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Abstract

The superior temporal gyrus (STG) and neighboring brain regions play a key role in human 

language processing. Previous studies have attempted to reconstruct speech information from brain 

activity in the STG, but few of them incorporate the probabilistic framework and engineering 

methodology used in modern speech recognition systems. In this work, we describe the initial 

efforts toward the design of a neural speech recognition (NSR) system that performs continuous 

phoneme recognition on English stimuli with arbitrary vocabulary sizes using the high gamma 

band power of local field potentials in the STG and neighboring cortical areas obtained via 

electrocorticography. The system implements a Viterbi decoder that incorporates phoneme 

likelihood estimates from a linear discriminant analysis model and transition probabilities from an 

n-gram phonemic language model. Grid searches were used in an attempt to determine optimal 

parameterizations of the feature vectors and Viterbi decoder. The performance of the system was 

significantly improved by using spatiotemporal representations of the neural activity (as opposed 

to purely spatial representations) and by including language modeling and Viterbi decoding in the 

NSR system. These results emphasize the importance of modeling the temporal dynamics of 

neural responses when analyzing their variations with respect to varying stimuli and demonstrate 

that speech recognition techniques can be successfully leveraged when decoding speech from 

neural signals. Guided by the results detailed in this work, further development of the NSR system 

could have applications in the fields of automatic speech recognition and neural prosthetics.
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1. Introduction

A region of the human auditory cortex called the superior temporal gyrus (STG) is essential 

for understanding spoken language [1–6]. Previous studies have attempted to reconstruct the 

acoustics of speech using STG activity [5] and to understand how phonetic features, which 

are building blocks of spoken language, are encoded in this high-level region of auditory 

cortex [6].

A major focus in the field of automatic speech recognition (ASR) is to develop systems that 

replicate the human brain’s ability to convert acoustic signals into words and sentences. 

These systems, which have been successfully implemented in multiple industries [7, 8], 

typically involve the use of probabilistic frameworks and language modeling to decode 

speech from acoustic signals. Many of the well-established algorithms commonly used in 

ASR research are reasonably suited for continuous speech decoding tasks using non-acoustic 

speech-related time series data, such as neural response time series.

A few studies have attempted to use these approaches to decode continuous speech from 

cortical activity. One group used neural activity recorded during speech production tasks to 

perform speech decoding with a restricted vocabulary [9]. Another group focused primarily 

on decoding speech in a multi-speaker setting using neural activity during speech perception 

tasks [10]. Both of these works are examples of an emerging field of study we refer to as 

neural speech recognition (NSR). We use the term NSR to denote performing continuous 

speech recognition using neural responses as features. However, to the best of our 

knowledge, no published work has described the potential benefits of using ASR techniques 

to decode perceived continuous speech from neural signals in a single-speaker environment. 

This research direction could add to the field of NSR research by informing the development 

of a speech decoder that uses neural activity in auditory cortical areas (including the STG) 

and providing insight on effective representations of neural activity for the purpose of speech 

decoding.

For these reasons, we developed an initial version of a new NSR system. In its current state, 

our NSR system uses electrocorticography (ECoG) arrays to decode phoneme sequences 

from neural populations that respond to perceived speech. Compared to many state-of-the-

art ASR systems, which typically incorporate neural network modeling techniques [11, 12], 

we designed our NSR system using simple modeling approaches. Relative to the acoustic 

features typically used in ASR, neural signals that encode speech information are poorly 

understood, noisy, and available in limited amounts. These factors influenced our decision to 

use models that are easier to train and interpret and involve fewer tunable parameters. 

Similarly, our decision to use phoneme-level (as opposed to word-level) decoding in this 

study, which is a commonly used approach in ASR research, was made for simplicity and in 

an attempt to gain a better understanding of the limitations of our system. Our primary goal 

Moses et al. Page 2

J Neural Eng. Author manuscript; available in PMC 2017 October 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



is to help establish an informative foundation for future NSR research by contributing to 

existing literature in this field. By using optimization techniques to determine effective 

spatiotemporal feature representations and assessing the impact that individual model 

components have on the overall performance of the system, we provide novel insights to 

guide the development of more sophisticated NSR systems.

Future work involving the decoding of speech from neural activity could lead to the 

development of a speech prosthetic that restores communicative capabilities to impaired 

individuals, such as those with locked-in syndrome. Locked-in patients are awake and aware 

of their surroundings but are unable to communicate verbally due to paralysis [13], and only 

a few methods exist to restore basic communicative functions to locked-in patients [14]. 

These patients could benefit substantially from a device that interprets intended speech 

based on neural activity and, perhaps through a coupled speech synthesis system, allows 

more natural communication with others. Although the ideal control paradigm for a 

successful speech prosthetic is currently unknown, it could rely on covert speech production 

[15,16], covert speech perception [17], or an alternative method that has not been described 

yet. However, because such a device would almost certainly involve processing of neural 

response time series and probabilistic decoding of speech, we are confident that the 

approaches and results described in this work would be relevant to its design.

An overview of the current NSR system is depicted in figure 1. First, cortical local field 

potentials recorded from electrodes over the cortex of multiple subjects (which all include 

STG coverage) are preprocessed and restructured into high gamma window (HGW) feature 

vectors, which are spatiotemporal representations of the cortical responses. A phoneme 

likelihood model, trained using HGWs in conjunction with phonemic class labels, estimates, 

for each phoneme, the probability of observing an HGW given that it represents a neural 

response evoked during perception of that phoneme. A separately trained phonemic 

language model (LM) describes the a priori probabilities of different phoneme sequences. 

Finally, a Viterbi decoder, implementing the well-known hidden Markov model (HMM) 

architecture, incorporates probabilities from both of these models to yield the maximum a 

posteriori (MAP) phoneme sequence estimate given the input features.

2. Materials and methods

2.1. Data collection and manipulation

2.1.1. Subjects—The three volunteer subjects (subjects A–C) who participated in this 

study were human epilepsy patients undergoing treatment at the UCSF Medical Center. 

ECoG arrays (Ad-Tech, Corp.) were surgically implanted on the cortical surface of each 

subject for the clinical purpose of localizing seizure foci. Each subject exhibited left 

hemisphere language dominance, which was determined by clinicians using either the Wada 

test or fMRI analysis. Prior to surgery, each of these patients gave their informed consent to 

be a subject for this research. The research protocol was approved by the UCSF Committee 

on Human Research.

2.1.2. Speech stimuli—For the experimental tasks, each subject listened to multiple 

speech stimuli. All stimuli were sampled at 16 kHz and presented aurally via loudspeakers at 
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the subject’s bedside. Each stimulus contained a speech sample from a single speaker, and 

the stimuli were separated from each other by at least 500 ms of silence during presentation 

to each subject. We computed 39-element mel-frequency cepstral coefficient (MFCC) 

vectors (including energy, velocity, and acceleration features) for each stimulus [19–21]. We 

used two sets of speech stimuli: the TIMIT set and the Gump set. Information about the 

number of stimuli presented to and the amount of neural data collected from each subject is 

given in table 1.

The TIMIT set consisted of phonetically transcribed stimuli from the Texas Instruments / 

Massachusetts Institute of Technology (TIMIT) database [22]. It contained 499 samples 

(1.9–3.6 s duration) that had a combined length of approximately 25 minutes and consisted 

of utterances from 402 different speakers. 354 of the stimuli were each generated by one of 

the 286 male speakers, and the remaining 145 stimuli were each generated by one of the 116 

female speakers. The full stimulus set was not presented to subject C due to external 

constraints associated with experimentation in a clinical setting (such as clinical 

interventions and subject fatigue). Most stimuli were presented to each subject multiple 

times, although the number of presentations of each stimulus varied by subject due to these 

external constraints. As described in later sections, we used this data set to perform 

parameter optimization for various components of the NSR system.

The Gump set consisted of re-enacted natural speech samples from Robert Zemeckis’s 

Forrest Gump by two speakers (one male and one female). It contained 91 single word (0.3–

1 s duration), 175 phrase (0.4–2.4 s duration), and 116 dialog (4.5–19.9 s duration) speech 

samples, with each speaker producing 191 of the samples. The combined length across all 

382 samples was approximately 43 minutes, with a total of only about 24 minutes when 

ignoring silence sample points. Each stimulus was presented at least one time to each 

subject, although the number of presentations of each stimulus varied by subject due to the 

aforementioned external constraints. We obtained a phonetic transcription for each sample 

via forced alignment, which was performed using the Penn Phonetics Lab Forced Aligner 

[23], followed by manual segmentation, which was done in Praat [24]. As explained in 

section 3, we primarily used this data set to evaluate the performance of the system.

