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ABSTRACT

Inspired by the principles of speed reading, we introduce Skim-RNN, a recurrent
neural network (RNN) that dynamically decides to update only a small fraction
of the hidden state for relatively unimportant input tokens. Skim-RNN gives
computational advantage over an RNN that always updates the entire hidden state.
Skim-RNN uses the same input and output interfaces as a standard RNN and
can be easily used instead of RNNs in existing models. In our experiments, we
show that Skim-RNN can achieve significantly reduced computational cost without
losing accuracy compared to standard RNNs across five different natural language
tasks. In addition, we demonstrate that the trade-off between accuracy and speed of
Skim-RNN can be dynamically controlled during inference time in a stable manner.
Our analysis also shows that Skim-RNN running on a single CPU offers lower
latency compared to standard RNNs on GPUs.

1 INTRODUCTION

Recurrent neural network (RNN) is a predominantly popular architecture for modeling natural
language, where RNN sequentially ‘reads’ input tokens and outputs a distributed representation for
each token. By recurrently updating the hidden state with an identical function, RNN inherently
requires the same computational cost across time. While this requirement seems natural for some
application domains, not all input token are equally important in many language processing tasks.
For instance, in question answering, a rather efficient strategy would be to allocate less computation
on irrelevant parts of the text (to the question) and only allow heavy computation on important parts.

Attention models (Bahdanau et al., 2014) compute the importance of the words relevant to the
given task using an attention mechanism. They, however, do not focus on improving the efficiency
of the inference. More recently, a variant of LSTMs (Yu et al., 2017) is introduced to improve
inference efficiency through skipping multiple tokens at a given time step. In this paper, we introduce
skim-RNN that takes advantage of ‘skimming’ rather than ‘skipping’ tokens. Skimming refers to the
ability to decide to spend little time (rather than skipping) on parts of the text that does not affect the
reader’s main objective. Skimming typically gains trained human speed readers up to 4x speed up,
occasionally with a bit of loss in the comprehension rates (Marcel Adam Just, 1987).

Inspired by the principles of human’s speed reading, we introduce Skim-RNN (Figure 1), which
makes a fast decision on the significance of each input (to the downstream task) and ‘skims’ through
unimportant input tokens by using a smaller RNN to update only a fraction of the hidden state. When
the decision is to ‘fully read’, Skim-RNN updates the entire hidden state with the default RNN cell.
Since the hard decision function (‘skim’ or ‘read’) is non-differentiable, we use gumbel-softmax (Jang
et al., 2017) to estimate the gradient of the function, instead of more traditional methods such as
REINFORCE (policy gradient) (Williams, 1992). The switching mechanism between the two RNN
cells enables Skim-RNN to reduce the total number of float operations (Flop reduction, or Flop-R)
when the skimming rate is high, which often leads to faster inference on CPUs1, a highly desirable
goal for large-scale products and small devices.

∗Equal contribution.
1Flop reduction does not necessarily mean equivalent speed gain. For instance, on GPUs, there will be

no speed gain because of parallel computation. On CPUs, the gain will not be as high as the Flop-R due to
overheads. See Section 4.3.
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Figure 1: The schematic of Skim-RNN on a sample sentence from Stanford Sentiment Treebank: “intelligent
and invigorating film”. At time step 1, Skim-RNN makes the decision to read or skim x1 by using Equation 1
on h0 and x1. Since ‘intelligent’ is an important word for sentiment, it decides to read (blue diamond) by
obtaining a full-size hidden state with the big RNN and updating the entire previous hidden state. At time step 2,
Skim-RNN decides to skim (empty diamond) the word ‘and’ by updating the first few dimensions of the hidden
state using small RNN.

Skim-RNN has the same input and output interfaces as standard RNNs, so it can be conveniently used
to speed up RNNs in existing models. This is in contrast to LSTM-Jump (Yu et al., 2017) that does
not have outputs for the skipped time steps. Moreover, the speed of Skim-RNN can be dynamically
controlled at inference time by adjusting the threshold for the ‘skim’ decision. Lastly, we show that
skimming achieves higher accuracy compared to skipping the tokens, implying that paying some
attention to unimportant tokens is better than completely ignoring (skipping) them.

Our experiments show that Skim-RNN attains computational advantage (float operation reduction,
or Flop-R) over a standard RNN, with up to 3x reduction in computations while maintaining the
same level of accuracy, on four text classification tasks and two question answering task. Moreover,
for applications that are concerned with latency than throughput, Skim-RNN on a CPU can offer
lower-latency inference time compared to to standard RNNs on GPUs (Section 4.3). Our experiments
show that we achieve higher accuracy and/or computational efficiency compared to LSTM-jump and
verify our intuition about the advantages of skimming compared to skipping.

