
REVIEW Open Access

Neural stem cells: are they the hope of a better
life for patients with fetal-onset hydrocephalus?
Montserrat Guerra

Abstract

I was honored to be awarded the Casey Holter Essay Prize in 2013 by the Society for Research into Hydrocephalus

and Spina Bifida. The purpose of the prize is to encourage original thinking in a way to improve the care of

individuals with spina bifida and hydrocephalus. Having kept this purpose in mind, I have chosen the title: Neural

stem cells, are they the hope of a better life for patients with fetal-onset hydrocephalus? The aim is to review and

discuss some of the most recent and relevant findings regarding mechanisms leading to both hydrocephalus and

abnormal neuro/gliogenesis. By looking at these outcome studies, it is hoped that we will recognize the potential

use of neural stem cells in the treatment of hydrocephalus, and so prevent the disease or diminish/repair the

associated brain damage.
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Background

Fetal-onset hydrocephalus is one of the most challenging

pediatric diseases. It has a variety of causes including the

loss of cerebral tissue (cerebral atrophy), the excessive

production of cerebrospinal fluid (CSF), or the obstruc-

tion of CSF pathways due to abnormal neuro- and glio-

genesis [1]. Surgical treatment, such as CSF shunting

and endoscopic third ventriculostomy (ETV) currently

used for the treatment of children with fetal-onset

hydrocephalus, is insufficient. An estimated 50% of

shunts fail within two years and 20-50% of ETVs close

up within five years; infections are also frequent [2].

Additionally, we do not yet know the consequences that

may occur when CSF proteins are shunted into a con-

fined space like the peritoneum that hosts a large num-

ber of immune system cells. There is a high possibility

that shunt surgery and its sequelae generate auto-

antibodies against specific CSF proteins. If these anti-

bodies, or cells that produce them, eventually enter the

brain, they may alter the neuronal physiology and ex-

acerbate neurological deficits. Concerning ETV, we do

not know the consequences of creating an opening

through the membranous floor of the third ventricle to

divert CSF into the subarachnoid space. Considering

that the floor of the third ventricle is a highly specialized

region for the secretion of regulatory factors affecting

pituitary activity, ETV may possibly produce adverse

effects on neuroendocrine regulation. It may also divert

signaling molecules in the CSF away from their intended

targets.

Several relatively recent publications have highlighted

the importance and availability of appropriate secreted

proteins (e.g. sonic hedgehog, insulin growth factor) and

non-proteins (e.g. retinoic acid) distributed in the CSF,

and their roles in development and maintenance of brain

health [3-7]. Changes in CSF composition have a pro-

found influence on the development and function of the

brain. So, hydrocephalus, and the treatments available

(shunting, ETV, and cauterizing the choroid plexus) may

limit the availability of these positive factors for the de-

veloping and adult brain, resulting in severe life-long

neurological deficits.

The financial and emotional costs of treatments to pa-

tients and their families are high and additional therapies

are necessary. From where should solutions come? Con-

sidering the advances in medical science, these solutions

will likely come from the more complete knowledge of

the cellular and molecular processes that lead to the

development of the disease [8]. They should come from

laboratories where research generates information to be
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used in clinical practice. Thus, collaboration between the

experimental and clinical investigators is fundamental and

necessary to advance the search for new treatments.

A question emerges: What have we learned about

fetal-onset hydrocephalus from laboratories? This review

aims to show and discuss some of the most relevant re-

cent findings regarding the mechanisms leading to both

hydrocephalus and abnormal neuro/gliogenesis. It is fo-

cused on congenital hydrocephalus attributed to an ob-

struction in CSF pathways as consequence of abnormal

neural stem/radial glial cell biology.

