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Neural Spike Sorting Under Nearly 0-dB Signal-to-Noise
Ratio Using Nonlinear Energy Operator and Artificial

Neural-Network Classifier

Kyung Hwan Kim and Sung June Kim*

Abstract—We report a result on neural spike sorting under conditions
where the signal-to-noise ratio is very low. The use of nonlinear energy op-
erator enables the detection of an action potential, even when the SNR is so
poor that a typical amplitude thresholding method cannot be applied. The
superior detection ability facilitates the collection of a training set under
lower SNR than that of the methods which employ simple amplitude thresh-
olding. Thus, the statistical characteristics of the input vectors can be better
represented in the neural-network classifier. The trained neural-network
classifiers yield the correct classification ratio higher than 90% when the
SNR is as low as 1.2 (0.8 dB) when applied to data obtained from extra-
cellular recording from Aplysiaabdominal ganglia using a semiconductor
microelectrode array.

Index Terms—Extracellular recording, neural-network classifier, neural
spike sorting, nonlinear energy operator, signal-to-noise ratio.

I. INTRODUCTION

For purpose of studying information transmission within the
nervous system, the extracellular recording of a neural signal is
very useful, since it enables simultaneous monitoring of activities
of several nearby neurons. Usually the recorded waveform includes
action potentials from several cells which are physically near the
electrode site and, thus, it should be classified into spike trains from
each individual cell for further analysis in which the spike train is to
be considered to be a point process [1], [2].

During the past three decades, various classification methods
ranging from simple amplitude discrimination to a neural-network
classifier have been applied to the issue of spike sorting [3]–[8], and
some have been implemented in commercially available packages
such as Spike2 (Cambridge Electronic Design Ltd., Cambridge, U.K.),
and MAP system (Plexon Inc., Dallas, TX). It appears that when the
signal-to-noise ratio (SNR) is sufficiently high, any of the suggested
schemes are capable of yielding satisfactory results. Recently, by
using a neural-network classifier, more than 80% correct classification
has been reported when the SNR is higher than four [5]. However, in
actual extracellular recording, the cases often arise where the SNR
is much lower. Recent advances in electrode fabrication technology
enables the simultaneous recording of many adjacent neurons, up
to hundreds of channels. These electrode arrays would, however, be
expected to suffer from higher impedance noise because of the reduced
size of the electrode site. Furthermore, if one uses a semiconductor
neural probe with on-chip CMOS circuitry, more noise problems arise,
as the result of the noise characteristic of CMOS preamplifier. The
noise characteristic of CMOS circuit is inferior to that of the typical
instrumentation amplifiers that are used for extracellular recording,
due to the high 1/f (flicker) noise level of the MOSFET [9], [20], [21].

Manuscript received May 3, 1999; revised May 30, 2000. This work was sup-
ported by the Ministry of Health and Welfare, Korea, under Grant HMP-98-
E-1-0006.Asterisk indicates corresponding author.

K. H. Kim is with the School of Electrical Engineering, Seoul National Uni-
versity, Kwanak-gu, Seoul 151–742, Korea (e-mail: khkim@helios.snu.ac.kr).

*S. J. Kim is with the School of Electrical Engineering, Seoul National Uni-
versity, San 56–1, Shillim-dong, Kwanak-gu, Seoul 151–742, Korea (e-mail:
kim@helios.snu.ac.kr).

Publisher Item Identifier S 0018-9294(00)08531-1.

A typical extracellular recording consists of a background noise floor
and distinct spikes. However, closer inspection of the recording shows
that it also contains spikes whose amplitude is similar to that of the
background noise. As shown in Fig. 1, it is not unusual for the SNR
to be as low as 0 dB. In previous studies, efforts have been largely ex-
erted on the classification method to enhance classification accuracy,
to enable real-time operation, or to resolve overlapped action potentials
[4]–[6]. Less attention has been paid to the correct detection of action
potential although this is critical for the neural spike sorting system.
Bankman and Janselewitz have described procedures to elaborate the
threshold determination procedure [11]. However, in cases where SNR
is very poor as in Fig. 1, the correct detection of an action potential
by thresholding is very difficult, irrespective of how well the threshold
level is adjusted. Thus, methods which permit the utilization of infor-
mation other than amplitude needs to be employed for spike detection.