2 RELATED WORK

Fast neural networks. As neural networks become widely integrated into real-world applications,
making neural networks faster and lighter has drawn much attention in machine learning communities
and industries recently. Mnih et al. (2014) perform hard attention instead of soft attention on image
patches for caption generation, which reduces number of computations and memory usage. Han
et al. (2016) compress a trained convolutional neural networks so that the model occupies less
memory. Rastegari et al. (2016) approximate 32-bit float operations with single bit binary operations
to substantially increase computational speed at the cost of little loss of precision. Odena et al. (2017)
propose to change model behavior on per-input basis, which can decide to use less computation for
simpler inputs.

More relevant work to ours are those that are specifically targeted for sequential data. LSTM-
Jump (Yu et al., 2017) has the same goal as our model in that it aims to reduce the computational
cost of recurrent neural networks. However, it is fundamentally different from skim-RNN in that it
skips some input tokens while ours does not ignore any token and skims if the token is unimportant.
Our experiments confirm the benefits of skimming compared to skipping in Figure 5. In addition,
LSTM-Jump does not produce LSTM outputs for skipped tokens, which often means that it is
nontrivial to replace a regular LSTM in existing models with LSTM-Jump, if the outputs of the
LSTM (instead of just the last hidden state) is used. On the other hand, Skim-RNN emits a fixed-size
output at every time step, so it is compatible with any RNN-based model. We also note the existence
of Skip-LSTM (Campos et al., 2017), a recent, concurrent submission to ours that shares many
characteristics with LSTM-Jump.
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Variable Computation in RNN (VCRNN) (Jernite et al., 2017) is also concerned with dynamically
controlling the computational cost of RNN. However, VCRNN only controls the number of units to
update at each time step, while Skim-RNN contains multiple RNNs that “share” a common hidden
state with different regions on which they operate (choosing which RNN to use at each time step).
This has two important implications. First, the nested RNNs in Skim-RNN have their own weights
and thus can be considered as independent agents that interact with each other through the shared
state. That is, Skim-RNN updates the shared portion of the hidden state differently (by using different
RNNs) depending on importance of the token, whereas the affected (first few) dimensions in VCRNN
are identically updated regardless of the importance of the input. We argue that this capability of
Skim-RNN could be a crucial advantage, as we demonstrate in Section 4. Second, at each time step,
VCRNN needs to make a d-way decision (where d is the hidden state size, usually hundreds), whereas
Skim-RNN only requires binary decision. This means that computing exact gradient of VCRNN is
even more intractable (dL vs 2L) than that of Skim-RNN, and subsequently the gradient estimation
would be harder as well. We conjecture that this results in a higher variance in the performance of
VCRNN per training, which we also discuss in Section 4.

Choi et al. (2017) use a CNN-based sentence classifier, which can be efficiently computed with GPUs,
to select the most relevant sentence(s) to the question among hundreds of candidates, and uses an
RNN-based question answering model, which is relatively costly on GPUs, to obtain the answer
from the selected sentence. The two models are jointly trained with REINFORCE (Williams, 1992).
Skim-RNN is inherently different from the model in that ours is generic (replaces RNN) and is not
specifically for question answering, and Choi et al. (2017) the model focuses on reducing GPU-time
(maximizing parallelization), while ours focuses on reducing CPU-time (minimizing Flop).

Johansen et al. (2017) have shown that, for sentiment analysis, it is possible to cheaply determine if
entire sentence can be correctly classified with a cheap bag-of-word model or needs a more expensive
LSTM classifier. Again, Skim-RNN is intrinsically different from their approach in that it makes a
single, static decision on which model to use on the entire example.

Attention. Modeling human’s attention while reading has been studied in the field of cognitive
psychology (Reichle et al., 2003). Neural attention mechanism has been also widely employed and
proved to be essential for many language tasks (Bahdanau et al., 2014), allowing the model to focus
on specific parts of of the text. Nevertheless, it is important to note the distinction from Skim-RNN
that the neural attention mechanism is soft (differentiable) and is not intended for faster inference.
More recently, Hahn & Keller (2016) have modeled the human reading pattern with neural attention
in an unsupervised learning approach, leading to conclusion that there exists trade-off between a
system’s performance in a given reading-based task and the speed of reading.

RNNs with hard decisions. Our model is relevant to several recent works that incorporate hard
decisions within recurrent neural networks (Kong et al., 2016). Dyer et al. (2016) uses RNN for
transition-based dependency parsing. At each time step, the RNN unit decides between three possible
choices. The architecture does not suffer from the intractability of computing the gradients, because
the decision is supervised at every time step. Chung et al. (2017) dynamically construct multiscale
RNN by making a hard binary decision on whether to update hidden state of each layer at each
time step. In order to handle the intractability of computing the gradient, they use straight-through
estimation (Bengio et al., 2013) with slope annealing, which can be considered as an alternative
method to Gumbel-softmax reparameterization.

