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Introduction: Advantageous effects of biological motion (BM) detection, a low-
perceptual mechanism that allows the rapid recognition and understanding of
spatiotemporal characteristics of movement via salient kinematics information, can
be amplified when combined with motor imagery (MI), i.e., the mental simulation of
motor acts. According to Jeannerod’s neurostimulation theory, asynchronous firing and
reduction of mu and beta rhythm oscillations, referred to as suppression over the
sensorimotor area, are sensitive to both MI and action observation (AO) of BM. Yet, not
many studies investigated the use of BM stimuli using combined AO-MI tasks. In this
study, we assessed the neural response in the form of event-related synchronization
and desynchronization (ERD/S) patterns following the observation of point-light-walkers
and concordant MI, as compared to MI alone.

Methods: Twenty right-handed healthy participants accomplished the experimental
task by observing BM stimuli and subsequently performing the same movement
using kinesthetic MI (walking, cycling, and jumping conditions). We recorded an
electroencephalogram (EEG) with 32 channels and performed time-frequency analysis
on alpha (8–13 Hz) and beta (18–24 Hz) frequency bands during the MI task. A two-
way repeated-measures ANOVA was performed to test statistical significance among
conditions and electrodes of interest.

Results: The results revealed significant ERD/S patterns in the alpha frequency band
between conditions and electrode positions. Post hoc comparisons showed significant
differences between condition 1 (walking) and condition 3 (jumping) over the left primary
motor cortex. For the beta band, a significantly less difference in ERD patterns (p < 0.01)
was detected only between condition 3 (jumping) and condition 4 (reference).

Discussion: Our results confirmed that the observation of BM combined with MI elicits
a neural suppression, although just in the case of jumping. This is in line with previous
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findings of AO and MI (AOMI) eliciting a neural suppression for simulated whole-body
movements. In the last years, increasing evidence started to support the integration of
AOMI training as an adjuvant neurorehabilitation tool in Parkinson’s disease (PD).

Conclusion: We concluded that using BM stimuli in AOMI training could be promising,
as it promotes attention to kinematic features and imitative motor learning.

Keywords: EEG, ERD/ERS, biological motion, action observation (AO), motor imagery (MI)

INTRODUCTION

Motor imagery (MI), i.e., the mental rehearsal of a motor
act without overt movements by muscular activity (Jeannerod,
1995, 2001), is considered to be a conscious top-down process,
including the simulation of sensory, perceptual, and emotional
aspects of movements (Calmels, 2019). Action observation
(AO) is a bottom-up process that occurs in the presence of
external stimulation (Calmels, 2019), encompassing different
neurocognitive processes, such as action recognition, intention
understanding, and action prediction (Sinigaglia and Rizzolatti,
2011; Vogt et al., 2013; Di Nota et al., 2017). In general,
studies involving AO often employ videos of the movements
of real bodies which are enriched with visual information
(Mezzarobba et al., 2021). Nonetheless, the use of biological
motion (BM) stimuli, i.e., point-lights that move with biologically
derived kinematics (Johansson, 1973), has shown increasing
benefits in AO tasks (Mezzarobba et al., 2021). First, it is an
advantageous mechanism that allows the brain to recognize
purposeful movements and social cues (e.g., direction, gender,
and emotions) very rapidly (Beintema and Lappe, 2002; Gao et al.,
2015; Lu et al., 2016; Wang et al., 2018). Second, it draws the
attention of the observer to the kinematic aspects of movements
and not to the unrelated elements of the action, such as the
face or emotional expressions (Mezzarobba et al., 2021). Instead,
the observer can focus on body postures (i.e., body sway during
gait) and kinematic features (i.e., step length) without distractions
(Sokolov et al., 2018; Mezzarobba et al., 2021). Third, BM triggers
and spontaneously primes imitation of kinematic movements
(Mather et al., 1992; Bieńkiewicz et al., 2013), hence promoting
motor learning (Abbruzzese and Pelosin, 2018).