We used a set of 39 phonemic labels in both data sets: 38 phonemes from the Arpabet and /

sp/, a silence phoneme used to label non-speech data points [25]. Some phonetic labels from 

the TIMIT transcriptions were converted into one of the 39 phonemic labels used in this 

work. For example, we converted all three of the different silence tokens used in TIMIT 

transcriptions (“pau”, “epi”, and “h#”) to /sp/. We also converted each occurrence of /zh/ in 

the TIMIT set to /sh/ due to its low occurrence rate in the TIMIT set (fewer than 0.15% of 

time points) and its absence from the Gump set. For analytical purposes, we separated these 

phonemes into 8 disjoint phonemic categories using descriptive phonetic features [26]. The 

39 phonemes and their respective categorizations are shown in table 2.

2.1.3. Neural recordings—Each implanted ECoG array contained 256 disc electrodes 

with exposure diameters of 1.17 mm arranged in a square lattice formation with a center-to-

center electrode spacing of 4 mm. We used these arrays to record cortical local field 

potentials at multiple cortical sites from each subject during the speech perception tasks. The 
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analog ECoG signals were amplified and quantized using a pre-amplifier (PZ2, Tucker-

Davis Technologies), preprocessed using a digital signal processor (RZ2, Tucker-Davis 

Technologies), and streamed to a separate computer for storage. We acquired and stored the 

data at a sampling rate of approximately 3052 Hz. Each subject’s 3-D pial reconstruction, 

extracted from T1-weighted MRI data using FreeSurfer [27], was co-registered to his or her 

post-operative computerized tomography scan to determine the ECoG electrode positions on 

the cortical surface [28]. All subjects had unilateral coverage that included the STG; subjects 

A and B had left hemisphere coverage and subject C had right hemisphere coverage. The 

reconstruction and electrode positions for each subject appear in figure 2.

2.1.4. Preprocessing—We used MATLAB for preprocessing [29] and Python for all 

subsequent analyses (unless otherwise specified) [30]. After data collection, we first down-

sampled the raw neural signals to 400 Hz and implemented notch filtering to reduce the 

mains hum noise at 60 Hz and its harmonics. Next, we qualitatively identified (via visual 

inspection) channels with severe artifacts and/or significant noise and rejected them. These 

rejected channels contained time segments that differed greatly in magnitude from the 

channels that were deemed normal, which is often caused by non-physiological factors (poor 

electrode contact with the cortical surface, electromagnetic interference from hospital 

equipment, defective electrodes or wires, etc.). We performed common average referencing 

on the remaining channels in an attempt to obtain a more favorable spatial representation of 

the ECoG data [31, 32].

Previous research has shown that high gamma band activity (70–150 Hz) correlates strongly 

with multi-unit firing processes in the brain [33] and is an effective representation of brain 

activity during speech processing [5,6,16,34]. For these reasons, we applied eight bandpass 

Gaussian filters with logarithmically increasing center frequencies between 70–150 Hz and 

semi-logarithmically increasing bandwidths to the neural responses from each electrode 

channel [34]. These center frequencies, rounded to the nearest decimal place and given in 

Hz, were 73.0, 79.5, 87.8, 96.9, 107.0, 118.1, 130.4, and 144.0. We then used the Hilbert 

transform to extract the time-varying analytic amplitudes from each of these eight filtered 

signals [35, 36]. We down-sampled these eight analytic amplitude signals to 100 Hz and 

individually z-scored each channel across each experimental session. We used a hyperbolic 

tangent function to perform soft de-spiking (similar to the methodology used in AFNI’s 

3dDespike program) on each analytic amplitude signal, which reduced the magnitude of data 

points more than 10 standard deviations from the mean. We performed singular value 

decomposition on all eight analytic amplitude signals simultaneously (treating each signal as 

a single feature) and extracted the first principal component, which we then used to project 

the eight signals into a one-dimensional space. We used the resulting projection as the 

representation of high gamma activity in all subsequent analyses.

Since many electrodes for each subject recorded from areas of the cortex that are not 

associated with speech processing, we decided to only use activity from relevant electrodes 

during development and testing of the NSR system. Guided by a previously used method to 

find speech-responsive electrodes [37], we divided each subject’s high gamma activity 

during perception of the Gump set into speech and silence subsets using the phonemic 

transcriptions of the stimuli. For each channel, we conducted a t-test that compared all of the 

Moses et al. Page 5

J Neural Eng. Author manuscript; available in PMC 2017 October 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



samples from each of these two subsets. We considered a channel relevant if the magnitude 

of the resulting t-value was greater than 2.54, which indicated that the channel was 

significantly modulated by the presence of a speech stimulus. This threshold value was 

qualitatively chosen after visual inspection of the high gamma activities for each channel. 

After these steps, subjects A, B, and C had 95, 89, and 74 relevant channels, respectively. 

The fewer number of relevant channels for subject C could be a result of electrode coverage 

over the language non-dominant hemisphere, although existing literature indicates that 

phonetic processing occurs bilaterally [38]. Over 50% of the relevant channels for each 

subject were located in the STG. In figure 2, the relevant electrode locations for each subject 

are depicted as colored dots and the remaining electrode locations are depicted as circular 

outlines.

2.1.5. Data reorganization—After preprocessing, a phonemic transcription and 

associated time sequences of high gamma activity from the relevant electrodes for each 

subject were available for each acoustic stimulus. An example of one such set of 

experimental task data is given in figure 3. This figure includes a visual representation of the 

phonemic transcription, which is referred to as an “actual posteriogram”.

We created 10-fold cross-validation folds for the Gump and TIMIT sets. Each fold contained 

approximately 90% of the stimuli from the corresponding data set as training data and the 

remainder as test data. Each stimulus appeared in the test data for exactly one of the folds. In 

an attempt to increase homogeneity between folds, we constructed the folds for each of the 

two data sets such that the numbers of each type of stimuli present in the test data of each 

fold were approximately equal across all folds. For the 10 TIMIT folds, the two types of 

stimuli were characterized as being generated by either a male or female speaker. For the 10 

Gump folds, the six types of stimuli were characterized as either a word, phrase, or dialog 

speech sample generated by either the male or female speaker. We performed the majority of 

our analyses using one or more of these folds.

2.1.6. Feature selection—Auditory speech stimuli evoke complex spatiotemporal 

cortical responses that can start tens of milliseconds after the acoustic onset and last 

hundreds of milliseconds after the acoustic offset [3,6,39–41]. In an attempt to more 

accurately model these activation patterns in our NSR system, we used high gamma 

windows (HGWs) as feature vectors. Each HGW contains multiple data points of high 

gamma activity within a pre-specified time window across all of the relevant electrodes. 

Thus, HGWs represent the responses both spatially (by using multiple electrodes) and 

temporally (by including multiple points in time). Using HGWs as features contradicts a key 

conditional independence assumption of the HMM architecture utilized by the Viterbi 

decoder which states that yt ╨ yt−1 | qt, where qt and yt are the phonemic label and feature 

vector, respectively, at time t. Despite this, we hypothesized that our NSR system would 

benefit by using these spatiotemporal feature vectors, similar to how performance gains are 

observed in some ASR systems when velocity and acceleration components are included in 

the feature vectors [21].

The HGWs are parameterized by three values: (1) initial delay, which is the amount of time 

between the phoneme time point and the first HGW data point, (2) duration, which is the 
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time length of the HGW, and (3) size, which is the number of evenly spaced time points 

within the time window specified by the first two parameters to include. For example, an 

HGW parameterized by an initial delay of 50 ms, a duration of 60 ms, and a size of 4 would 

consist of the data points occurring 50, 70, 90, and 110 ms after the corresponding phoneme 

time point. We performed grid searches to choose the optimal values for these parameters for 

each subject. The search included initial delay values between 0–490 ms, durations between 

0–490 ms, and sizes between 1–25 points. Because the sampling rate of the high gamma 

activity was 100 Hz, we evaluated the initial delay and duration parameters in 10 ms 

increments and used rounding when necessary to find indices within the data sequences that 

most closely corresponded to their related time values. We ignored invalid 

parameterizations, such as those that used sizes above 4 when the duration was 30 ms. We 

also ignored parameterizations that included data points occurring 500 ms or more after the 

corresponding phoneme time point. Any parameterization in which the size was 1 point, 

which results in a spatial feature vector using the activity at each electrode for a single time 

point, is referred to as a high gamma slice (HGS). Phoneme likelihood models, which are 

discussed in section 2.2.1, were trained and tested with feature vectors constructed using 

each parameterization. For each subject, we performed a grid search using the neural 

responses recorded from that subject during each stimulus presentation specified by one 

arbitrarily-chosen TIMIT cross-validation fold. The performance metric used in each grid 

search was the average posteriogram accuracy computed from the estimated posteriograms 

generated for the test data, which is a measure of the frame-by-frame prediction accuracy 

(see section 3.1.2 for more details).