3 MODEL

Skim-RNN unit consists of two RNN cells, default (big) RNN cell of hidden state size d and small
RNN cell of hidden state size d′, where d and d′ are hyperparameters defined by the user and d′ ≪ d.
Each RNN cell has its own weight and bias, and it can be any variant of RNN, such as GRU and
LSTM. The core idea of the model is that the Skim-RNN dynamically makes the decision at each
time step whether to use the big RNN (if the current token is important), or to skim by using the small
RNN (if the current token is unimportant). Skipping a token can be implemented by setting d′, the
size of the small RNN, equal to zero. Since small RNN requires less number of float operations than
big RNN, the model is faster than big RNN alone while obtaining similar or better results than the
big RNN alone. Later in Section 4, we will measure the speed effectiveness of Skim-RNN via three
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criteria: skim rate (how many words are skimmed), number of float operations, and benchmarked
speed on several platforms. Figure 1 depicts the schematic of Skim-RNN on a short word sequence.

We first describe the desired inference model of Skim-RNN to be learned in Section 3.1. The input
to and the output of Skim-RNN are equivalent to that of a regular RNN: a varying-length sequence
of vectors go in, and an equal-length sequence of output vectors come out. We model the hard
decision of skimming at each time step with a stochastic multinomial variable. Note that obtaining
the exact gradient is intractable as the sequence becomes longer, and the loss is not differentiable due
to hard argmax; hence, in Section 3.2, we reparameterize the stochastic distribution with Gumbel-
softmax (Jang et al., 2017) to approximate the inference model with a fully-differentiable function,
which can be efficiently trained with stochastic gradient descent.

3.1 INFERENCE

At each time step t, Skim-RNN unit takes the input xt ∈ R
d and the previous hidden state ht−1 ∈ R

d

as its arguments, and outputs the new state ht.
2 Let k represent the number of choices for the hard

decision at each time step. In Skim-RNNs, k = 2 since it either fully reads or skims. In general,
although not explored in this paper, one can have k > 2 for multiple degrees of skimming.

We model the decision making process with a multinomial random variable Qt over the probability
distribution of choices pt. We model pt with

pt = softmax(α(xt,ht−1)) = softmax(W[xt;ht−1] + b) ∈ R
k, (1)

where W ∈ R
k×2d and b ∈ R

k are weights to be learned, and [; ] indicates row concatenation. Note
that one can define α in a different way (e.g., the dot product between xt and ht−1), as long as
its time complexity is strictly less than O(d2) to gain computational advantage. For the ease of
explanation, let the first element of the vector, p1

t , indicate the probability for fully reading, and
the second element, p2

t , indicate the probability for skimming. Now we define the random variable
Qt to make the decision to skim (Qt = 2) or not (Qt = 1), by sampling Qt from the probability
distribution pt.

Qt ∼ Multinomial(pt), (2)

which means Qt = 1 and Qt = 2 will be sampled with the probability of p1

t and p2

t , respectively.
If Qt = 1, then the unit applies a standard, full RNN on the input and the previous hidden state to
obtain the new hidden state. If Qt = 2, then the unit applies a smaller RNN to obtain a small hidden
state, which replaces only a portion of the previous hidden state. More formally,

ht =

{

f(xt,ht−1), if Qt = 1,

[f ′(xt,ht−1);ht−1(d
′ + 1 : d)], if Qt = 2,

(3)

where f is a full RNN with d-dimensional output, while f ′ is a smaller RNN with d′-dimensional
output, where d′ ≪ d, and (:) is vector slicing. Note that f and f ′ can be any variant of RNN such as
GRU and LSTM3. The main computational advantage of the model is that, if d′ ≪ d, then whenever
the model decides to skim, it requires O(d′d) computations, which is substantially less than O(d2).
Also, as a side effect, the last d− d′ dimensions of the hidden state are less frequently updated, which
we hypothesize to be a nontrivial factor for improved accuracy in some datasets (Section 4).

3.2 TRAINING

Since the loss is a random variable that depends on the random variables Qt, we minimize the expected
loss with respect to the distribution of the variables.4 Suppose that we define the loss function to be
minimized conditioned on a particular sequence of decisions, L(θ;Q) where Q = Q1 . . . QT is a
sequence of decisions with length T . Then the expectation of the loss function over the distribution
of the sequence of the decisions is

EQt∼Multinomial(pt)[L(θ)] =
∑

Q

L(θ;Q)P (Q) =
∑

Q

L(θ;Q)
∏

j

p
Qj

j . (4)

2We assume both input and hidden state are d-dimensional for brevity, but our arguments are valid for
different sizes as well.

3Since LSTM cell has two outputs, hidden state (ht) and memory (ct), the slicing and concatenation in
Equation 3 is applied for each output.