Fetal-onset hydrocephalus is a pathology of neural

stem cells

It is now accepted that fetal-onset hydrocephalus is

more than a disorder of CSF dynamics. It is also a brain

disease. Recent studies have shown that hydrocephalus

and abnormal neurogenesis, observed in both mutant

animals and human hydrocephalic fetuses, share a com-

mon history: a pathology of the neural stem cells (NSC)/

radial glial cells which are located in the ventricular zone

(VZ) during embryonic development [9-12]. In the non-

hydrocephalic state, these cells are joined by adherens

and gap junctions (Figure 1). In hydrocephalus, cell-cell

junction proteins accumulate abnormally in the cytoplasm

of NSCs and ependymal cells and depending on the brain

developmental stage it lead to their detachment from the

VZ [10-12]. Disruption of the VZ may also be caused ei-

ther by infections or intracerebral haemorrhage [13]. Only

in a minority of cases is it associated with Mendelian in-

heritance, with X-linked hydrocephalus as the most com-

mon type [14,15].

In hydrocephalus disruption of the VZ is orderly and

programmed. The disruption process starts early in the

embryonic life and finishes during the first postnatal

weeks (Figure 1, red arrow). In the mutant hyh mice the

VZ disruption follows a caudo-rostral specific spatio-

temporal pattern [16-18]. At the end of development

certain regions are denuded of ependymal and subepen-

dymal cells, and other areas are not. The latter corres-

pond to brain areas in which cells are joined by tight

junctions, such as the circumventricular organs (e.g.

subcommissural organ, choroid plexus, etc.). Disruption

is clearly related to the clinical outcome (Figure 2).

Various studies have consistently shown VZ disruption

in the walls of the cerebral aqueduct [16-19] and in the
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Figure 1 A representation of normal cortical development showing the timed disruption of the ventricular zone in mouse (red arrow).

The phenotype of cells located in the ventricular zone (VZ) changes during normal brain development. Cell-cell junction pathology in the radial

glial/neural stem cells and ependyma leads to the disruption of the VZ. In mouse, the exposure of the neural progenitor cells (NPC) localized in

the subventricular zone (SVZ) occurs from embryonic day (E) 12.5 onward, when neurogenesis has been initiated. Note that the VZ cells contact

the cerebrospinal fluid (CSF) during embryonic development. A timeline comparing neurogenesis events in the cortex of the mouse and rat in

embryonic days (E) and in human with gestational age in weeks (GA) has been drawn, using a statistical model developed for Clancy et al.

[68,69]. PN, postnatal; As, astrocytes.
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pallium and ganglionic eminences of the telencephalon

[10-12,20,21].

What are the consequences of the disruption of the VZ?

Disruption of the VZ in the walls of the Sylvian aqueduct

(SA) leads to SA stenosis during the prenatal life

through fusion of the neuropil and results in SA obliter-

ation prior to birth [16-19] (Figure 2). This finding is

significant since it explains the addition of intraventricu-

lar obstruction after birth to what appeared (by imaging)

to be communicating hydrocephalus pre-birth because

the VZ disruption is only completed post-birth with the

expected consequences [19].

The disruption of the VZ in the pallium and the gan-

glionic eminences leads to disturbances in neuro/glio-

genesis, such as the displacement of neural progenitors

(NPC) towards the CSF and the abnormal migration of

neuroblasts in the cerebral cortex (Figure 2). This results

in periventricular heterotopias (PH) that disrupt the nor-

mal organization and function of the cerebral cortex

[10-12,20,21]. Since these cerebral malformations are

present at birth, it may explain why a large number of

hydrocephalic children develop neurological disorders

(sensory, cognitive sequels, epilepsy) that are not re-

solved by CSF shunting [2].

PH represents a heterogeneous group of migrational

disorders, characterized by nodules that are composed

of neurons positioned ectopically along the lateral ven-

tricular walls; they also behave as epileptogenic foci [22].