The results of these grid searches are given in table 3. The time offsets represent which time 

points are used when constructing each feature vector. For example, the grid search results 

for subject A indicate that the optimal HGW for a phoneme occurring at time t contains the 

high gamma activity values for each relevant electrode at the time points occurring 70, 130, 

190, and 250 milliseconds after t. For later comparison against the system’s performance 

when using the optimal HGW, we also determined the optimal HGS for each subject. For 

subject A, this occurred at a delay of 100 ms, meaning that the optimal HGS for a phoneme 

at time t contains the high gamma values for each relevant electrode at t + 100 ms. Although 

the optimal HGS time offsets were relatively consistent across subjects, the optimal HGW 

parameterizations were more varied. This observation could be explained by differences in 

one or more subject-specific factors, such as electrode coverage, number of relevant 

electrodes, and cortical structure. The optimal parameterizations for subject A are depicted 

in figure 4 along with sample neural response patterns. The results of these grid searches 

resemble findings reported in related literature [42].

2.2. NSR system design

2.2.1. Phoneme likelihood model—The phoneme likelihood model used in this NSR 

system implemented the linear discriminant analysis (LDA) method [43]. Although LDA is 

commonly used as a dimensionality reduction technique, we used it as a classifier trained on 

the continuous-valued feature vectors (y) and the associated phonemic classes (q). The 

model fits multivariate Gaussian densities to each class using labeled training data. It 

assumes that the feature data are normally distributed and that the covariance matrix used to 
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parameterize each class’s Gaussian distribution is equal across all classes. An LDA model 

was chosen due to its simplicity (it has a closed-form solution and no parameters to tune) 

and its performance in early ASR systems [44]. Additionally, previous work has shown that 

the STG linearly encodes some phonetic features in the high gamma band [6], which helps 

to motivate the choice of a linear model such as LDA. We implemented this model using the 

scikit-learn Python package [45].

For an unseen feature vector yt at some time t, the trained LDA model computes likelihood 

estimates p (yt|qt = k) using the fitted Gaussian density associated with each class (phoneme) 

k. From this, we can use Bayes’ rule to compute the phoneme posteriors p (qt = k|yt):

where p (qt = k) is the prior probability distribution over the phonemic classes. We computed 

these priors from the relative frequency of each phonemic class in the training data. Note 

that these priors do not change over time within a single task, but they can change between 

cross-validation folds. To obtain phoneme posterior probability distributions that sum to one 

at each time point, we used the following formula:

where Q is the set of all possible phonemic classes.

We also used the LDA model to estimate the discriminative power provided by each 

electrode channel. For each subject, we trained an LDA model using HGWs and all of the 

data in the Gump set. Then, for each feature in the LDA model, we computed the variance of 

the class means, representing a measure of between-class variance for that feature. The 

values along the diagonal of the shared covariance matrix represented a measure of the 

within-class variances for each feature (this is only an approximation of within-class 

variance because we did not force diagonal covariance matrices in the LDA model). The 

discriminative power for each feature was estimated using the following formula:

where , , and  are the estimated discriminative power, within-class variance, and 

between-class variance, respectively, for the ith feature. For each electrode, the r2 values for 

each feature that specified a time point for that electrode in the HGW were averaged, 

yielding an estimated discriminative power for that electrode. For each subject, the relevant 

electrodes in the STG accounted for more than two-thirds of the total estimated 

discriminative power across all relevant electrodes. The r2 values for each relevant electrode 

for each subject are depicted in figure 2.
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2.2.2. Phonemic language model—The language model (LM) used in the NSR system 

provides estimates for the a priori probabilities of phonemic sequences. Phoneme LMs are 

typically trained on large corpora containing phoneme sequences. We decided to construct a 

phoneme corpus by phonemically transcribing English sentences contained in the 

SUBTLEX-US corpus, which was created using the subtitles from many American films and 

television series [46]. The Festival speech synthesis system was used to convert the 

sentences into phoneme sequences [47]. Some sentences were excluded, such as short 

sentences with fewer than 6 phonemes and sentences that the Festival system was not able to 

phonetize. All /ax/ and /zh/ phoneme tokens were converted to /ah/ and /sh/ tokens, 

respectively. Any phoneme sequence which exactly matched the phoneme sequence 

associated with any of the Gump stimuli was excluded in an effort to keep the LM more 

generalized. A silence phoneme (/sp/) token was inserted at the end of the phoneme 

sequence transcribed from each sentence so that the sequences could be combined into one 

large corpus. Approximately 4.3 million sentences were included, resulting in a phoneme 

corpus with about 76.9 million non-silence phonemes (a total of about 81.2 million phoneme 

tokens when /sp/ is included).

Because of the relatively simple implementation and robust performance of n-gram LMs, we 

decided to choose between one of two different types of interpolated n-gram LMs for use in 

the NSR system: a basic n-gram LM using additive smoothing [48,49] and a modified 

Kneser-Ney n-gram LM [49, 50]. Although the modified Kneser-Ney n-gram LM typically 

outperforms other n-gram LMs when used in word-level ASR systems, it might not be as 

suitable for phoneme-level decoding because of the relatively small number of tokens (the 

39 phoneme tokens) we use in our NSR system. We compared the performance of these two 

types of LMs using orders of n ∈ {1, 2, 3, 4, 5}. Each LM was trained using the 

aforementioned corpus and tested on a phoneme corpus constructed by concatenating the 

phonemic transcriptions of the 499 stimuli in the TIMIT set (including a silence phoneme 

between stimuli). We used the perplexity of the LM on the test corpus as the evaluation 

metric (a lower perplexity indicates better performance) [49]. Given the results of this 

analysis, which are depicted in figure 5, we decided to use the basic 4-gram LM (trained on 

the previously described phoneme corpus) in our NSR system.

For a given sequence of phonemes, the basic 4-gram LM provides conditional probability 

estimates of  for each phonemic class k at each index i within the sequence, 

where the notation  denotes the ath through the bth phonemes in the sequence. The 

phonemic sequences used in LMs contain no information about phoneme durations; a 

phoneme that spans any number of time points will be represented as a phoneme at a single 

index in these phonemic sequences. For notational simplicity, these conditional probabilities 

are sometimes represented as p (qt), which suppresses their implicit dependence on the three 

distinct phonemes that precede the phoneme at time t. These probabilities should not be 

confused with the priors discussed in the previous section. In general, the conditional 

probabilities for a basic additive smoothing n-gram LM are computed recursively using the 

following formula [49]:
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Here,  is the count of the number of times the n-gram  occurs in the corpus, δ is the 

additive smoothing factor that is added to the count of each n-gram (typically 0 ≤ δ ≤ 1), Q 

is the set of all possible phonemes, and λn is the interpolation weight for the order n. In our 

NSR system, we used n = 4, δ = 0.1, and .

2.2.3. Viterbi decoder—We implemented a Viterbi decoding algorithm to provide MAP 

phoneme sequence estimates given a sequence of likelihood estimates (from the likelihood 

model) and phoneme transition probabilities (from the LM) [18, 51]. The algorithm uses 

Viterbi path probabilities, which are computed recursively using the following formula:

Here, vt (j) is the jth Viterbi path’s log probability at time t, vt−1 (i) is the ith Viterbi path’s 

log probability at time t−1, p (yt|qt) is the likelihood of observing the feature vector yt given 

qt (provided by the phoneme likelihood model), p (qt) is the prior probability of observing 

phoneme qt at time t (provided by the LM), L is the language model scaling factor (LMSF), 

P is the phoneme insertion penalty, and nt is an indicator variable that is 1 if and only if qt 

for path j is not equal to qt−1 for path i. At every time point, the likelihoods p (yt|qt) are 

normalized such that they sum to one across all phonemes.

Paths are computed for each combination of i ∈ {1, 2, …, It−1} and qt ∈ Q, where It−1 is the 

total number of paths at time t − 1 and Q is the set of all possible phonemic classes. This 

results in a new path for each j ∈ {1, 2, …, |Q| It−1} at time t. For example, if there are 12 

paths at time t − 1 and 39 phonemes, then there will be 468 paths at time t (prior to pruning). 