4An alternative view is that, if we let Qt = argmax(pt) instead of sampling, which we do during inference
for deterministic outcome, then the loss is non-differentiable due to the argmax operation (hard decision).
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In order to exactly compute ∇EQt
[L(θ)], one needs to enumerate all possible Q, which is intractable

(exponentially increases with the sequence length). It is possible to approximate the gradients with
REINFORCE (Williams, 1992), which is an unbiased estimator, but it is known to have a high
variance. We instead use gumbel-softmax distribution (Jang et al., 2017) to approximate Equation 2,
rt ∈ R

k (same size as pi
t), which is fully differentiable. Hence the back-propagation can now

efficiently flow to pt without being blocked by the stochastic variable Qt, and the approximation
can arbitrarily approach to Qt by controlling hyperparameters. The reparameterized distribution is
obtained by

rit =
exp((log(pi

t) + git)/τ)∑
j exp((log(p

j
t ) + gjt )/τ)

(5)

where git is an independent sample from Gumbel(0, 1) = − log(− log(Uniform(0, 1)) and τ is the
temperature (hyperparameter). We relax the conditional statement of Equation 3 by rewriting ht

ht =
∑

i

rith̃
i
t (6)

where h̃i
t is the candidate hidden state if Qt = i. That is,

h̃1

t = f(xt,ht−1)

h̃2

t = [f ′(xt,ht−1);ht−1(d
′ + 1 : d)]

(7)

as shown in Equation 3. Note that Equation 6 approaches Equation 3 as rit approaches to be a one-hot
vector. Jang et al. (2017) have shown that rt becomes more discrete and approaches the distribution
of Qt as τ → 0. Hence we start from a high temperature (smoother rt) value and slowly decreases it.

Lastly, in order to encourage the model to skim when possible, in addition to minimizing the main
loss function (L(θ)), which is application-dependent, we also jointly minimize the arithmetic mean of
the negative log probability of skimming, 1

T

∑
log(p2

t ), where T is the sequence length. We define
the final loss function by

L′(θ) = L(θ) + γ
1

T

∑

t

− log(p2

t ), (8)

where γ is a hyperparameter to control the ratio between the two terms.

4 EXPERIMENTS

Dataset task type answer type Number of examples Avg. Len vocab size

SST Sentiment Analysis Pos/Neg 6,920 / 872 / 1,821 19 13,750
Rotten Tomatoes Sentiment Analysis Pos/Neg 8,530 / 1,066 / 1,066 21 16,259
IMDb Sentiment Analysis Pos/Neg 21,143 / 3,857 / 25,000 282 61,046
AGNews News classification 4 categories 101,851 / 18,149 / 7,600 43 60,088
CBT-NE Question Answering 10 candidates 108,719 / 2,000 / 2,500 461 53,063
CBT-CN Question Answering 10 candidates 120,769 / 2,000 / 2,500 500 53,185
SQuAD Question Answering span from context 87,599 / 10,570 / - 141 69,184

Table 1: Statistics and the examples of the datasets that Skim-RNN is evaluated on. SST refers to Stanford
Sentiment Treebank, SQuAD refers to Stanford Question Answering Dataset, CBT-NE refers to Named Entity
dataset of Children Book Test, and CBT-CN refers to Common Noun of CBT.

We evaluate the effectiveness of Skim-RNN in terms of accuracy and float operation reduction
(Flop-R) on four classification tasks and a question answering task. These language tasks have been
chosen because they do not require one’s full attention to every detail of the text, but rather ask for
capturing the high-level information (classification) or focusing on specific portion (QA) of the text,
which is more appropriate for the principle of speed reading5.

We start with classification tasks (Section 4.1) and compare Skim-RNN against standard RNN,
LSTM-Jump (Yu et al., 2017), and VCRNN (Jernite et al., 2017), which have a similar goal to ours.
Then we evaluate and analyze our system in a well-studied question answering dataset, Stanford

5‘Speed reading’ would not be appropriate for many language tasks. For instance, in translation task, one
would not skim through the text because most input tokens are crucial for the task.
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LSTM SST Rotten Tomatoes IMDb AGNews
Model d′/γ Acc Sk Flop-r Sp Acc Sk Flop-r Sp Acc Sk Flop-r Sp Acc Sk Flop-r Sp

Standard 86.4 - 1.0x 1.0x 82.5 - 1.0x 1.0x 91.1 - 1.0x 1.0x 93.5 - 1.0x 1.0x

Skim 5/0.01 86.4 58.2 2.4x 1.4x 84.2 52.0 2.1x 1.3x 89.3 79.2 4.7x 2.1x 93.6 30.3 1.4x 1.0x
Skim 10/0.01 85.8 61.1 2.5x 1.5x 82.5 58.5 2.4x 1.4x 91.2 83.9 5.8x 2.3x 93.5 33.7 1.5x 1.0x
Skim 5/0.02 85.6 62.3 2.6x 1.5x 81.8 63.7 2.7x 1.5x 88.7 63.2 2.7x 1.5x 93.3 36.4 1.6x 1.0x
Skim 10/0.02 86.4 68.0 3.0x 1.7x 82.5 63.0 2.6x 1.5x 90.9 90.7 9.5x 2.7x 92.5 10.6 1.1x 0.8x