Prior studies have demonstrated an X-linked form of PH

caused by mutations in the filamin A gene [23,24]. Mu-

tations in other proteins, like ARFGEF2, CHS1, FAT4,

coding for proteins involved in neuronal migration also

lead to PH [23-25]. PHs are also a recurrent, but some-

times inconsistent, finding in terminal deletions of

chromosome 6q [26]. PH associated with hydrocephalus

(PHH) has primarily been reported in sporadic cases

[10-12,21,23]. Genetic and molecular studies suggest

that PHH is an etiologically heterogeneous condition

that can be caused by different genes. One of these is

the NAPA gene, coding for SNAPs (soluble NSF-

attachment proteins) involved in the trafficking of pro-

teins to the apical membrane [21,23,27].

It is estimated that epilepsy affects 6 to 30% of hydro-

cephalic patients [28,29]. However, no correlations have

been found between the number of shunt revisions or

the site of shunt placement and the risk of developing

seizures [30,31]. It seems the most likely explanation for

the development of seizure disorder in hydrocephalic pa-

tients is the presence of associated malformations (PH?)

in the cerebral cortex. Evidence indicating that PH may

result from radial glial/NSCs fiber disruption during em-

bryonic development has been reported [10-12,21,32].

Is stem cell therapy an alternative treatment for children

with fetal-onset hydrocephalus?

Because disruption of the VZ is genetically determined

and its consequences are widespread, the questions that

arise are: is it possible to reverse this process and in

doing so, will it have therapeutic benefits? The available

evidence provides a ray of hope that it is possible to de-

velop regenerative therapies based on the use of NSCs.

These cells have two basic characteristics: they are self-

sustaining and pluripotent [33,34]. This means that they

proliferate for self-renewal; they also have the potential

to differentiate into several cell types within the brain.

There are at least five advantages of using NSCs for

nervous system repair strategies: NSCs are available in

the embryonic and adult brain; they can be transplanted;

and they migrate, differentiate and integrate into dam-

aged areas. Furthermore, studies have shown that the

ability of NSCs to migrate and differentiate into the re-

quired cell type depends on the damaged areas which re-

lease specific chemotactic factors [33,34]. Regenerative

therapies are being used in the treatment of various

neural disorders such as Parkinson’s and Alzheimer’s

disease and multiple sclerosis [35-37] (Table 1).

According to these studies and the revealed character-

istics of NSCs a hopeful light is emerging for the future,

so healthy NSCs can be transplanted into CSF to replace

radial glial cells, neural progenitors and neuroblasts that

are lost during the hydrocephalic process. This regenera-

tive therapy might well repair the VZ and/or reverse the

Bleeding/hemorrhage

(intraventricular or cerebral) Viral infection

Cell-cell junction proteins

Abnormal trafficking of 

proteins to membrane

Disruption of the ventricular zone 

(NSCs, ependymal cells)

Hydrocephalus Abnormal neuro/gliogenesis

Loss of cerebral tissue Excessive production of CSF

Figure 2 Clinical outcome is related to the disruption of the

ventricular zone. The disruption of the ventricular zone (VZ)

through effects on cell junction proteins can result from a variety

of causes including abnormal trafficking of proteins to membrane,

bleeding/hemorrhage and viral infections. The disruption of

the ventricular zone in the telencephalon leads to abnormal

neurogenesis. The disruption of the ventricular zone in the Sylvian

aqueduct leads to aqueduct obstruction and hydrocephalus.

Hydrocephalus may also result from loss of cerebral tissue (cerebral

atrophy) and excessive production of cerebrospinal fluid (CSF).
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effects of the VZ disruption. Thus, malformations of the

cerebral cortex that are found in the hydrocephalic chil-

dren, which until now have been considered incurable,

could have a realistic and promising alternative treat-

ment. Such research could also open new ways to

identify genes and epigenetic factors (growth factors,

hormones) involved in neuronal and glial phenotypic dif-

ferentiation allowing the design of new drugs to regulate

the normal development of the cerebral cortex.

Stem cell therapy for hydrocephalic children: is it science

fiction or fact?