We used log probabilities for computational efficiency and numerical stability. To initialize 

the recursion, we forced each decoding to start at time t = 0 with q0 = /sp/ and a possible 

Viterbi path set of {v0 (1) = 0}. After computation of all of the vt (j) log probabilities for 

each t, we performed two steps of pruning. First, we performed a beam search to prune 

unlikely paths between iterations by discarding paths that did not satisfy

Here, z indexes over all paths available at time t and c is the beam search criterion, which we 

set equal to 50. Afterwards, we only retained a maximum of 100 of the most likely paths 

between iterations. The decoded MAP phoneme sequence is specified by the path at index m 

at time T, where m = arg maxu vT (u), T is the final time point, and u indexes over all paths 

available at time T.
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The three main tunable parameters of this Viterbi decoding algorithm are the LMSF, the 

phoneme insertion penalty, and the self-transition probabilities. The LMSF controls the 

relative strength of the LM (as compared to the strength of the phoneme likelihood model). 

Because the normalized likelihoods p (yt|qt) and LM probabilities p (qt) each sum to one at 

every time point, the LMSF represents the ratio of the strength of the LM to the strength of 

the likelihood model. The phoneme insertion penalty (P) controls the preference for 

decoding short vs. long phoneme sequences. The self-transition probability (s) specifies the 

probability at each time point that a self-transition will occur, which is important because 

phonemes typically last for more than one time point. This probability replaces the 

probabilities given by the LM for p (qt) when qt = qt−1. Note that in the context of phoneme-

level decoding (as opposed to word-level decoding), the self-transition probability is similar 

to the phoneme insertion penalty in that it also controls the preference for decoding short vs. 

long phoneme sequences.

We used grid searches to determine the optimal values for these three parameters. For each 

subject, we obtained likelihood estimates at each time point for each TIMIT stimulus 

presentation. These likelihoods were obtained from likelihood models trained with HGW 

feature vectors using the TIMIT cross-validation scheme. We also obtained likelihood 

estimates using feature vectors from all subjects simultaneously (as described in section 3) 

and using MFCC features. Using these likelihood estimates, we evaluated the performance 

of the decoder when parameterized by all possible combinations of 

,  and . 

The performance metric used was the value of the expression (1 − ε) + γ, where ε and γ are 

the average phoneme error rate and posteriogram accuracy, respectively, across all of the 

results for a given parameterization (these metrics are explained in section 3.1). The results 

of this grid search for each subject, for all subjects simultaneously, and for the acoustic 

features are given in table 4.

3. Results

We evaluated the performance of the NSR system using multiple feature sets and metrics. 

Each evaluation used all 10 of the Gump cross-validation folds. We conducted evaluations 

using either HGSs or HGWs as feature vectors. For each subject, we performed evaluations 

with single-trial data (using high gamma activity from each stimulus presentation 

individually) and averaged data (using high gamma activity averaged across all of the 

presentations of each stimulus). In addition to these analyses using responses from 

individual subjects, we also performed evaluations using concatenated feature vectors from 

all of the subjects; because the neural response data are time-aligned to the stimuli and the 

stimuli are identical across subjects, we were able to generate feature vector time sequences 

using data from all of the subjects simultaneously for each stimulus by concatenating the 

feature vectors (averaged across stimulus presentations) from each subject during perception 

of the stimulus.

For each evaluation, we obtained results using two types of predictions: “estimations” and 

“decodings”. Here, estimations refer to the phoneme sequences constructed by choosing the 
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most likely phoneme at each time point from the phoneme posterior probabilities provided 

by the LDA model, and decodings refer to the MAP phoneme sequences provided by the 

Viterbi decoder. Continuing with the notation introduced in section 2.2.1, we computed the 

estimated phoneme sequences using  = arg maxk p (qt = k|yt) at 

each time point, where  is the estimated phoneme at time t in one of the stimuli. By 

comparing the estimation and decoding results, it is possible to measure the impact that 

language modeling and Viterbi decoding had on the performance of the system.

We performed a separate evaluation that used MFCCs as features to assess how well a 

similarly-designed ASR system would perform on the stimuli. Additionally, we evaluated 

chance performance by decoding the non-silence phoneme with the most time points in the 

training set, which was always /s/, at each time point. When considering frame-by-frame 

accuracy, this is a more conservative method of chance performance than simply using 1 

divided by the number of classes (which would be about 2.6% for the 38 non-silence 

phonemes). We assessed the performance of the NSR system using three evaluation metrics 

to measure the similarities between the predicted and actual phoneme sequences: phoneme 

error rate, posteriogram accuracy, and confusion accuracy.

3.1. Evaluation metrics

3.1.1. Phoneme error rate—In ASR research, the word error rate evaluation metric is 

commonly used to assess the performance of a speech recognition system [7]. One of the 

main advantages of using this metric is that it evaluates performance by directly using 

predicted word sequences, which are what end users of many ASR systems interact with. 

The analog of this metric when used in the context of phoneme-level recognition is the 

phoneme error rate (PER), which is a measure of the Levenshtein distance between actual 

and predicted phoneme sequences. The PER for a predicted phoneme sequence can be 

computed using the following formula:

Here, S, D, and I specify the minimum number of substitutions, deletions, and insertions 

(respectively) required to transform the predicted phoneme sequence into the reference 

(actual) sequence, and N denotes the number of phonemes in the reference sequence. A 

lower PER value signifies better performance. Note that it is possible for PER values to 

exceed 1.0; for example, if the predicted sequence was /ay n ow/ and the reference sequence 

was /ay/, the PER value would be 2.0, with S = I = 0, D = 2, and N = 1.

The PER metric uses sequences that have been “compressed” by removing all silence 

phonemes from the sequences and then traversing each sequence in order and removing any 

phoneme that occurs immediately after an identical phoneme. Therefore, compressed 

sequences do not contain information about the time durations of any item in the sequence, 

which is typically not relevant for the end users of ASR systems. Note that the PERs for 

estimation results tend to be relatively large and are primarily included in the results for 

completeness; typically, PERs are only informative for decoding results.
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3.1.2. Posteriogram accuracy—We constructed estimated and decoded posteriograms, 

which use estimated and decoded phoneme sequences, respectively, to visually represent 

predicted phoneme sequences. Sample posteriograms, along with the related time sequence 

of phoneme posteriors, are given in figure 6. The posteriogram accuracy is a measure of the 

frame-by-frame accuracy of a predicted posteriogram; it represents the fraction of time 

points within a given stimulus for which the predicted phoneme was equal to the actual 

phoneme. This metric does not use compressed sequences and is sensitive to the time 

durations of the predicted phonemes. For this metric, we excluded any data points for which 

the actual phoneme was the silence phoneme; although detecting the absence of speech will 

likely be an important aspect of an applied NSR system, including these points led to 

performance overestimation due to increased posteriogram accuracy for each prediction. For 

alternative evaluations that included silence time points, refer to table S1 and table S2.

3.1.3. Confusion accuracy—We computed phoneme confusion matrices, such as the 

ones shown in figure 7, for each evaluation using the confusions between the actual and 

predicted phonemes for each time point in each stimulus. We normalized the confusion 

matrices by row such that the confusion values for any actual phoneme would sum to 1 

across all of the predicted phonemes. The values along the diagonal of the matrix are 

measures of the model’s ability to correctly classify each phoneme. The confusion accuracy 

is defined as the mean of these values, which is effectively a re-scaled measure of the 

matrix’s trace. Consequently, this metric does not directly depend on the number of available 

time points for each phoneme; it weighs the classification accuracy for each phoneme 

equally. This metric can be used to identify whether or not the system only successfully 

predicts common phonemes, which would negatively affect the confusion accuracy more 

drastically than posteriogram accuracy. We also excluded the value along the diagonal for 

the silence phoneme when computing this metric to prevent performance overestimation. For 

alternative evaluations that include this silence value, refer to table S1 and table S2. 

Confusion matrices for all of the HGW results and comparisons between these confusion 

matrices and the ones for MFCCs are provided in figure S1.

3.2. System performance

The performance of the NSR system for subject A and for the concatenated feature vectors 

is depicted in figure 8. The results of the system’s full performance evaluation are 

summarized in table 5.

In the figure and the table, the statistics for the phoneme error rate and posteriogram 

accuracy metrics are computed using the individual results from each stimulus, and the 

statistics for the confusion accuracy metric are computed using the values along the diagonal 

of the overall confusion matrix.

We performed a variety of statistical significance tests on these results, using the one-tailed 

Wilcoxon signed-rank test (abbreviated to Wilcoxon) for paired comparisons and the one-

tailed Welch’s t-test (abbreviated to Welch’s) for unpaired comparisons. We use a 

significance level of α = 0.01 during assessment of our results.
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All of the HGW decoding results were significantly better than the HGS estimation results 

for all subject sets (each individual subject and the concatenated features) and metrics 

(Wilcoxon, p < 10−6).