LSTM-Jump - - - - 79.3 - - 1.6x 89.4 - - 1.6x 89.3 - - 1.1x
VCRNN 81.9 - 2.6x - - - - - - - - - - - - -

SOTA 89.5 - - - 83.4 - - - 94.1 - - - 93.4 - - -

Table 2: Text classification results on SST, Rotten Tomatoes, IMDb and AGNews. Results by standard LSTM,
Skim-LSTM, LSTM-Jump (Yu et al., 2017), VCRNN (Jernite et al., 2017) and state of the art (SOTA). Evaluation
metrics are accuracy (Acc), skimming rate in % (Sk), reduction rate in the number of floating point operations
(Flop-r) compared to standard LSTM, and benchmarked speed up rate (Sp) compared to standard LSTM. We use
the hidden size of 100 by default. SOTAs are from Kokkinos & Potamianos (2017), Miyato et al. (2017), Miyato
et al. (2017) and Zhang et al. (2015), respectively.
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Figure 2: Analyzing the effect of small hidden state size, d’ (left) and γ (right) on skim rate; (d = 100, d′ = 10,
and γ = 0.02 are default values).

Question Answering Dataset (SQuAD) (Section 4.2). Since LSTM-Jump does not report on this
dataset, we simulate ‘skipping’ by not updating the hidden state when the decision is to ‘skim’, and
show that skimming yields better accuracy-speed trade-off than skipping. We defer the results of
Skim-RNN on Children Book Test to Appendix B.

Evaluation Metrics. We measure the accuracy for the the classification task (Acc) and the F1
and exact match (EM) scores of the correct span for the question answering task. We evaluate the
computational efficiency with skimming rate (Sk) i.e., how frequently words are skimmed, and
reduction in float operations (Flop-R). We also report benchmarked speed gain rate (compared to
standard LSTM) of classification tasks and CBT since LSTM-Jump does not report Flop reduction
rate (See Section 4.3 for how the benchmark is performed). Note that LSTM-Jump measures speed
gain based on GPU while ours is measured based on CPU.

4.1 TEXT CLASSIFICATION

In a language classification task, the input is a sequence of words and the output is the vector of
categorical probabilities. Each word is embedded into a d-dimensional vector. We initialize the vector
with GloVe (Pennington et al., 2014) and use those as the inputs for LSTM (or Skim-LSTM). We
make a linear transformation on the last hidden state of the LSTM and then apply softmax function to
obtain the classification probabilities. We use Adam (Kingma & Ba, 2015) for optimization, with
initial learning rate of 0.0001. For Skim-LSTM, τ = max(0.5, exp(−rn)) where r = 1e − 4 and
n is the global training step, following Jang et al. (2017). We experiment on different sizes of big
LSTM (d ∈ {100, 200}) and small LSTM (d′ ∈ {5, 10, 20}) and the ratio between the model loss
and the skim loss (γ ∈ {0.01, 0.02}) for Skim-LSTM. We use batch size of 32 for SST and Rotten
Tomatoes, and 128 for others. For all models, we stop early when the validation accuracy does not
increase for 3000 global steps.

Results. Table 2 shows the accuracy and the computational cost of our model compared with
standard LSTM, LSTM-Jump (Yu et al., 2017), and VCRNN (Jernite et al., 2017). First, Skim-LSTM
has a significant reduction in number of float operations compared to LSTM, as indicated by ‘Flop-R’.
When benchmarked on Python (‘Sp’ column), we observe a nontrivial speed up. We expect that
the gain can be further maximized when implemented with lower level language that has smaller
overhead. Second, our model outperforms standard LSTM and LSTM-Jump across all tasks, and
its accuracy is better than or close to that of RNN-based state of the art models, which are often
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I liked this movie, not because Tom Selleck was in it, but because it was a good story about baseball
and it also had a semi-over dramatized view of some of the issues that a BASEBALL player coming
to the end of their time in Major League sports must face. I also greatly enjoyed the cultural differen-

Positive ces in American and Japanese baseball and the small facts on how the games are played differently.
Overall, it is a good movie to watch on Cable TV or rent on a cold winter’s night and watch about
the "Dog Day’s" of summer and know that spring training is only a few months away. A good movie
for a baseball fan as well as a good "DATE" movie. Trust me on that one! *Wink*

No! no - No - NO! My entire being is revolting against this dreadful remake of a classic movie.
I knew we were heading for trouble from the moment Meg Ryan appeared on screen with her ridi-
culous hair and clothing - literally looking like a scarecrow in that garden she was digging. Meg

Negative Ryan playing Meg Ryan - how tiresome is that?! And it got worse ... so much worse. The horribly
cliché lines, the stock characters, the increasing sense I was watching a spin-off of "The First Wives
Club" and the ultimate hackneyed schtick in the delivery room. How many times have I seen this
movie? Only once, but it feel like a dozen times - nothing original or fresh about it. For shame!