The development of regenerative therapies based on the

use of NSCs to treat children with hydrocephalus is

advancing well. Research led by Dr. EM. Rodríguez in

Valdivia, Chile, using HTx hydrocephalic rats that re-

ceive transplants with NSCs, today represents the most

advanced and promising alternative treatment for chil-

dren with fetal-onset hydrocephalus. Preliminary studies

have demonstrated that NSCs transplanted into CSF of

hydrocephalic HTx rats at postnatal day 1 migrate to the

disrupted areas and are integrated into nervous tissue

[Rodríguez et al., unpublished work]. The effect of this

grafting on neuro/gliogenesis is under current investiga-

tion. The optimal timing for potential NSC transplant-

ation into human CSF is unknown at this time. With the

different causes leading to hydrocephalus in mind, a pro-

posed stem cell therapy would have to be adapted to the

different clinical backgrounds.

Investigations in Chile have already borne fruit. NSCs

collected from the CSF of hydrocephalic mutant rats

and hydrocephalic human fetuses proliferate to form

neurospheres (Figure 3). NSCs forming these neuro-

spheres express the same cell junctional pathology as

NSCs of pallium (Figure 3) [Rodríguez et al., unpub-

lished work]. These accomplishments open the door for

the use of neurospheres for diagnostic purposes, such as

brain biopsies to investigate cell and molecular alter-

ations underlying the disease. In this context, it is signifi-

cant to note that although nearly 40% of hydrocephalus

patients have a possible genetic cause, to date only the

L1-CAM gene has been identified in humans [15].

It is worth noting that although sphere formation has

been extensively utilized by research groups as an assay

for stem cells to isolate, maintain, and expand NSCs

[38], like all technologies, it is not without limitations,

some of which have been extensively reviewed by differ-

ent authors [39-41]. Furthermore, the growth and differ-

entiation of neurospheres depend on cell culture density,

the clonality of spheres and the presence of exogenous

growth factors such as epidermal growth factor (EGF) or

fibroblast growth factor (FGF) [39-41]. While new assays

and markers for stem cells and their progeny have yet to

be developed to overcome some of the limitations of the

neurospheres assay, these have to be kept in mind before

extrapolating results or translating the experimental

transplantation of neurosphere-derived cells to the clin-

ical setting.

What will be the source of NSCs to be transplanted?

Today it is well known that NSCs are present in the em-

bryonic and adult brain. During embryonic development,

the NSCs are in the VZ whereas during adulthood there

are “neurogenic niches” where specific postnatal neurogen-

esis persists. Postnatal neurogenesis in these areas is associ-

ated with the renewal of the olfactory epithelium, memory

formation and cerebral metabolic homeostasis [42].

Human embryonic stem cells (hES cells)

These pluripotent cells have a major clinical potential

for tissue repair, with their proponents believing that

they represent the future relief or cure for a wide range

of common disabilities [43,44]. It is suggested that the

replacement of defective cells in a patient by transplant-

ation of hES cell‐derived equivalents would restore nor-

mal function. Recently they have been used to generate

choroid plexus (CP) cells [45]. Because of the essential

developmental and homeostatic roles of CP cells relating

to the CSF and the resulting blood-CSF barrier, the

transplant of hES cells into CSF and differentiation into

CP cells could represent a new approach for developing

a therapy for hydrocephalus. Interestingly, CP cells have

been grafted into the lateral ventricle of normal and

hydrocephalic HTx rat littermates [Rodríguez et al., un-

published work]. One week after transplantation the

transplanted CP retained the cellular and molecular

characteristics of living CP such as the expression of

transthyretin in the cytoplasm and aquaporin1 at the ap-

ical plasma membrane. Since the grafted CP cells did

not become re-vascularized, they would not secrete CSF

but could be an extra source of trophic factors.