All of the HGW results were significantly better than the HGS results for all subject sets and 

metrics (Wilcoxon, p < 0.005).

The decoding results were significantly better than the estimation results when evaluated 

with the PER metric for all subject sets (Wilcoxon, p < 10−11). Similarly, confusion 

accuracies were significantly better for decoding results than for estimation results 

(Wilcoxon, p < 0.01) for all evaluations except the ones using averaged HGWs from subject 

C and concatenated HGWs. However, significant improvements were not observed for many 

of the evaluations when using the posteriogram accuracy metric, and in some instances the 

mean decoding posteriogram accuracies were lower than the estimation posteriogram 

accuracies.

Averaged neural feature vectors outperformed their single-trial counterparts for each subject 

when using the posteriogram accuracy metric (Welch’s, p < 0.01). Except when HGWs from 

subject C are used, this was also observed for comparisons involving decoding PERs 

(Welch’s, p < 0.01). This was not observed for the majority of the confusion accuracy or 

estimation PER comparisons.

The concatenated feature vectors performed significantly better than individual subject 

feature vectors when evaluated with each metric other than the estimation PER metric 

(Wilcoxon for averaged results, Welch’s for unaveraged results, p < 10−5).

MFCC features significantly outperformed neural features when evaluated with each metric 

other than the estimation PER metric (Wilcoxon for averaged results, Welch’s for 

unaveraged results, p < 10−5).

Neural features performed better than chance in most situations (Wilcoxon for averaged 

results, Welch’s for unaveraged results, p < 0.01). The exceptions comprised of all 

estimation PER comparisons, a subset of the single-trial confusion accuracy results, and the 

single-trial estimation posteriogram accuracy result with HGSs for subject B.

3.3. Phoneme time position effects

Previous research has shown that transient responses to the onset of an acoustic stimulus are 

exhibited by some neurons in the auditory cortex of rats [52, 53] and humans [54, 55]. If 

similar response patterns are present in our ECoG data, we can expect the performance of 

our phoneme likelihood estimator to vary throughout the duration any given utterance. 

Specifically, we hypothesize that NSR performance degrades over the course of an utterance 

due to temporal complexities present in the evoked neural response patterns, such as 

sensitivity to stimulus onsets. Additionally, we expect that these same effects are not present 

in the acoustic features.

To assess this hypothesis, we analyzed the impact that phoneme time position had on 

posteriogram accuracy for both acoustic and neural features. Here, the time position of a 
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phoneme is equal to the amount of elapsed time between the utterance onset and the 

phoneme time point. We defined the onset of an utterance to be the onset of any non-silence 

phoneme that occurs immediately after a period of silence lasting 500 ms or longer (we did 

not simply use the first non-silence phoneme in each stimulus because some of the longer 

Gump stimuli contained multiple sentences). For each feature type, we used the estimated 

posteriograms generated for the 382 Gump stimuli to constructed a data set using each time 

point in the corresponding actual posteriograms specifying a non-silence phoneme. Each 

datum in this new data set specified the stimulus identity, the phoneme time position, and a 

binary indicator that was 1 if that time point was correctly classified in the estimated 

posteriogram and 0 otherwise. A depiction of these data sets for MFCCs and averaged 

HGWs from subject B is provided in figure 9.

For each feature type, we used the lme4 package within the R programming language [56, 

57] to fit a mixed effects logistic regression model with the associated data set to assess the 

effect that phoneme time position had on classification accuracy [58, 59]. In addition to the 

fixed effect of phoneme time position, random intercepts and slopes were utilized for each 

stimulus [60], which allowed the fits for each stimulus to vary in terms of overall 

classification accuracy and extent to which accuracy changes as a function of phoneme time 

position.

For MFCC features, we did not find evidence that phoneme time position influenced 

classification accuracy (β = 0.051, p = 0.225). Here, β is the regression coefficient for the 

phoneme time position variable. However, for averaged HGWs from subject B, the analysis 

revealed a significant effect in which accuracy diminished as a function of phoneme time 

position (β = −0.792, p < 10−10). After performing this analysis using the remaining feature 

types described in section 3.2, we observed a similar negative effect for every evaluation 

involving neural features (each β < −0.4, p < 10−5) and no statistically significant effect for 

the chance evaluation (β = −0.589, p = 0.085).

3.4. Speaker gender effects

In ASR research, it has been shown that the gender of a speaker affects the features used to 

train a speech recognition system, which can ultimately affect the system’s ability to decode 

speech from speakers of the opposite gender [61]. Because of this, we assessed the effect 

that speaker gender had on the performance of our NSR system. We performed separate 

evaluations on the 191 Gump stimuli produced by the male speaker and the 191 produced by 

the female speaker. We also performed an evaluation using 191 Gump stimuli chosen from 

both genders. These three evaluations used 10-fold cross-validation schemes with attempts 

to maintain homogeneity between folds (as described in section 2.1.5). We performed two 

additional evaluations by training on 90% of the stimuli from the male speaker and testing 

on all of the stimuli from the female speaker and then repeating this evaluation with the 

gender roles (training versus testing) swapped. All of these evaluations were performed 

using single-trial and averaged HGWs for each subject, concatenated HGWs, and MFCCs.

For MFCC features, this analysis revealed significant differences between evaluations for 

each metric (Welch’s ANOVA, p < 0.01). For each metric other than the estimation PER 

metric, post-hoc analyses revealed that the two evaluations involving training on the stimuli 
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from one speaker and testing on the stimuli from the other speaker performed significantly 

worse than the other three evaluations (Welch’s t-test with Bonferonni correction, p < 

0.001).

For the neural features, most analyses revealed no significant differences between 

evaluations for each metric (Welch’s ANOVA, p > 0.01). There were three exceptions: (1) 

the estimation PER for single-trial HGWs from subject A (Welch’s ANOVA, p = 8.28 × 

10−3), (2) the estimation PER for averaged HGWs from subject A (Welch’s ANOVA, p = 

1.30 × 10−3), and (3) the estimation posteriogram accuracy for single-trial HGWs from 

subject B (Welch’s ANOVA, p = 6.57 × 10−3). Overall, the differences between evaluations 

for each neural feature were negligible compared to the differences observed for acoustic 

features.

4. Discussion

Using relatively simple feature extraction techniques and model components, our NSR 

system was able to perform, to a limited extent, continuous speech decoding using neural 

signals. The novel results presented in this work quantitatively indicate that spatiotemporal 

modeling and ASR techniques, specifically language modeling and Viterbi decoding, can be 

used to improve phoneme recognition when using neural response features and continuous 

speech stimuli.

Feature selection had a significant impact on the performance of our NSR system. Unlike 

ASR, which contains well-established representations of audio waveforms such as MFCC 

vectors, the ideal representations of cortical surface recordings for the purpose of decoding 

speech remain unknown. We used HGWs as a relatively simple way to explore this realm of 

potential representations, guided by our hypothesis that including temporal information in 

the feature vectors would improve decoding in our system. The results of the feature window 

grid searches suggested using information contained in the neural responses occurring 

between 0–250 ms after an acoustic stimulus (within a continuous context) for maximum 

discriminative ability. However, the certainty of this conclusion is limited by the HGW 

parameterization constraints, the linearity assumption implicit in the LDA model used to 

evaluate the HGWs, and the relatively small amount of data used during the grid search. One 

reason why the HGW parameterization constraints are particularly troublesome arises from 

the fact that previous research has shown that different sub-populations of cortical neurons 

in the STG have different response properties [42], which suggests that forcing the same 

HGW parameters to be used for each electrode restricts the capability of HGWs to 

accurately represent the neural activity. It is also possible that the temporal dynamics are 

better represented implicitly within the models, through techniques such as sub-phone 

modeling [18, 21] or recurrent neural network (RNN) modeling [62], than explicitly in 

feature vectors. Additionally, despite the fact that power in the high gamma band has been 

used effectively in related research, the results of other research efforts indicate that it might 

be beneficial to evaluate the efficacy of using measures of the raw ECoG signal, power in 

other frequency bands, and phase information in feature vectors [63]. Furthermore, previous 

research suggests that speech sequence statistics are encoded in the human temporal cortex 

[64], suggesting that modeling the phonotactic information encoded directly in the neural 
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signals can potentially be incorporated into an NSR system to improve performance. 

Although representations that are more powerful than these simple HGWs could be 

uncovered in future research, our results emphasize the importance of modeling 

spatiotemporal dynamics of neural activity when attempting to discriminate between 

responses evoked by varying continuous stimuli (at least within the context of speech 

perception analysis).