Table 3: A positive and a negative review from IMDb dataset. Black-colored words are skimmed (used smaller
LSTM, d′ = 10), while blue-colored words are fully read (used bigger LSTM, d = 200).

specifically designed for these tasks. We hypothesize the accuracy improvement over LSTM could be
due to the increased stability of the hidden state, as the majority of the hidden state is not updated
when skimming. Figure 2 shows the effect of varying the size of the small hidden state as well as the
parameter γ on the accuracy and computational cost.

Table 3 shows an example from IMDb dataset, where Skim-RNN with d = 200, d′ = 10, and
γ = 0.01 correctly classifies it with high skimming rate (92%). The black words are skimmed, and
blue words are fully read. As expected, the model skims through unimportant words, including
prepositions, and latently learns to only carefully read the important words, such as ‘liked’, ‘dreadful’,
and ‘tiresome’.

4.2 QUESTION ANSWERING

In Stanford Question Answering Dataset, the task is to locate the answer span for a given question
in a context paragraph. We evaluate the effectiveness of Skim-RNN for SQuAD with two different
models: LSTM+Attention and BiDAF (Seo et al., 2017). The first model is inspired by most current
QA systems consisting of multiple LSTM layers and an attention mechanism. The model is complex
enough to reach reasonable accuracy on the dataset, and simple enough to run well-controlled analyses
for the Skim-RNN. The details of the model are described in Appendix A.1. The second model is an
open-source model designed for SQuAD, which is studied to mainly show that Skim-RNN could
replace RNN in existing complex systems.

Training. We use Adam and initial learning rate of 0.0005. For stable training, we pretrain with
standard LSTM for the first 5k steps , and then finetune with Skim-LSTM (Section A.2 shows different
pretraining schemas). Other hyperparameter setup follows that of classification in Section 4.1.

Results. Table 4 (above double line) shows the accuracy (F1 and EM) of LSTM+Attention and
Skim-LSTM+Attention models as well as VCRNN (Jernite et al., 2017). We observe that the
skimming models achieve higher or similar F1 score to those of the default non-skimming models
(LSTM+Att) while attaining the reduction in computational cost (Flop-R) by more than 1.4 times.
Moreover, decreasing layers (1 layer) or hidden size (d=5) improves Flop-R, but significantly
decreases the accuracy (compared to skimming). Table 4 (below double line) demonstrates that
replacing LSTM with Skim-LSTM in an existing complex model (BiDAF) stably gives reduced
computational cost without losing much accuracy (only 0.2% drop from 77.3% of BiDAF to 77.1%
of Sk-BiDAF with γ = 0.001).

Figure 3 shows the skimming rate of different layers of LSTM with varying values of γ in LSTM+Att
model. There are four points on the axis of the figures associated with two forward and two backward
layers of the model. We see two interesting trends here. First, the skimming rate of the second
layers (forward and backward) are higher than that of the first layer across different gamma values.
A possible explanation for this trend is that the model is more confident about which tokens are
important at the second layer. Second, higher γ value leads to higher skimming rate, which agrees
with its intended functionality.

Figure 4 shows F1 score of LSTM+Attention model using standard LSTM and Skim LSTM, sorted
in ascending order by Flop-R. While models tend to perform better with larger computational cost,
Skim LSTM (Red) outperforms standard LSTM (Blue) with comparable computational cost. We
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Model γ F1 EM Sk Flop-r

LSTM+Att (1 layer) - 73.3 63.9 - 1.3x
LSTM+Att (d = 50) - 74.0 64.4 - 3.6x
LSTM+Att - 75.5 67.0 - 1.0x

Sk-LSTM+Att (d′ = 0) 0.1 75.7 66.7 37.7 1.4x
Sk-LSTM+Att (d′ = 0) 0.2 75.6 66.4 49.7 1.6x
Sk-LSTM+Att 0.05 75.5 66.0 39.7 1.4x
Sk-LSTM+Att 0.1 75.3 66.0 56.2 1.7x
Sk-LSTM+Att 0.2 75.0 66.0 76.4 2.3x

VCRNN - 74.9 65.4 - 1.0x

BiDAF (d = 30) - 74.6 64.0 - 9.1x
BiDAF (d = 50) - 75.7 65.5 - 3.7x
BiDAF - 77.3 67.7 - 1.0x

Sk-BiDAF 0.01 76.9 67.0 74.5 2.8x
Sk-BiDAF 0.001 77.1 67.4 47.1 1.7x

SOTA (Wang et al., 2017) 79.5 71.1 - -

Table 4: Results on Stanford Question Answering Dataset (SQuAD),
using LSTM+Attention (2 layers of LSTM, d = 100, d′ = 20 by
default) and BiDAF (d = 100, d′ = 50 by default).
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Figure 3: Skim rate of LSTMs in LSTM+Att model.
Two layers of forward and backward LSTMs are shown
(total count of 4), with d = 100, d′ = 20.
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obtained by adjusting the threshold for the skim (or
skip) decision. Blue line is a skimming model with
d′ = 10, and red line is a skipping model (d′ = 0).
The gap between the lines shows the advantage of
skimming over skipping.

also observe that the F1 score of Skim-LSTM is more stable across different configurations and
computational cost. Moreover, increasing the value of γ for Skim-LSTM gradually increases skipping
rate and Flop-R, while it also leads to reduced accuracy.