Despite the potential benefit of using hES cells in the

treatment of disease, their use remains controversial be-

cause of their derivation from human pre‐implantation

Table 1 Clinical use of stem cells in the nervous system

Pathology References

Alzheimer’s Disease Abdel-Zalam et al., 2011 [87]

Parkinson’s Disease Bjugstad et al., 2008 [88]

Huntington’s Disease Mc Bride et al., 2004 [89]

Multiple sclerosis Pluchino et al., 2003 [90]; Martini et al., 2010 [54];
Rivera and Aigner 2012 [56]

Spinal cord injury Obermair et al., 2008 [91]

Brain stroke Kelly et al., 2004 [92]

Cerebral palsy Cheng et al., 2013 [55]

Spina bifida aperta Fauza et al., [77]; Li et al., 2012 [57]
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embryos [46]. The most controversial variant of this is

the transfer of a somatic cell‐nucleus from a patient to

an enucleated oocyte (unfertilized egg) in order to pro-

duce hES cells genetically identical to that patient for

‘autologous’ transplantation (so‐called ‘therapeutic’ clon-

ing) which avoids tissue rejection [47,48]. hES cells are

currently discussed not only by the biologists by whom

they were discovered but also by the medical profession,

media, ethicists, governments and politicians. The ques-

tion ‘Can these cells be isolated and used and, if so,

under what conditions and restrictions?’ is presently

high on the political and ethical agenda, with policies

and legislation being formulated in many countries to

regulate their derivation.

Mesenchymal stem cells (MSCs)

Fortunately, the use of embryos is not the only and

best way to obtain stem cells. Populations of stem cells

reside within different tissues, representing an alterna-

tive source of cells that can be harvested at low cost, iso-

lated with minimal invasiveness, and without ethical

objections, are emerging as a replacement for hES cells

[49]. In this context, various studies have shown the

presence of a large MSCs population in umbilical cord

blood, placental membranes and amniotic fluid [50]. In

human and veterinary research, stem cells derived from

these tissues are promising candidates for disease treat-

ment, specifically for their plasticity, their reduced

immunogenicity, and high anti-inflammatory potential

[51-53]. Increasing research of molecular mechanisms

that drive the differentiation of MSCs to NSCs [54,55]

enhance the likelihood that MSCs could be useful in the

treatment of neurological diseases. In fact, already trans-

plantation of MSCs promotes myelin repair and func-

tional recovery in different animal models of multiple

sclerosis [56]. Transplantation also confers beneficial

hyHTx PN1

LCR

6DIV

A B
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EGF+

BrdU

C

BrdU

BrdU+DIC
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Figure 3 Neurospheres can be grown from the cerebrospinal fluid of hydrocephalic HTx rats. The disruption of the ventricular zone (VZ)

leads to the abnormal translocation of neural stem cells (NSC) and neural progenitor cells (NPC) into the ventricle [10,11]. A. Coronal section of

hydrocephalic brain stained with haematoxylin-eosin. Cells collected from the cerebrospinal fluid (CSF) of hydrocephalic HTx rats at postnatal day

1 (PN1) were cultured in medium containing 20 ng/ml epidermal growth factor (EGF) for six days. BrdU was added to the culture medium for the

last 24 h. B-D. Immunofluorescence of large and small neurospheres with anti-BrdU stain showing proliferative (NSC/NPC) cells. C. High magnifica-

tion of a small neurosphere. D. High magnification of a large neurosphere. E. After 6 days in vitro neurospheres had an irregular outline, with cells

“disrupting” from its periphery (arrows) resembling that of the VZ of the living mutant. DIC, Differential interference contrast microscopy. Scale

bars: A 600 μm; B 50 μm; C 5 μm; D, E 10 μm.
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effects when MSCs are transplanted in utero into rat

fetuses with spina bifida [57].