As described in section 3.2, the use of HGWs over HGSs and the use of language modeling 

and decoding tended to improve performance. HGWs consistently provided improvements 

when compared to HGSs, but the use of a phonemic LM and Viterbi decoding typically 

provided improvements only for the PER and confusion accuracy metrics and not for the 

posteriogram accuracy metric. The similarity in the posteriogram accuracy values for 

estimation and decoding results suggest that the basic phoneme priors used in the estimation 

results (as described in section 2.2.1) were as effective at frame-by-frame classification as 

the phonemic LM used in the decoding results. Altogether, these results indicate that 

temporal smoothing of the phoneme likelihoods is the primary benefit of incorporating a 

phoneme-level LM and performing Viterbi decoding. This claim is also supported by the 

sensitivity of the PER metric to temporal jitter in the predicted phoneme sequence (and the 

fact that decoding PERs were more favorable than estimation PERs), the apparent smoothing 

in many of the decoded posteriograms (such as the one depicted in figure 6), and the 

similarity between the estimation and decoding confusion matrices (such as the ones 

depicted in figure 7). From comparisons between the estimated and decoding confusion 

matrices in figure 7 and figure S1, the decoding techniques also seem to reduce the 

confusability of non-silence phonemes with /sp/. This is most likely a result of the impact 

that the high occurrence frequency of /sp/ had on the priors described in section 2.2.1 used 

when computing the phoneme posteriors. We anticipate that the use of a word-level LM 

would have a much more significant impact on the differences between estimation and 

decoding results because predicted phoneme sequences would be restricted to those that 

comprise word sequences. Additionally, future research could assess the effect that stimulus 

length has on decoding performance; because the Viterbi parameters affect decoded 

sequence length, decoding performance could be improved if stimuli of similar lengths were 

used throughout the development of an NSR system.

Averaging across stimulus presentations typically lessened the negative impact that large 

trial-by-trial variabilities in the neural responses had on our LDA model. Also, performance 

was improved using combined features across multiple subjects, which implies that the 

system could be limited by the spatial resolution of the ECoG arrays, the cortical response 

properties of individual subjects, or the inherent noise present in recorded ECoG signals. 

The results using concatenated feature vectors illustrate the upper limits on system 

performance and the amount of information available in recorded neural signals given the 

current physical and methodological limitations of our system. However, averaging and 

combining features across multiple subjects are relatively infeasible approaches for a speech 

prosthetic application. Future research efforts could explore alternative modeling and 

preprocessing techniques to obtain more accurate and less variable results using single-trial 

data from a single subject.
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As expected, the MFCC features proved more effective than any of the neural features. 

However, we were able to observe similarities between the confusion matrices generated 

using neural and acoustic data (as shown in figure 7 and figure S1). In both cases, 

confusions typically occurred amongst stops, affricates, and fricatives or amongst the 

vowels, although for neural data the vowels were more confusable with the nasals and 

approximants than for acoustic data. These confusion matrices also suggest that prediction 

accuracy for stops was similar for neural and acoustic features. Additionally, for both feature 

types, our system was extremely effective at predicting silence, as made evident by the large 

phoneme confusion values for /sp/ in these confusion matrices and the performance 

improvements observed when silence data points are included during evaluation assessments 

(as described in table S1 and table S2).

We found a negative correlation between the time position of a phoneme in an utterance and 

our system’s ability to correctly predict that phoneme when neural (and not acoustic) 

features are used (as discussed in section 3.3). One factor that could be contributing to this 

observation is the existence of transient neural responses to acoustic onsets that might 

encode phonetic information in fundamentally different ways than sustained responses [54, 

55]. This correlation could also indicate that response patterns evoked by a phoneme, which 

can last hundreds of milliseconds, are overlapping with response patterns of subsequent 

phonemes, resulting in observed responses that grow increasingly complex as an utterance 

progresses. Another possibility is that the cortical responses used in our analyses also 

contain representations of higher-order information related to the perceived speech, such as 

word identity [65] or phonotactic information [64], which could affect the accuracy of the 

phoneme likelihood model. Because the observed degradation of prediction quality over 

time is particularly problematic for continuous speech decoding approaches, attempts to 

directly model these effects could lead to performance improvements in future iterations of 

our NSR system.

As described in section 3.4, we showed that the gender of the speakers that generated the 

stimuli typically had no effect on the performance of our system when using neural features. 

As expected, speaker gender did have a significant effect on the system’s performance when 

using MFCCs. Because gender is one of the most influential sources of speaker-attributed 

acoustic variability during speech production [61], we conclude that speaker identity does 

not significantly affect our system when using neural features. This conclusion is consistent 

with the theory that phonetic information is encoded more strongly in the STG than other 

information that is more variable between genders (such as fundamental frequency) [6] and 

suggests that data from multiple speakers can be used to effectively train an NSR system.

To further assess the potential of using our NSR system in a speech prosthetic application, 

we can repeat our analyses using neural signals recorded during covert speech. Research 

groups have shown that covert and overt speech share partially overlapping neural 

representations in the auditory cortex and that it is feasible to reconstruct continuous 

auditory speech features from ECoG data recorded during a covert speech task [16, 17]. A 

future NSR system capable of intelligibly decoding covert speech could lead to the 

development of a speech prosthetic that allows impaired individuals to communicate more 

naturally with others. In addition, it could be beneficial to repeat our analyses using speech 
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production tasks and neural activity from motor areas. Two research groups have reported 

favorable results by decoding produced speech using ECoG signals recorded in the motor 

cortex, although these groups did not perform continuous speech decoding [66, 67]. Also, by 

expanding on the approaches described in this work, stimuli containing speech from 

multiple speakers simultaneously could be used to add to the current knowledge of how the 

brain handles encoding of speech information in a multi-speaker setting [37] and to further 

ongoing research efforts aimed at gaining insights applicable to ASR systems that operate in 

multi-speaker environments [10]. Future NSR research should also include comparisons that 

address whether or not a discrete-state decoder (such as our system) that predicts sequences 

of speech tokens can effectively leverage language modeling and probabilistic decoding to 

increase performance over continuous-valued reconstruction methods that predict acoustics 

(such as spectrograms) [5].

The progress described in this work is primarily a proof-of-concept and should provide 

useful insights for future research in the field of NSR. The relatively simple model 

components and feature representations used in our system leave much room for 

improvement. For example, one of many recent advances in the ASR field has shown that 

modeling the spatiotemporal dynamics of the feature space non-linearly using deep recurrent 

neural network models can significantly improve decoding performance over more 

traditional methods [12]. The PERs reported in these studies are much lower than what we 

achieved with our system when using acoustic features, which implies that the incorporation 

of more sophisticated models from modern ASR systems could improve the performance of 

our NSR system. In addition, we intend to use word-level language modeling and decoding 

in future iterations of our system to make it more suitable for speech prosthetic applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A schematic depiction of the NSR system (similar to Figure 9.3 in [18]). The rectangles 

signify processing steps and model components, and the circles signify data and computed 

probability distributions.
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Figure 2. 
MRI reconstructions for each subject with electrode positions superimposed as dots. The 

sizes of the dots represent the relative sizes of the electrode contacts with respect to the 

brain. The STG is outlined in orange for each subject. Electrodes that were not deemed 

relevant appear as circular outlines (electrode relevance is discussed in section 2.1.4). 

Relevant electrodes are colored according to their estimated discriminative power (described 

in section 2.2.1), depicting the relative importance of each electrode for phoneme 

discrimination.
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Figure 3. 
Sample task data associated with the utterance “No temptation, no virtue” from the TIMIT 

set. Some of the silence data points at the start and end of the stimulus were excluded from 

the visualizations. (a) The acoustic waveform along with the associated word transcription. 