Controlling skim rate. An important advantage of Skim-RNN is that the skim rate (and thus
computational cost) can be dynamically controlled at inference time by adjusting the threshold for
‘skim’ decision probability p1

t (Equation 1). Figure 5 shows the trade-off between the accuracy and
computational cost for two settings, confirming the importance of skimming (d′ > 0) compared to
skipping (d′ = 0).

Visualization. Figure 6 shows an example from SQuAD and visualizes which words Skim-LSTM
(d = 100, d′ = 20) reads (red) and skims (white). As expected, the model does not skim when the
input seems to be relevant to answering the question. In addition, LSTM in second layer skims more
than that in the first layer mainly because the second layer is more confident about the importance of
each token, as shown in Figure 6. More visualizations are shown in in Appendix C.

4.3 RUNTIME BENCHMARKS

Here we briefly discuss the details of the runtime benchmarks for LSTM and Skim-LSTM, which
allow us to estimate the speed up of Skim-LSTM-based models in our experiments (corresponding to
‘Sp’ in Table 2). We assume CPU-based benchmark by default, which has direct correlation with the
number of float operations (Flop)6. As mentioned previously, the speed-up results in Table 2 (as well
as Figure 7 below) are benchmarked using Python (NumPy), instead of popular frameworks such as
TensorFlow or PyTorch. In fact, we have benchmarked the speed of Length-100 LSTM with d = 100

6Speed up on GPUs hugely depends on parallelization, which is not relevant to our contribution.
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Q: The largest construction projects are known as what? (A: megaprojects)
Answer by model: megaprojects
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Figure 6: Reading (red) and skimming (white) decisions in four LSTM layers (two for forward and two for
backward) of Skim-LSTM+Attention model. We see that the second layer skims more, implying that the second
layer is more confident about which tokens are important.
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Figure 7: Speed up rate of Skim-LSTM (vs LSTM) with varying skimming rates and hidden state sizes.

(batch size = 1) in all three frameworks on a single thread of CPU (averaged over 100 trials), and
have observed that NumPy is 1.5 and 2.8 times faster than TensorFlow and PyTorch.7 This seems
to be mostly due to the fact that the frameworks are primarily (optimized) for GPUs and they have
larger overhead than NumPy that they cannot take much advantage of reducing the size of the hidden
state of the LSTM below 100.

Figure 7 shows the relative speed gain of Skim-LSTM compared to standard LSTM with varying
hidden state size and skim rate. We use NumPy, and the inferences are run on a single thread of CPU.
We also plot the ratio between the reduction of the number of float operations (Flop-R) of LSTM and
Skim-LSTM. This can be considered as a theoretical upper bound of the speed gain on CPUs. We
note two important observations. First, there is an inevitable gap between the actual gain (solid line)
and the theoretical gain (dotted line). This gap will be larger with more overhead of the framework,
or more parallelization (e.g. multithreading). Second, the gap decreases as the hidden state size
increases because the the overhead becomes negligible with very large matrix operations. Hence, the
benefit of Skim-RNN will be greater for larger hidden state size.

Latency. A modern GPU has much higher throughput than a CPU with parallel processing. However,
for small networks, the CPU often has lower latency than the GPU. Comparing between NumPy with
CPU and TensorFlow with GPU (Titan X), we observe that the former has 1.5 times lower latency
(75 µs vs 110 µs per token) for LSTM of d = 100. This means that combining Skim-RNN with
CPU-based framework can lead to substantially lower latency than GPUs. For instance, Skim-RNN
with CPU on IMDb has 4.5x lower latency than a GPU, requiring only 29 µs per token on average.

5 CONCLUSION

We present Skim-RNN, a recurrent neural network that can dynamically decide to use the big RNN
(read) or the small RNN (skim) at each time step, depending on the importance of the input. While

7NumPy’s speed becomes similar to that of TensorFlow and PyTorch at d = 220 and d = 700, respectively.
At larger hidden size, NumPy becomes slower.
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Skim-RNN has significantly lower computational cost than its RNN counterpart, the accuracy of
Skim-RNN is still on par with or better than standard RNNs, LSTM-Jump, and VCRNN. Since
Skim-RNN has the same input and output interface as an RNN, it can easily replace RNNs in existing
applications. We also show that a Skim-RNN can offer better latency results on a CPU compared
to a standard RNN on a GPU. Future work involves using Skim-RNN for applications that require
much higher hidden state size, such as video understanding, and using multiple small RNN cells for
varying degrees of skimming.
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A MODELS AND TRAINING DETAILS ON SQUAD