Induced pluripotent stem cells (iPSCs)

Today, thanks to progress in the ability to manipulate

cell identity, it is possible to reprogram adult skin fibro-

blasts into induced pluripotent stem cells (iPSCs). They

represent a new tool for drug discovery, disease model-

ing and a new hope for stem cell therapies [58-62]. In a

recent paper Lancaster et al. [63] described a method

for growing three-dimensional neural tissue from human

PSCs and used it to model microcephaly. The resulting

cerebral organoids reached up to 4 mm in size and con-

tained polarized radial glia-like stem cells that surround

a fluid-filled cavity resembling the lateral ventricle in the

developing brain. This model may serve as a valuable

in vitro platform for studying the molecular mechanisms

that regulate the development of brain cortex and could

provide an innovative and complementary approach for

the study of the VZ disruption leading to hydrocephalus

and abnormal neuro/gliogenesis in vitro.

When should NSC transplantation be performed?

The hyh mutant mouse develops long-lasting hydro-

cephalus and is a good model for investigating neuro-

pathologic events associated with hydrocephalus. The

study of brains using lectin-binding, bromodeoxyuridine

labeling, immunochemistry, and scanning electron mi-

croscopy has revealed that certain events related to

hydrocephalus follow a well-defined pattern [16-18]. A

program of VZ disruption is initiated at embryonic day

(E)12.5 at the cerebral aqueduct and terminates at the

end of the second postnatal week at the telencephalon.

After the third postnatal week the disrupted areas re-

main permanently devoid of ependyma. The etiopatho-

genesis of hydrocephalus in the HTx rat is different

from that in the hyh mouse. A distinct malformation of

the subcommissural organ (SCO) is present as early as

E15 leading to stenosis of the cerebral aqueduct at E18

and dilation of the lateral ventricles starts at E19 [64,65].

At this stage, the VZ disruption is initiated in the

pallium of telencephalon and terminates at the end of

the first postnatal week.

In hydrocephalic human fetuses the VZ cells, either NSCs

or ependymal cells, undergo disruption [10-12,19,20]. In

young hydrocephalic fetuses (21, 22 weeks of gestational

age, GA) disruption occurs in the pallium while in 40-week

GA fetuses the disruption extended to other regions of the

lateral ventricles. The VZ disruption in the pallium was

found to be related to the presence of PHs in the telenceph-

alon and the abnormal displacement of the NSCs into the

ventricle [10-12,20]. In full-term hydrocephalic fetuses with

spina bifida aperta (37-, 39-and 40-week GA), both early

and late stages of the VZ disruption were concurrently

present in the cerebral aqueduct [19] indicating that at

these stages, the VZ disruption is still an ongoing process.

In these fetuses it may be suggested that such a process

would have continued after birth. Only when this program

is completed, the obliteration of SA occurs, triggering a se-

vere hydrocephalus [19].

Human brain development is a protracted process that

begins in the third gestational week [66,67]. Neuron pro-

liferation begins in the sixth gestational week and is

largely complete by mid-gestation. As they are produced,

neurons migrate to different brain areas where they

begin to make connections with other neurons establish-

ing rudimentary neural networks. Although at the end

of the prenatal period major fiber pathways, including

the thalamocortical pathway, are complete, brain devel-

opment continues for an extended period postnatally

(Figure 4).

So far, the information obtained from mutant animals

and human hydrocephalic fetuses strongly supports

the idea that pallial disruption occurs while cortical

4     8    12    16    20   24    28   32   36 
Adulthood 

Birth 

Gestation (weeks) 

Figure 4 Timeline of major events in the human brain development from conception through to adulthood. Blue bar, neuronal

proliferation; Green bar, neural migration; Red bar, myelination; Orange bar, synaptogenesis; Purple bar, apoptosis (adapted from [93]).
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neurogenesis is proceeding (Figure 4). Ideally, trans-

plants should be done when the VZ disruption occurs.