(b) The actual posteriogram, which is a visualization of the phonemic transcription 

associated with this stimulus that depicts which phoneme is specified at each time point in 

the task. The ordering and coloring of the phoneme labels on the vertical axis are consistent 

with what was presented in table 2. (c) The preprocessed high gamma activity at each of the 

95 relevant electrodes for subject A during perception of a single presentation of the 

stimulus. The electrodes are sorted from top to bottom in ascending peak activity time (i.e. 

the time at which the electrode exhibited its highest value during this task).
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Figure 4. 
A depiction of evoked spatiotemporal response patterns and the computed optimal HGW 

and HGS parameterizations. At each time point in the TIMIT set specifying one of seven 

hand-selected phonemes, the high gamma activities recorded from the relevant electrodes for 

subject A during the succeeding 490 ms were obtained, resulting in approximately 3400 

time series per phoneme (on average). From these, the mean response time series for each 

electrode and phoneme was computed. Each plot contains, for one phoneme, the mean time 

series for the five electrodes that exhibited the highest estimated discriminative power (as 

described in section 2.2.1), depicted as colored curves (the coloring is consistent across the 

individual plots). One standard error of the mean above and below each electrode curve is 

included. This subset of seven phonemes contains at least one phoneme from each of the 

non-silence phonemic categories, and the coloring of the phoneme labels is consistent with 

the phonemic category coloring introduced in table 2. The optimal HGW contains the values 

for each electrode at each time point marked with a blue vertical dashed line, and the 

optimal HGS contains the value for each electrode at the time point marked with a red 

vertical dashed line at t = 100 ms. These plots illustrate the complex spatiotemporal 

dynamics exhibited by the evoked responses and how these response patterns vary across the 

phonemes, suggesting that modeling these dynamics (by using HGWs, for example) is 

beneficial during discrimination tasks.
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Figure 5. 
A comparison of the basic and modified Kneser-Ney n-gram phonemic language models 

using multiple orders. The labels “Basic” and “ModKN” refer to the basic additive 

smoothing and modified Kneser-Ney n-gram LMs, respectively. The same training and 

testing corpora were used for each LM. A lower perplexity value indicates better 

performance. The basic additive smoothing 4-gram model (marked with an asterisk) 

exhibited the best performance, with a perplexity of 20.33.
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Figure 6. 
A sample set of results obtained using HGWs from subject A during perception of the 

utterance “What is the address?” by a female speaker in the Gump set. In all four 

visualizations, the ordering and coloring of the phoneme labels given in table 2 are used. 

Some of the data points specifying silence at the start and end of the stimulus were excluded 

from the visualizations. (a) The actual posteriogram showing the phonemic transcription of 

the stimulus. (b) The phoneme posterior probability distribution at each time point during 

the task. (c) The estimated posteriogram constructed by classifying the phoneme posteriors 

in (b) using the most likely phoneme at each time point. Here, the green and pink points 

signify classifications that were considered correct and incorrect, respectively. Dark gray 

points signify data that were excluded from the calculation of the posteriogram accuracy. (d) 

The decoded posteriogram computed by the Viterbi decoder, which is represented using the 

same coloring scheme as the estimated posteriogram. For this specific decoding result, the 

posteriogram accuracy is 48.6% and the phoneme error rate is 50.0%.
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Figure 7. 
A sample set of confusion matrices computed using the performance evaluation results. The 

top row contains results using averaged HGWs from subject A and the bottom row contains 

results using MFCCs. The left column contains estimation results and the right column 

contains decoding results. The color-value mapping is identical across all matrices and uses 

row-normalized confusion values. The colored square outlines signify phonemic categories 

and correspond to the ordering and coloring of the phonemes on both axes (which match 

what was given in table 2). Confusion accuracies were computed by taking the mean value 

along the diagonal (excluding the silence phoneme value).
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Figure 8. 
Visualization of the performance evaluation of the NSR system on the stimuli within the 

Gump set using single-trial and averaged HGSs and HGWs from subject A and concatenated 

feature vectors across all subjects. Chance performance is also included. Error bars indicate 

standard error of the mean. The results for all of the subjects with standard deviations are 

given in table 5.
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Figure 9. 
The effect of phoneme time position on posteriogram accuracy. Utterance onsets occur when 

a non-silence phoneme occurs after a silence duration lasting 500 ms or longer. The mean 

posteriogram accuracies were computed using estimated posteriograms associated with each 

stimulus in the Gump set generated with MFCCs (left) and averaged HGWs from subject B 

(right). Each dot represents the mean posteriogram accuracy associated with a phoneme time 

position, and the color of the dot indicates how many utterances contained a non-silence 

phoneme at that position. Phoneme time positions that were present in fewer than 20 of the 

stimuli and all silence phonemes were excluded from the figure. The horizontal dashed line 

in each plot depicts chance posteriogram accuracy. The apparent heteroscedasticity in each 

plot is most likely caused by the decreased number of occurrences of non-silence phonemes 

in the latter part of the utterances (because the utterances differ in duration), which led to 

less confident predictions of the mean accuracy at those time points. Testing with mixed 

effects logistic regression models revealed statistically significant negative relationships 

between phoneme time position and classification accuracy for neural features but not for 

MFCC features.
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Table 2

The phonemes used in this work and their respective categorizations. For visual convenience, the coloring and 

ordering of the phonemes in this table are used in later figures.

Category Phoneme

Silence sp

Stop b d g p t k

Affricate ch jh

Fricative f v s z sh th dh hh

Nasal m n ng

Approximant w y l r

Monophthong iy aa ae eh ah uw ao ih uh er

Diphthong ey ay ow aw oy

J Neural Eng. Author manuscript; available in PMC 2017 October 01.



A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u

s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t

Moses et al. Page 35

T
a
b

le
 3

T
h
e 

re
su

lt
s 

o
f 

th
e 

fe
at

u
re

 s
el

ec
ti

o
n
 g

ri
d
 s

ea
rc

h
es

 f
o
r 

ea
ch

 s
u
b
je

ct
. 
T

h
e 

o
p
ti

m
al

 v
al

u
es

 f
o
r 

th
e 

th
re

e 
H

G
W

 p
ar

am
et

er
s 

fo
u
n
d
 i

n
 e

ac
h
 g

ri
d
 s

ea
rc

h
 a

re
 g

iv
en

 

al
o
n
g
 w

it
h
 t

h
e 

ti
m

e 
o
ff

se
ts

 c
al

cu
la

te
d
 f

ro
m

 t
h
es

e 
p
ar

am
et

er
s.

 T
h
e 

o
p
ti

m
al

 H
G

S
 t

im
e 

o
ff

se
t 

va
lu

e 
fo

u
n
d
 i

n
 e

ac
h
 s

ea
rc

h
 i

s 
al

so
 g

iv
en

.

Su
bj

ec
t

H
ig

h 
G

am
m

a 
W

in
do

w
 (

H
G

W
)

H
ig

h 
G

am
m

a 
Sl

ic
e 

(H
G

S)

In
it

ia
l d

el
ay

 (
m

s)
D

ur
at

io
n 

(m
s)

Si
ze

 (
po

in
ts

)
T

im
e 

of
fs

et
s 

(m
s)

T
im

e 
of

fs
et

 (
m

s)

A
7
0

1
8
0

4
{7

0
, 
1
3
0
, 
1
9
0
, 
2
5
0
}

1
0
0

B
1
0

2
3
0

6
{1

0
, 
6
0
, 
1
0
0
, 
1
5
0
, 
1
9
0
, 
2
4
0
}

9
0

C
0

2
1
0

5
{0

, 
5
0
, 
1
0
0
, 
1
6
0
, 
2
1
0
}

1
2
0

J Neural Eng. Author manuscript; available in PMC 2017 October 01.



A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u

s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t

Moses et al. Page 36

Table 4

The optimal values for the three Viterbi parameters found by the grid searches using MFCC features, neural 

features for each subject, and neural features for all subjects simultaneously.

Subject LMSF (L) Phoneme insertion penalty (P) Self-transition probability (s)

MFCC 2 −1 0.4

A 2 −1 0.3

B 2 −1 0.9

C 3 −1 0.1

All 2 −2 0.4

J Neural Eng. Author manuscript; available in PMC 2017 October 01.