According to Jeannerod’s (2001) neurostimulation theory,
AO, MI, and motor execution (ME) should be conceptualized
as part of a continuum, sharing the same neural substrates
(Kaneko et al., 2021). Neuroimaging data confirm this functional
equivalence, by revealing the involvement of an overlapping
cortical premotor-parietal network (Caspers et al., 2010; Hétu
et al., 2013; Hardwick et al., 2018; Kaneko et al., 2021). This is
true also for BM, which has been demonstrated to share with
MI an internal simulation of the seen image, later translated
into a motor representation (Ulloa and Pineda, 2007; Miller and
Saygin, 2013). Neuroimaging studies revealed BM implication
in a wide range of neural networks, such as the mirror neuron
system (MNS) (Sinigaglia and Rizzolatti, 2011; Jeon and Lee,
2018; Thornton, 2018), suggesting an internal simulation of BM
stimuli during visual perception and imagination of the actions
of others (Gao et al., 2015).

Traditionally, the neural correlates of MI and AO as measured
by means of electroencephalography (EEG) are the Rolandic
mu rhythm, usually found within the alpha frequency band
(8–13 Hz) over central electrodes positions (Pfurtscheller and
Lopes Da Silva, 1999; Ulloa and Pineda, 2007; Di Nota et al.,
2017; Chen et al., 2020) and the beta frequency band (18–
14 Hz), associated with actual movement. The latter has been
shown to desynchronize following a mental rehearsal of actions
(Pfurtscheller and Lopes Da Silva, 1999; Neuper et al., 2009;
Jeon et al., 2011). It is believed that, when the mu and
beta rhythms desynchronize or suppress with respect to a
baseline, cortical neurons over sensorimotor areas are excited
(Neuper et al., 2009; Eaves et al., 2016a). Whereas, when
brain rhythms synchronize, neurons are inhibited reflecting the
deactivation of surrounding cortical areas that do not need
to be recruited (Neuper et al., 2009; Eaves et al., 2016a).
Those spatiotemporal event-related desynchronization (ERD)
and event-related synchronization (ERS) usually coexist in the
alpha and beta frequency bands, respectively, with more focal
ERD and larger and more distributed surrounding ERS during
MI, AO, and ME (Pfurtscheller et al., 2006; Wriessnegger et al.,
2018).

In past studies, MI and AO tasks have been investigated
separately, or either in combination (AOMI) (Eaves et al., 2016b;
Di Nota et al., 2017; Scott et al., 2019). Some EEG studies revealed
larger desynchronizations of the alpha and beta frequency bands
over central electrodes locations during AOMI of walking as
compared to the resting condition (Scott et al., 2019; Kaneko
et al., 2021). Similarly, in studies analyzing the modulation of
sensorimotor rhythms during the control of a brain-computer
interface (BCI) for upper limbs movements, greater ERD in the
lower alpha and beta bands was found during AOMI in the form
of realistic neurofeedback as compared to control conditions
(Neuper et al., 2009; Friesen et al., 2017). Eaves et al. also found
more pronounced mu and beta suppressions over sensorimotor
and parietal regions when AO and MI of static hand posture are
synchronized tasks, producing stronger responses over prefrontal
regions than other conditions (Eaves et al., 2016a). Consistently,
EEG studies showed that BM stimuli induce the suppression
of the mu wave, as compared with scrambled/non-biological
movements in the areas of the MNS (Ulloa and Pineda, 2007;
Gao et al., 2015). These results are in line with the hypothesis of
a sensorimotor system that simulates purposeful human actions
when executed, imaged, or observed (Jeannerod, 2001; Quadrelli
et al., 2019).