In this context, NSC transplantation should occur in the

early stages of fetal development during the process of

neuron production in the cortex [66-69]. There are rea-

sons to be optimistic. Recent progress made with fetal

surgery in utero [70,71] allows us to foresee that these

surgeries might become increasingly safe and that trans-

plantation of NSCs in utero might become feasible. The

main priority must be maternal and fetal safety and

avoiding preterm labor while achieving the aims of the

surgery [72]. Open fetal surgery is possible between ap-

proximately 18 and 30 weeks of gestation: the limitations

being fetal size and fragility before 18 weeks and, and

increased risk of premature labor after 30 weeks [72].

Clearly it would be preferable to deliver the child and

perform surgery ex utero instead. Prenatal repair of

neural tube defects such as myelomeningocele and spina

bifida is an increasing option in the United States.

Although the procedure is technically challenging, chil-

dren treated with open fetal repair have significantly im-

proved outcomes compared to children whose defects

are repaired shortly after birth [73,74]. Specifically, fetal

repair reduces the rate of ventriculoperitoneal shunt de-

pendence for hydrocephalus and improves motor skills

at 30 months of age compared to those with post-natal

repair. As a result, open fetal repair of spina bifida is

now considered standard of care at specialist centers.

Most children born with spinal bifida also have hydro-

cephalus. Why not use open fetal surgery to repair the

neural tube defects as an opportunity to transplant

NSCs? Indeed, fetal cell therapies have been employed

in the treatment of human congenital hematological dis-

eases and immunodeficiency [75,76], and in experimen-

tal animal models of spina bifida and myelomeningocele

[57,77]. These studies have also shown that the safety of

stem cell therapy depends on various factors including

the differentiation status and proliferative capacity of the

grafted cells, the route of administration and the long-

term survival of the graft.

What should we expect of repair?

It was first assumed that stem cells directly replace lost

cells, but it is now becoming clearer that they might be

able to protect the nervous system through mechanisms

other than cell replacement, such as the modulation of

the immune system [51-53,78,79]. Worthy of note is the

remarkable capacity of NSCs and NPCs to cross-talk

with endogenous cells and to remodel the injured ner-

vous system when they are applied [80-83]. Further, a re-

cent study demonstrated an astrocytic reaction in the

disrupted VZ in hydrocephalus in that astrocytes acquire

morphological and functional characteristics of epen-

dymal cells, suggesting that they function as a CSF–

brain barrier involved in water and solute transport [84].

Such remodeling would help to re-establish lost func-

tions at the brain parenchyma–CSF interface. Therefore,

we postulate that grafting of NSCs into hydrocephalic

brain would result in the replacement of cells and/or the

generation of a protective microenvironment to prevent

the progressive disruption of the VZ and to enhance fa-

vorable glial responses.

Conclusions
Today it is accepted that fetal-onset hydrocephalus is

more than just an alteration in CSF dynamics. It is also a

brain disorder. Children born with hydrocephalus also

have a severe malformation of the cerebral cortex and

cognitive deficits. These deficiencies are not successfully

addressed by shunting or by ETV. The transplantation

of NSCs is emerging as a great hope to correct brain

maldevelopment, helping to reduce the brain damage

and promoting regeneration and repair through direct

cell replacement and neurotrophic and immunomodula-

tory mechanisms. Many questions regarding the applica-

tion of stem cells remain unanswered, particularly

tumorigenicity, immune rejection and danger of gene

manipulation. However, transplantation is expected

eventually to become as common a practice as other

treatments for neurological diseases ([85,86], Table 1).

To achieve the NSCs transplantation goal for hydro-

cephalus/spina bifida will require better integration of

experimental and clinical activities to reveal the genetic

control of identity and growth of stem cells, identify fac-

tors that predispose differentiation into specific neuronal

or glial lineages, and implement surgical techniques that

allow safe NSCs transplants. Expectations, though

guarded, are high. If both basic and clinical researchers

join forces, the dream of providing a better life to chil-

dren with hydrocephalus will draw closer with each

passing day.
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