A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u

s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t

Moses et al. Page 37

T
a
b

le
 5

P
er

fo
rm

an
ce

 e
va

lu
at

io
n
 o

f 
th

e 
N

S
R

 s
y
st

em
 o

n
 t

h
e 

st
im

u
li

 w
it

h
in

 t
h
e 

G
u
m

p
 s

et
 u

si
n
g
 t

h
re

e 
d
if

fe
re

n
t 

ty
p
es

 o
f 

fe
at

u
re

 v
ec

to
rs

 (
M

F
C

C
s,

 H
G

S
s,

 a
n
d
 H

G
W

s)
 

ac
ro

ss
 f

o
u
r 

d
if

fe
re

n
t 

su
b
je

ct
 s

et
s 

(t
h
e 

th
re

e 
in

d
iv

id
u
al

 s
u
b
je

ct
s 

an
d
 o

n
e 

co
m

b
in

at
io

n
 o

f 
al

l 
su

b
je

ct
s)

. 
B

o
th

 s
in

g
le

-t
ri

al
 a

n
d
 a

ve
ra

g
ed

 n
eu

ra
l 

re
sp

o
n
se

 f
ea

tu
re

 

ve
ct

o
rs

 w
er

e 
ev

al
u
at

ed
. 
C

h
an

ce
 p

er
fo

rm
an

ce
, 
w

h
ic

h
 i

nv
o
lv

es
 p

re
d
ic

ti
n
g
 t

h
e 

m
o
st

 l
ik

el
y
 p

h
o
n
em

e 
/s

/ 
at

 e
ac

h
 t

im
e 

p
o
in

t,
 i

s 
al

so
 i

n
cl

u
d
ed

. 
T

h
e 

p
h
o
n
em

e 

er
ro

r 
ra

te
, 
p
o
st

er
io

g
ra

m
 a

cc
u
ra

cy
, 
an

d
 c

o
n
fu

si
o
n
 a

cc
u
ra

cy
 m

et
ri

cs
 a

re
 u

se
d
 t

o
 a

ss
es

s 
th

e 
es

ti
m

at
io

n
 a

n
d
 d

ec
o
d
in

g
 r

es
u
lt

s.
 A

ll
 r

es
u
lt

s 
ar

e 
g
iv

en
 a

s 

p
er

ce
n
ta

g
es

 i
n
 t

h
e 

fo
ll

ow
in

g
 f

o
rm

: 
m

ea
n
 ±

 s
ta

n
d
ar

d
 d

ev
ia

ti
o
n
.

F
ea

tu
re

 s
et

R
es

ul
ts

E
st

im
at

io
n

D
ec

od
in

g

F
ea

tu
re

 t
yp

e
Su

bj
ec

t(
s)

P
ho

ne
m

e 
er

ro
r 

ra
te

 
(%

)
P

os
te

ri
og

ra
m

 a
cc

ur
ac

y 
(%

)
C

on
fu

si
on

 a
cc

ur
ac

y 
(%

)
P

ho
ne

m
e 

er
ro

r 
ra

te
 (

%
)

P
os

te
ri

og
ra

m
 a

cc
ur

ac
y 

(%
)

C
on

fu
si

on
 a

cc
ur

ac
y 

(%
)

C
h
an

ce
−

  
9
7
.1

2
 ±

 5
.3

4
  
7
.0

6
 ±

 9
.7

7
  
2
.6

3
 ±

 1
6
.0

1
9
7
.1

2
 ±

 5
.3

4
  
7
.0

6
 ±

 9
.7

7
  
2
.6

3
 ±

 1
6
.0

1

M
F

C
C

−
2
0
8
.1

6
 ±

 6
7
.4

5
4
0
.4

5
 ±

 1
0
.7

6
3
4
.5

1
 ±

 1
6
.1

5
6
0
.6

0
 ±

 2
5
.1

6
4
1
.8

8
 ±

 1
7
.3

0
3
6
.3

0
 ±

 1
0
.8

6

S
in

g
le

-t
ri

al
 H

G
S

A
1
8
8
.7

3
 ±

 9
0
.2

8
1
1
.7

4
 ±

 7
.9

8
  
7
.6

7
 ±

 1
0
.0

3
9
0
.8

4
 ±

 2
5
.0

0
1
1
.7

9
 ±

 1
0
.8

8
1
1
.4

9
 ±

 7
.9

4

B
1
7
6
.9

1
 ±

 1
1
4
.3

1
  
7
.7

2
 ±

 6
.0

2
  
4
.7

9
 ±

 4
.9

6
9
2
.3

1
 ±

 2
6
.4

3
1
0
.2

3
 ±

 1
1
.0

6
  
9
.6

3
 ±

 5
.5

2

C
1
7
3
.8

3
 ±

 9
2
.4

8
  
9
.0

0
 ±

 6
.7

6
  
4
.8

0
 ±

 7
.2

2
8
7
.6

7
 ±

 1
7
.3

6
1
0
.7

0
 ±

 1
1
.5

8
  
8
.1

6
 ±

 6
.2

3

S
in

g
le

-t
ri

al
 H

G
W

A
1
6
9
.6

8
 ±

 8
4
.8

9
1
5
.6

2
 ±

 9
.2

1
1
2
.7

6
 ±

 1
0
.1

2
8
6
.3

4
 ±

 2
2
.0

7
1
5
.0

6
 ±

 1
1
.7

3
1
4
.8

9
 ±

 9
.0

1

B
1
5
1
.7

0
 ±

 7
8
.0

1
1
2
.6

9
 ±

 8
.1

8
  
9
.5

8
 ±

 5
.8

9
9
0
.6

3
 ±

 2
6
.2

8
1
2
.7

1
 ±

 1
1
.4

9
1
1
.8

0
 ±

 5
.9

6

C
1
5
2
.4

8
 ±

 7
5
.9

8
1
2
.9

3
 ±

 8
.7

7
  
8
.0

9
 ±

 8
.2

2
8
5
.7

1
 ±

 1
7
.3

0
1
2
.6

2
 ±

 1
2
.1

0
  
9
.8

4
 ±

 6
.4

0

A
ve

ra
g
ed

 H
G

S

A
1
8
2
.5

3
 ±

 8
9
.8

1
1
4
.6

8
 ±

 8
.8

7
1
0
.8

1
 ±

 1
0
.8

0
8
6
.3

7
 ±

 2
0
.8

3
1
4
.0

3
 ±

 1
1
.7

2
1
4
.0

7
 ±

 9
.2

8

B
1
8
2
.8

0
 ±

 9
9
.7

5
1
1
.9

5
 ±

 7
.8

2
  
8
.2

1
 ±

 6
.9

2
8
7
.1

3
 ±

 1
8
.0

1
1
3
.5

1
 ±

 1
1
.3

0
1
2
.5

9
 ±

 7
.2

6

C
1
8
1
.7

5
 ±

 7
8
.7

4
1
2
.2

2
 ±

 8
.0

1
  
7
.0

8
 ±

 9
.0

1
8
5
.3

6
 ±

 1
3
.6

7
1
2
.4

1
 ±

 1
1
.4

5
1
0
.0

1
 ±

 6
.5

6

A
ll

1
8
0
.8

7
 ±

 8
4
.4

7
2
2
.3

4
 ±

 9
.9

4
1
8
.1

4
 ±

 1
0
.4

7
7
6
.6

8
 ±

 1
5
.8

2
2
3
.4

1
 ±

 1
3
.8

5
2
1
.3

9
 ±

 9
.1

2

A
ve

ra
g
ed

 H
G

W

A
1
5
8
.0

0
 ±

 6
9
.8

6
1
8
.9

3
 ±

 1
0
.3

9
1
6
.4

9
 ±

 1
0
.9

9
8
1
.3

9
 ±

 1
8
.8

5
1
8
.7

9
 ±

 1
2
.5

7
1
8
.4

9
 ±

 1
0
.3

0

B
1
4
9
.6

6
 ±

 6
5
.2

7
1
7
.3

5
 ±

 9
.4

6
1
3
.8

0
 ±

 7
.3

0
8
2
.8

4
 ±

 2
1
.0

2
1
7
.6

4
 ±

 1
3
.3

1
1
5
.3

0
 ±

 6
.9

9

C
1
5
7
.3

5
 ±

 7
3
.8

0
1
6
.4

2
 ±

 9
.8

4
1
1
.2

0
 ±

 8
.7

9
8
3
.6

5
 ±

 1
9
.1

8
1
5
.3

6
 ±

 1
3
.0

2
1
2
.2

7
 ±

 7
.9

9

A
ll

1
4
2
.9

6
 ±

 6
1
.3

1
2
8
.3

6
 ±

 1
0
.4

7
2
4
.0

2
 ±

 1
0
.9

9
7
0
.4

7
 ±

 1
6
.7

7
2
9
.2

6
 ±

 1
4
.8

8
2
5
.0

3
 ±

 1
0
.6

9

J Neural Eng. Author manuscript; available in PMC 2017 October 01.


	Abstract
	1. Introduction
	2. Materials and methods
	2.1. Data collection and manipulation
	2.1.1. Subjects
	2.1.2. Speech stimuli
	2.1.3. Neural recordings
	2.1.4. Preprocessing
	2.1.5. Data reorganization
	2.1.6. Feature selection

	2.2. NSR system design
	2.2.1. Phoneme likelihood model
	2.2.2. Phonemic language model
	2.2.3. Viterbi decoder


	3. Results
	3.1. Evaluation metrics
	3.1.1. Phoneme error rate
	3.1.2. Posteriogram accuracy
	3.1.3. Confusion accuracy

	3.2. System performance
	3.3. Phoneme time position effects
	3.4. Speaker gender effects

	4. Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5