Yet, only a few studies have been conducted using
more complex imaging of whole-body movements
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(Wriessnegger et al., 2014). In neurofeedback research, AOMI
showed a superior training effect, as reflected by an ERD
amplitude enhancement (Kondo et al., 2015). We believe that
the integration of AO and MI training using BM stimuli may
serve as an efficient experimental paradigm to elicit increased
alpha and beta neural suppression (Abbruzzese et al., 2016;
Caligiore et al., 2017). Since the nature of the feedback (i.e.,
biological and goal-directed movements) appears to be relevant
in the final neurofeedback outcome (Ulloa and Pineda, 2007;
Neuper et al., 2009), the development of an effective task must
include ecological stimuli that are not too enriched by irrelevant
visual stimuli and that will lead to the increase in ERD during
whole-body imagery, ultimately priming kinesthetic movements
(Mezzarobba et al., 2021). This could benefit not only BCI
systems but also more generally neurorehabilitation programs
(Ono et al., 2018).

In fact, MI and AO are both considered promising tools
in motor learning and neurorehabilitation, especially for stroke
patients, but more recently new evidence suggests a beneficial role
also for neurodegenerative diseases (Caligiore et al., 2017; Friesen
et al., 2017; Dunsky and Dickstein, 2018; Calmels, 2019; Herranz-
Gomez et al., 2020). Parkinson’s disease (PD), the second most
common neurodegenerative disease after Alzheimer’s disease
(Tolosa et al., 2021), has its main symptomatology characterized
by tremors, gait impairments, and slowness of movements,
the so-called bradykinesia (Bieńkiewicz et al., 2013). Promising
evidence showed the clinical benefits of AO and MI in PD as part
of an adjuvant treatment (Abbruzzese et al., 2016; LaHue et al.,
2016; Caligiore et al., 2017; Miladinović et al., 2020; Lambert et al.,
2021). However, since often these patients present attentional
impairments, the use of BM stimuli focusing only on kinematics
seems clinically advantageous (Mezzarobba et al., 2021).

This study demonstrates that MI combined with AO using
BM stimuli could enhance the neural response, expressed by
an increment of the desynchronization of the mu and beta
frequency bands as compared to MI alone (reference condition).
This study investigates which type of movement elicits a
stronger neurophysiological response after combined training
(AOMI). Based on the literature, we hypothesized a greater
ERD of the mu and beta frequency bands (increased ERD)
following BM observation and concordant MI task for three
different movements (experimental conditions), as compared
to when a non-BM stimulus was shown prior to the MI task
(reference condition).

MATERIALS AND METHODS

Participants
Twenty healthy right-handed volunteers (12 male, 8 female)
participated in the experiment. All reported normal or corrected
to normal vision, and none of them had a history of psychiatric
or neurological diseases. The age of the sample ranged from 18
to 64 years old (M = 31; SD = ± 15). The study was approved
by the local ethics committee (Medical University of Graz) and
was in accordance with the ethical standards of the Declaration
of Helsinki. After a detailed written and oral instruction on the

paradigm and kinesthetic MI task, participants gave informed
consent to participate in the experiment.

Experimental Procedure
Participants were seated in a comfortable armchair in a
soundproof, air-conditioned, and dimmed room with a distance
of approximately 120 cm from the 24′′ full-HD monitor
(60.92 cm diagonal with a resolution of 1,920 × 1,080 Pixel).
The calculated visual angle of the presented stimuli was 9.5273◦
(stimulus height: 20 cm). They performed the task according to
written instructions given prior to the experiment. Additionally,
participants were verbally instructed to passively observe moving
figures in the form of point-light walkers presented in a random
order (BM conditions) on the computer screen. Furthermore, it
was explained verbally how to perform kinesthetic imagination,
making sure they could perform it before the start of
the experiment. Four different conditions were presented to
the participants: walking (condition “1”), cycling (condition
“2”), jumping (condition “3”), and scrambled/non-biological
movement (condition “4” reference). After the presentation of a
fixation cross for 1.5 s, one of the 4 BM conditions appeared on
the screen, followed by the written instruction “Imagine.” As long
as this instruction was present on the screen (10 s), participants
had to imagine with their eyes open from the first-person
perspective, i.e., the physical sensations associated with the
movement they just observed (kinesthetic imagery). They were
also asked to keep the imagination in a repetitive and continuous
manner for the entire duration of the imagery period (10 s)
(Figure 1). After this imagination phase, an intertrial interval
of 2.5–3 s followed before the next trial started. To make sure
that the kinesthetic imagery performance was maintained over
time, the experimenter required feedback from the participants
between trial breaks and repeated the instructions, if needed.