Time-frequency analysis methods or matched filter detection repre-
sent possible solutions. Yang and Shamma have used the Haar trans-
form [7] and Gozani and Miller have employed matched filter detection
[8], but, neither of these studies have shown detection and classification
performance tests under very low SNR. In addition, the matched filter
detection requiresa priori knowledge concerning the waveform of the
target signal and the background noise and, thus, cannot be used in the
initial data collection for the training set of the supervised classifier.
Chandra and Optican implemented a neural-network-based method [5].
Their system employs the neural network for spike detection as well
as for classification and, thus, the detection performance can be much
better than that of the simple threshold method. However, for the ini-
tial data collection to obtain training data, they also used a thresholding
method. Moreover, the output of neural network must be calculated for
all data samples, and, as a result, it can be computationally demanding.

In this paper, we employ a nonlinear energy operator (NEO) to utilize
the instantaneous frequency and amplitude information simultaneously
for the detection of action potential for both training and classification
stages. The output of the NEO is proportional to the product of the
instantaneous amplitude and frequency of the input signal, thus, high-
lighting the action potential peak. Its computational burden is slight
[12], [13] and, thus, it has another advantage considering real-time and
multichannel operation. It can be applied to the training stage because
no exacta priori knowledge about the waveform of the target signal is
necessary.

We show the detection and classification performance of our method,
as it is applied to experimental data obtained from abdominal ganglia
of Aplysia. The detection of the neural spikes is possible when the SNR
is very low, and this enables data collection and clustering to obtain the
training set required for the supervised neural-network classifiers under
low SNR. The training set thus obtained better represents the statistical
characteristics of the input vectors than that obtained by simple thresh-
olding. This is because accurate detection by thresholding is possible
only for a relatively high SNR, but, in fact, the classifier can operate
under lower SNRs. In the classification stage, by separating the spike
detection and the classification module it is possible to achieve good
performance under conditions of low SNR with lower computational
requirements than is demanded by the method employed by Chandra
and Optican [5].

For the classification, we used supervised classifiers because
unsupervised classification was not effective under low SNR. We
employed a multilayer perceptron (MLP) and radial basis function
network (RBFN) as trainable classifiers. The performances of these
neural-network classifiers are at least theoretically equivalent to that of
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Fig. 1. A typical extracellular recording from an abdominal ganglion ofAplysiawith a semiconductor microelectrode. The arrows indicate action potential firing.
The problem of spike detection using amplitude (or power) thresholding is illustrated. An erroneous inclusion of noise peak or missing a neural spikeis very
frequent even when the threshold level has been carefully chosen.

Fig. 2. Overall structure of the spike sorting system used in the present study.

the statistical methods [14]. In practice, it is possible to achieve better
performance through their adaptive capabilities of repetitive learning
underlying probability distribution of input pattern vectors [15].

II. M ETHODS

A. Experimental Methods

Aplysia Californicawith body weights of 200–350 grams were se-
lected. The animals were anesthetized with an injection of a volume of
isotonic MgCl2 equal to approximately one-half of their body weight,
after which, they were mounted on a dissection dish which was filled
with artificial sea water (ASW) (pH: 7.6, composition: NaCl 460 mM,
KCl 10 mM, HEPES 10 mM, CaCl2 11 mM, and MgCl2 54 mM).

Recording experiments were performed in a Faraday cage attached
to a vibration isolation table to reduce power line interference and ar-
tifacts due to vibration.

A semiconductor neural probe with one shank which contains five
iridium (Ir) electrode sites were used. These were obtained from
the Center for Neural Communication Technology, University of
Michigan [10]. The areas of the Ir electrode sites were 75�m2, and
the impedance levels were 2–3 M
 at 1 kHz. The probe was mounted
on a custom-made socket and connected to a unity gain JFET buffer
(DAM80P, World Precision Instruments, Sarasota, FL) which was
attached to a micromanipulator.