A.1 LSTM+ATTENTION DETAILS

Let xt and qi be the embeddings of t-th context word and i-th question word, respectively. We first
obtain the d-dimensional representation of the entire question by computing the weighted average of
the question word vectors. We obtain at = softmaxi(w

⊤[xt;qi;xt ◦qt]) and ut =
∑

i atqi, where

w ∈ R
3d is a trainable weight vector and ◦ is element-wise multiplication. Then the input to the

(two layer) Bidirectional LSTMs will be [xt;ut;xt ◦ ut] ∈ R
3d. We use the outputs of the second

layer LSTM to independently predict the start index and the end index of the answer. We obtain the
logits (to be softmaxed) of the start and the end index distributions from the weighted average of the
outputs (the weights are learned and different for the start and the end). We minimize the sum of the
negative log probabilities of the correct start/end indices.

A.2 USING PRE-TRAINED MODEL

(a) No pretrain We train Skim LSTM from scratch. It has unstable skim rates, which are often too
high or too low, and have very different skim rate in forward and backward direction of LSTM, with
a significant loss in performance.

(b) Full pretrain We finetune Skim LSTM from fully pretrained standard LSTM (F1 75.5, global
step 18k). As we finetune the model, performance decreases and skim rate increases.

(c) Half pretrain We finetune Skim LSTM from partially-pretrained standard LSTM (F1 70.7,
pretraining stopping at 5k steps). Performance and skim rate increase together during training.
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Figure 8: F1 score and skim rate when using differ-
ent pretraining schemas. Models with half-pretrained
model (Yellow) outperforms models with no pretrained
model (Blue) or fully pretrained model (Green), both
in F1 score and skim rate.
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trained model (Red) have unstable skim rates.

B EXPERIMENTS ON CHILDREN BOOK TEST

In Children Book Test, the input is a sequence of 21 sentences, where the last sentence has one
missing word (i.e. cloze test). The system needs to predict the missing word, which is one of ten
provided candidates. Following LSTM-Jump (Yu et al., 2017), we use a simple LSTM-based QA
model that help us to compare against LSTM and LSTM-Jump. We use single-layer LSTM on the
embeddings of the inputs and use the last hidden state of the LSTM for the classification, where the
output distribution is obtained by performing softmax on the dot product between the embedding of
each answer candidate and the hidden state. We minimize the negative log probability of the correct
answers. We follow the same hyperparameter setup and evaluation metrics from that of Section 4.1.

Results. In Table 5, we first note that Skim-LSTM obtain better results than standard LSTM and
LSTM-Jump. As discussed in Section 4.1, we hypothesize that the increase in accuracy could be due
to the stabilization of the recurrent hidden state over a long distance. Second, using Skim-LSTM, we
see up to 72.2% skimming rate, 3.6x reduction in the number of floating point operations and 2.2x
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reduction in actual benchmarked time on NumPy with reasonable accuracies. Lastly, we note that
LSTM, LSTM-Jump, and Skim-LSTM are all significantly lower than the state of the art models,
which consist of a wide variety of components such as attention mechanism which are often crucial
for question answering models.

LSTM config CBT-NE CBT-CN

Model d′/γ Acc Sk Flop-r Sp Acc Sk Flop-r Sp

Std -/- 49.0 - 1.0x 1.0x 54.9 - 1.0x 1.0x

Skim 10/0.01 50.9 35.8 1.6x 1.3x 56.3 43.7 1.8x 1.5x
Skim 10/0.02 51.4 72.2 3.6x 2.3x 51.4 86.5 7.1x 3.3x
Skim 20/0.01 36.4 98.8 50.0x 1.3x 38.0 99.1 50.0x 1.3x
Skim 20/0.02 50.0 70.5 3.3x 1.2x 54.5 54.1 2.1x 1.1x

LSTM-Jump (Yu et al., 2017) 46.8 - - 3.0x 49.7 - - 6.1x

SOTA (Yang et al., 2017) 75.0 - - - 72.0 - - -

Table 5: Question answering experiments with standard LSTM, Skim-LSTM, LSTM-Jump (Yu et al.,
2017) and state of the art (SOTA) on NE and CN parts of Children Book Test (CBT). Hidden state
sizes of all models are 200, except for LSTM-Jump, which used hidden state size of 512.
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C VISUALIZATION

Q: What year is the earliest traces of the color Crimson at Harvard? (A: 1858)
Answer by model (bottom to top): 1858 / 1858 / 1875
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Q: How many forced fumbles did Thomas Davis have? (A: four)
Answer by model (bottom to top): four / four / two
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Q: How many forced fumbles did Thomas Davis have? (A: four)
Answer by model (bottom to top): four / four / four / four / two
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Figure 10: Reading (red) and skimming (white) on SQuAD, with LSTM+Attention model. The top two are
skimming models with different values of γ. The bottom one is skimming models with different values of skim
decision threshold (whose default is 0.5). An increase in γ and a decrease in threshold lead to more skimming.
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