Only in the scrambled movement condition (reference
condition) in which no human or biological movement could
be identified, participants were also asked to imagine walking
(like in condition “1”). This latter instruction was given to
provide a MI baseline reference for later comparisons. MI was
performed 40 times per run in a pseudorandomized order. In
total, four runs were performed, resulting in 160 trials (40 trials
for each condition type). One trial lasted about 18 s, consisting
of a fixation cross (1.5 s), the BM observation phase (5 s), the
imagination phase (10 s), and an intertrial interval (2.5–3 s,
randomized). Overall, each run lasted about 12 min with a 5-
min break in between runs to avoid mental fatigue, for a total
of 48 min to complete the whole experiment. The experimental
paradigm is described in detail in Figure 1.

Electroencephalogram Recording
The EEG signals were recorded with 32 active electrodes
according to the 10/20 international system (Brain Products,
Gilching, Germany). Additionally, electrooculogram (EOG)
movements were recorded with three electrodes. The reference
was set at electrode position FCz and the ground electrode at
FPz. All signals were recorded using a BrainAmp amplifier with a
sampling rate of 500 Hz.
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FIGURE 1 | Experimental paradigm and timing of one trial.

Preprocessing and Event-Related
Desynchronization/Event-Related
Synchronization Analysis
The EEG signals were preprocessed using EEGLAB software
(Delorme and Makeig, 2004), by first performing gross artifact
detection through visual inspection. Then, a high-pass filter
of 0.5 Hz and a low-pass filter of 30 Hz were applied
to increase the signal-to-noise ratio. Consequently, the raw
signal was downsampled from 500 to 250 Hz. The reference
was maintained at FCz. For each event, the epoch length
was set to −1 and 10 s within the MI time window. The
baseline was selected from −200 to 0 ms prior to the
imagery task. After epoching, the independent component
analysis (ICA) was performed to manually exclude further
artifacts from the epoched signal. Trial component rejection was
conducted by both visual inspection and automatic rejection
thresholds according to default parameters (Delorme and
Makeig, 2004). According to the time-frequency function in
EEGLAB, we computed ERD/S plots time-locked to a set of
single channels: C3, CP1, CP2, Cz, C4 input epochs (10-
s MI time window) (Delorme and Makeig, 2004), which
are believed to mostly reflect the activity of somatosensory
cortex (Pfurtscheller and Lopes Da Silva, 1999; Cho et al.,
2017). EEG studies on MI and AO have in fact shown
that the estimated shared cortical sources underlying the mu
and beta rhythms are mainly located in central and parietal
electrodes (Eaves et al., 2016a; Fox et al., 2016; Cho et al.,
2017). Event-related spectral perturbation (ERSP) plots were
computed to visualize mean event-related changes in spectral
power (ERD/S) over time and in the selected alpha and beta
frequencies for all single channels (Delorme and Makeig, 2004)
(Figure 2).

We used a logarithmic scale to optimize the amplitudes
of low-frequency oscillations (Herrmann et al., 2014).
The significance of deviations from baseline power was
computed using a bootstrap approach (values of p < 0.05)
(Delorme and Makeig, 2004).

Also, the topographical 2D scalp maps of alpha and beta
frequency bands (8–13 Hz and 18–24 Hz) of 3 s within the MI
time window (8.5–11.5 s) were plotted (Figure 3).