After the abdomen was opened, connective tissue was removed, and
ganglia were located by visual inspection under a stereo zoom micro-
scope, the electrode was moved with the micromanipulator, so that
the probe shank was located into the ganglia. A ground electrode was
placed in the saline (i.e., ASW) about 10 cm distant from the target
ganglion.

The output from the buffer stage was sent to a main amplifier with a
bandpass filter (DAM80, World Precision Instruments, Sarasota, FL).
The gain was 1000 and the passband was from 100 Hz to 5 kHz. After
bandpass filtering, the signal was monitored with a digital oscilloscope
(LeCroy 9304AM) the output of which was sent to an audio speaker, a
personal computer via 12–bit 10 000 samples/s analog-to-digital con-
verter, and a digital data recorder with VCR (VR-10B, Instrutech Corp.,
Port Washington, NY). All experiments were performed at room tem-
perature, with no special intentions to control the temperature.

B. Detection and Classification Methods

Fig. 2 shows the overall structure of the spike sorting system used
in the studies. The sorting system takes the raw recording waveform
as input, and processes it with the NEO, in order to extract the action
potentials. The recording waveform is sent to the classifier only when
the output of the NEO exceeds the predetermined threshold. Thus,
the neural-network output is calculated only for the time samples
of the detected action potential. A comparator after the output layer
yields the most probable unit number given as input. The NEO, ,
is defined as

 (x(t)) =
dx(t)

dt

2

� x(t)
d2x(t)

dt2
:

It can easily be shown that the output of the NEO is proportional
to the product of the amplitude and frequency of the input signal [12].
For a discrete-time sequencex(n), the NEO is given as (x(n)) =
x2(n) � x(n + 1)x(n � 1). The NEO has been used for the ampli-
tude and frequency demodulation, the analysis of speech signals, and
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recently for the detection of a spiky waveform in the electroencephalo-
gram (EEG) [12], [13]. All of these studies have made use of the fact
that the NEO can simultaneously consider the “instantaneous” ampli-
tude and frequency information of the input signal. By the “instanta-
neous” amplitude and frequency, we mean the amplitude and frequency
of the dominant sinusoidal component at any particular time. More for-
mally, they can be defined by the Hilbert transform pair [22]. When an
action potential is fired, it is possible to see an instantaneous increment
of signal amplitude and frequency using time-frequency analysis such
as short-time Fourier transform or Wigner–Ville distribution [16]. The
output of the NEO is convolved with a Bartlett window in order to elim-
inate the spurious peaks due to the cross terms and background noise
[16]. For the data being considered herein, we were able to consistently
obtain satisfactory results for window lengths of 6–12.

For the determination of the detection threshold level, the level was
manually adjusted based on data segments containing 20 action poten-
tials, aiming at minimizing the erroneous inclusion of noise (or false
alarm) and the detection miss. A statistically optimal determination of
the threshold level was not attempted because this requires a complete
knowledge of the probability distribution function (pdf). Although we
do, in fact, have knowledge on the pdf for the test set, we attempted
to devise and test a method which is generally applicable to common
experimental recordings. For ourAplysiadata, the threshold selection
was not a difficult problem even for the low SNR as we show later (see
Fig. 5). For the training stage, a high threshold level is desirable, in
order to minimize false alarms (erroneous inclusions of noise).

Two representative neural networks, multilayer perceptron (MLP),
and radial basis function network (RBFN) were employed as classi-
fiers. The training procedure of the overall neural spike sorting system
was as follows. To obtain initial training data, action potentials were de-
tected by processing the raw extracellular recording, the SNR of which
was approximately 2.0 with the NEO. The SNR is defined as shown at
the bottom of the page. Each detected spike was aligned according to
the peak value. After that, fuzzy c-means clustering [19] and further re-
finement (for example, removal of the outliers) by a human supervisor
were performed, in order to obtain the waveforms of the initial training
set. The training set consists of approximately 300 action potentials for
each unit.

