speedups obtained with two, four and eight cores. Three kinds 

of mechanism computation strategies are illustrated; splitting up 

the list of instances for each mechanism type (green) and splitting 

up the number of compartments into equally large sets without 

(blue) and with subsequent load balancing (magenta). Due to the 

increase in synchronization overhead, splitting up mechanism types 

is either as good as or worse than splitting up compartments with 

load balancing. Another advantage of the compartment level paral-

lelization method is less transmission of equations between cores 

as an equation is set up by one core, only. In contrast, for mecha-

nism type level parallelization, different cores may actually compute 

mechanisms for the same compartment if mechanism placement 

is heterogeneous, leading to additional inter-core communication. 

The third method, splitting up compartments into equally large 

sets without load balancing, is depicted to illustrate the need for 

dynamically resizing the sets of compartments due to the hetero-

geneity in mechanism placement.

The general observation regarding dynamic load balancing is 

that virtually no overhead is induced by both measuring mecha-

nism type complexities and resizing the sets of compartments. It 

is remarkable that the implementation gives proper speedups even 

for such small models when using the original model’s simulation 

time length of 90 ms – a runtime reduction from 1.55 s (1.81 s) to 

about 0.31 s (0.33 s) for eight cores is not only suffi cient for most 

users that perform simulations in an interactive manner but also 

facilitates automatic optimizations that require several subsequent 

single simulation runs with adapted parameters.

AUTOMATIC CELL SPLITTING AND DISTRIBUTION

The remaining question is how well the cell splitting algorithm 

works. Again, it was not possible to use artifi cially generated mod-

els; the distribution of cell sizes and cell geometry is highly vari-

able, and the number of compartments used for modeling a cell is 

A

B

FIGURE 12 | Simulation of a CA1 pyramidal cell with 600 compartments 

for 900 ms with a time step length of Δt = 0.025 ms (see Migliore et al., 

1999). The cell is split into two equally large pieces; distal dendritic 

compartments do not use active channels, thus giving a heterogeneous 

mechanism distribution across the cell. (A) Speedup results on the Intel test 

system (see Figure 11A). Red line: linear speedup; green: measured 

speedups of mechanism type level parallelization (Figure 5); blue: 

compartment level parallelization (Figure 7) without load-balancing for taking 

into account heterogeneous mechanism distribution across cell; magenta: 

compartment level parallelization with load-balancing. (B) Same as (A) on the 

AMD test system (Figure 11C).
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user-defi ned. For instance, the above mentioned CA1 cell could be 

split into two equally large pieces, while other cells result in three 

or more subtrees of different sizes.

To give an intuition of how the algorithm works, we will use 

a sample model of the blowfl y’s HS network, published in Borst 

and Haag (1996). The three cells (HSE, HSS and HSN) were recon-

structed from cobalt-fi lled cells; they are comprised of 11497, 10824 

and 9004 compartments, respectively. Every compartment was 

modeled with a mechanism for passive ion channels, only, and 

one current injection per cell; in the single-threaded experiments, 

about 43% of the runtime were spent on mechanism setup. Again, 

only the results for combinations of cores that gave the best results 

are shown.

Figure 13 shows performance results for the HS network and 

different numbers of cores for the cases when either (automatic) 

cell splitting is disabled (green line) or enabled (red line). In the 

case of two cells, the splitting algorithm stops after splitting only the 

largest of the three cells because a distribution of 15628 vs. 15696 

 compartments per core is achieved; in contrast, not using cell 

splitting gives a rather poor balance of 19828 vs. 11497 com-

partments, i.e. an imbalance of 29.8% of the overall number of 

compartments.

The relative effect on runtime is even more signifi cant for four 

cores when automatic cell splitting reduces imbalance from now 

36.7% to 4.4%; on eight cores, the imbalance is reduced from 36.7% 

to 9.9%.

Figure 13 refl ects the importance of cell splitting, especially for 

higher numbers of cores. The reason why the effect of cell splitting 

plays such a big role for the HS model is that it uses the computa-

tionally cheap mechanism for passive ion channels, only. Thus, the 

effect of the solver stage is much bigger than for models with more 

complex ion channel mechanisms. An additional effect of either 

not splitting cells at all, or having to few subtrees to assign to cores, 

is that an equation must be transferred from the core that sets it up 

and the core that solves it, and vice-versa once the resulting voltage 

has been computed. If these cores share a cache, or if the time spent 

on equation setup is large enough, this effect is very small, but it can 

play a role for computationally simple models or in cases where there 

are many more cores than cells/subtrees. Thus, the infl uence of cell 

splitting strongly depends on the number of cores. In general, when 

the number of cells is higher than the number of cores, whole-cell 

balancing is often suffi cient. Also, a high mechanism complexity may 

strongly reduce the portion of time spent in solving the equations 

and therefore the infl uence of cell splitting.

DISCUSSION

In this paper, we presented algorithms and an implementation 

thereof for the parallel execution of biophysically realistic neural 

simulations using multithreading. To our knowledge, this is the fi rst 

manuscript solely based on multithreading; our focus lies on both 

advantages and caveats of multi-core architectures. Our sample 

implementation is a lightweight simulator based on the numeri-

cal core of NEURON; it is freely available for studying, testing and 

extending the code. Our algorithms often scale linearly and some-

times superlinearly with the number of cores over a wide range of 

the common complexities of neuronal models.

Scalability is limited mainly in three cases. First, for smaller 

models (up to approximately 256 compartments), synchroniza-

tions between cores comprise a relatively large portion of a time 

step. The strength of this effect depends on the cache-architecture 

and the number of cores used. This observation is not specifi c to 

our algorithms or neural simulations but a general problem in 

parallel programming; rather, we would like to point out that even 

for such small models, multi-cores are able to decrease execution 

times signifi cantly.

Second, once models do not fi t into the cache any more, decreases 

in performance can be observed for both the single-threaded and 

the multi-threaded code, and speedups become sublinear to an 

extent depending on the number of threads and the architecture. 

In our measurements, this effect sets in at about 33.000/66.000 

(AMD/Intel) Hodgkin–Huxley compartments for a single thread, 

depending on the cache-size used. For eight threads, this effect 

A

B

FIGURE 13 | Simulation of the blowfl y’s HS network with automatic cell 

splitting disabled and enabled. The model was simulated for 100 ms with a 

time step length of Δt = 0.025 ms. (A) Speedup results on the Intel test 

system (see Figure 11A). Green line shows speedup measurements when 

the three cells were solved without splitting them; blue line shows results 

with cell splitting. The relative infl uence of cell splitting increases with 

increasing numbers of cores. (B) Same as (A) on the AMD test system.
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only sets in at 131.000/262.000 Hodgkin–Huxley compartments, 

an unusually big model size.

Third, our cell splitting and balancing algorithm may lead to 

increased inter-core communication if the number of cores is sig-

nifi cantly higher than the number of cells. The strength of this 

effect depends on the number of cells, the cache-architecture and 

the ratio of time spent on solving.

It is not easy to predict how well the concepts will work on 

future multi-cores comprised of 32 or more chips, because inter-

core latency already is an issue, and memory bandwidth is likely 

to become a limiting factor for bigger models if all cores use a 

common front side bus. One possible development is the shift 

towards NUMA (Non-Uniform Memory Architecture) multicore 

architectures where different memory controllers instead of one 

central memory controller are used. These architectures, already 

employed in multi-core systems with AMD processors, have the 

potential to solve the scalability issue; however, we observed rather 

high inter-core communication latencies on our AMD test system 

even for cores that have a common L3 cache.
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