The classifiers take 25 sample points (2.5-ms segment) of the de-
tected spikes as input, both in the training and operation stages. The
number of the output nodes of the classifiers was same as the number
of units to be identified. The classifiers were trained so that the output
node which corresponds to the given input spike yielded the maximum
output value. The MLPs with one hidden layer were trained by a mod-
ified backpropagation method with adaptive learning rate [18]. A sig-
moidal activation function was employed for all layers. The number of
the hidden nodes was determined experimentally while simultaneously
considering the sum-squared-error and generalization performance on
a test set which was different from the one used for training. We were
able to obtain satisfactory results for 10–12 hidden nodes. During the
training of the RBFN, the number of hidden layer nodes was increased
until an error goal is satisfied. The centers of radial basis function were
changed by error-correction learning [18].

Test sets for various SNRs were generated from an autoregressive
moving average (ARMA) model of the background noise and the pre-

Fig. 3. Average waveforms of the initial training samples extracted from
extracellular recording ofAplysia abdominal ganglion with semiconductor
microelectrode array.

Fig. 4. Power spectral densities of the action potential with minimum
amplitude shown in Fig. 3, and the background noise.

viously obtained initial training set. The ARMA(4,4) model could sat-
isfactorily represent the background noise of our recording. The model
coefficients were obtained by the extended Yule–Walker method from a
noise segment of the data which had not been used to obtain the training
set [17].

III. RESULTS

The overall sorting system was tested for three-unit classification.
The average waveform of each unit extracted from theAplysia
recording is shown in Fig. 3. From the power spectral densities of the
action potential and that of the background noise shown in Fig. 4, it is
obvious that the neural spike and the background noise share the same
spectral range. The signal shows a bandpass type spectrum, and the

SNR =
peak-to-peak value of action potential with minimum amplitude

root-mean-square value of the pure noise segment

2
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Fig. 5. SNR before and after the processing by the NEO.

(a)

(b)

Fig. 6. (a) Input and (b) output waveform of the NEO spike detector when SNR
= 1.084. The determination of the threshold level is now a trivial problem.

background noise shows a low-pass type spectrum having a 1/f-type
shape with the effect of bandpass filtering. This spectral overlap of
the signal and noise spectrum is common in the extracellular neural

(a)

(a)

Fig. 7. (a) Probability of detection and (b) probability of false alarm for various
values of SNR.

signal recording. The performance testing was done for various levels
of background noise having the spectral characteristic of Fig. 4.

Fig. 5 shows the enhancement in the SNR after the raw waveform is
processed using the NEO. Fig. 6 shows the input and output waveform
of the NEO detector when the SNR is 1.084. From these two figures it is
clear that the determination of the threshold level becomes much more
straightforward when the signal is processed using the NEO, even for
the case of very low SNR. In order to investigate the detection perfor-
mance of the NEO, the test result for the correct detection ratio and the
false alarm (i.e., wrong inclusion of noise) ratio at various SNRs are
shown in Fig. 7. The correct detection was identified when the NEO
output exceeded the threshold level and the location of the peak value
was within 0.5 ms from the true location of the action potential peak.
A false alarm was indicated when the NEO output was higher than
the threshold level where, in fact, no neural spike existed. These ra-
tios were calculated by dividing the number of correct detections and
false alarms by the total number of detected spikes including the false
alarm. When the SNR is lowered to a value below 1.2, the false alarm
ratio becomes higher than 0.2 and the correct detection ratio becomes
lower than 0.9, and, as a result, it is possible that the classification per-
formance deteriorates significantly.
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Fig. 8. CCR at various SNRs (See text for the details).

Fig. 9. Average waveforms of another data set in which two units among three
have very similar target waveforms.

Overall classification test results for the MLP and RBFN under var-
ious SNR values are illustrated in Fig. 8. The result is for the MLP
classifier trained for 10 000 and 20 000 epochs, since further training
increased the performance only slightly. The RBFN classifier in Fig. 8
was trained so that the obtained sum-squared-error was the same as
that of the MLP classifier trained for 30 000 epochs. Our performance
measure was the correct classification ratio (CCR) which was defined
as follows; CCR= (total number of correctly detected and classified
spikes-number of the detection miss)/(total number of correctly de-
tected spikes in the test data)� 100 (%).

The CCR rapidly decreased for cases where the SNR was lower than
1.1, and the CCR was saturated to nearly 100% when the SNR was
increased to levels higher than 1.4–1.5.

Another data set in which two units among the total three have very
similar target waveforms were analyzed, in order to assess the discrim-
ination ability of our method. In our recording, there is no evidence
that the two similar waveforms in Fig. 9 arose from two different units,
because the recording represented spontaneous activity fromAplysia
abdominal ganglion. However, when each unit can be selectively stim-
ulated, Mirfakhraei and Horch showed that it is possible to train a super-
vised neural-network classifier which is capable of discriminating such
similar waveforms [6]. Our aim here was to test whether our method

Fig. 10. CCR at various SNRs for the data shown in Fig. 9.

can be applied to such a case. In order to obtain the training set, back-
ground noise having spectral characteristic shown in Fig. 4 were added
to the mean waveforms shown in Fig. 9. The same method as above
was applied for the test on this data. The classification performance for
this case is shown in Fig. 10.

IV. DISCUSSION

Numerous studies on the classification of multiunit extracellular
neural signal recording have been reported. To date, the results are
satisfactory when the SNR is sufficiently high. The main issue of study
has been moving toward the resolution of overlapped action potentials
[4], [5]. However, in order to use spike sorting more extensively in
real neurophysiological experiments, the SNR required for successful
operation must be lowered further.

The classification performance of neural networks is so powerful
that it can be used to solve pattern recognition problems which appear
to be more difficult than spike sorting under low SNR, but this is valid
only when an appropriate training set is available. Hence, it is predicted
that the prerequisite for spike sorting under low SNR would be on effi-
cient ways for extracting action potentials from high background noise.
Spike detection is also important for the operation of the classifier after
it is trained.

In general, signal detection is accomplished by making the target
signal conspicuous while suppressing noise, and by applying the
thresholding method [22]. In previous studies, less attention has been
paid to spike detection than to classification. As a result, most of
them applied the thresholding directly to the raw recording waveform.
Exceptions involved the use of matched filter detection [8] and neural-
network detection [5]. The matched filter provides a theoretically
optimal linear filter under Gaussian noise, but assumes complete
knowledge of the target waveform and the spectral characteristics
of the noise. A detector based on a neural network also requires
a knowledge on the target signal waveform and the background
noise, for the training. Another shortcoming is in that, in the case
of neural-network, output must be calculated for every input data
samples, while in our method it is calculated only when the action
potential is extracted. Our NEO detector is much faster and requires
less information on the target signal. It takes advantages of the fact
that the firing of action potential provides the temporal increase of
the signal amplitude and frequency. In typical situations when the
bandpass filtering is done, in order to reduce the noise components
outside the bandwidth of the target signal, the NEO detection appears
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to be efficient. However, when the spectral characteristics of the noise
is so similar to that of the signal, the detection performance may
be degraded. This problem may be severe in the case of cortical
recordings where the electrical activities from many neurons which
are not tightly coupled to the electrode become the dominant noise
source. Novel methods for the detection need to be developed to deal
with this problem.

Several studies have reported on spike sorting using an unsupervised
classifier (for example, [23] and [24]), but none of them have verified
its performance under low SNR. Our experiences with the unsupervised
classifiers were not satisfactory for the case of low SNR. Thus, the un-
supervised method was not considered in this paper. However, at least
for the acquisition of initial training data set required for the supervised
classifier, unsupervised clustering is necessary. In this regard, a study
designed to assess the performances of the unsupervised classification
methods under low SNR is necessary. In addition, a study of how to
enable the resolution of overlapped action potentials, especially under
low SNR condition, is also needed.

In conclusion, we have achieved neural spike sorting with a high
success rate under conditions of very low SNR. This was due to the
improved detection scheme in collaboration with the ability of super-
vised neural networks to learn the underlying probability distribution
of given training examples.
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