Statistical Analysis
To test the statistical significance between CONDITIONS
(walking, cycling, jumping, and reference) and CHANNELS of
interest (C3, CP1, CP2, Cz, C4), a two-way repeated-measures
ANOVA was performed using jamovi (The jamovi project (2021)
version 1.6., Retrieved from https://www.jamovi.org).

Averaged ERD/S values were analyzed for the alpha (8–
13 Hz) and beta frequency bands (18–24 Hz) during a
specific time window (8.5–11.5 s), considering the independent
variables “CONDITION” (4 levels: walking, cycling, jumping,
and reference condition) and “CHANNELS” (5 levels: C3, CP1,
CP2, Cz, C4) as within-subject variables. Mauchly’s test of
sphericity is used to evaluate whether the sphericity assumption
has been violated. Furthermore, several post hoc tests with the
Bonferroni correction were performed controlling the probability
of making one or more Type I errors (Keselman and Rogan,
1977). A Shapiro–Wilk test was performed to test if the data are
normally distributed.

RESULTS

The results of the Shapiro–Wilk test (α = 0.05) were non-
significant, confirming a normal distribution of the dataset.
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FIGURE 2 | Event-related spectral perturbation (ERSP) plots. ERSP plots show mean changes in spectral power during the motor imagery (MI) epoch, relative to a
–200-ms pre-stimulus baseline. Plots are shown for the electrode positions C3, Cz, C4, CP1, and CP2, and the four experimental conditions: MI of walking, cycling,
jumping, and reference. The red color represents the ERS, whereas the blue color represents the ERD in decibel (dB) (range: ± 4).

Whenever sphericity was violated, the Greenhouse-Geisser
correction was applied. Furthermore, the Bonferroni corrected
p-values were used to correct for multiple comparisons with an
adjusted alpha level of 0.008.

For the alpha-band (8–13 Hz), the two-way repeated-
measures ANOVA revealed a statistically significant main effect
for CHANNELS (F (2.6, 49.3) = 7.34, p < 0.001, η2 = 0.42) and
CONDITION (F (1.57, 29.74) = 13.63, p < 0.001, η2 = 0.28).
Post hoc analysis showed significant differences in mean ERD/S
values between Condition 1 and 3 (t(19) = 4.84, p < 0.001),
Condition 2 and 3 (t(19) = 3.84, p = 0.007), and Condition 3 and
4 (t(19) =−3.68, p = 0.009) (Figure 4).

For the beta-band, the two-way repeated-measures ANOVA
revealed a significant main effect only for the within-factor
CONDITION (F (2.12, 40.3) = 5.11, p = 0.009, η2 = 0.21). Post
hoc tests showed a significant trend between Condition 3 and 4
(t(19) =−2.95, p = 0.049) (Figure 5).

DISCUSSION

Action Observation and Motor Imagery
of Biological Motion
This study defines whether AOMI using BM stimuli could
produce a suppression in the mu (8–13 Hz) and beta frequency
band (18–24 Hz) when compared to MI alone (reference
condition). However, this seems to be true only for the
observation and imagination of jumping, where an increased
ERD pattern was found compared to the walking, cycling, and
reference condition. It is arguable that walking and cycling
are more automatic movements that can be elicited without
requiring a strong involvement of cortical sensorimotor areas but
rather a default mode network activation (Di Nota et al., 2017;
Kaneko et al., 2021). Whereas jumping can be considered a more
unusual and complex movement that needs to recruit several
brain areas (Di Nota et al., 2017; Mizuguchi and Kanosue, 2017).
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FIGURE 3 | Topographical 2D scalp maps of the alpha (A) and beta frequency (B) bands for all four conditions. The maps were generated on the averaged
event-related spectral perturbations of the 32 electrodes in the time window of 8.5–11 s (MI task period).

FIGURE 4 | Bar plots of mean ERD/S values of the alpha-band for all conditions at electrode positions C3, CP1, CP2, Cz, C4. Significant differences were indicated
by inserting the corresponding p-value (α < 0.05). Error bars are SE (±2).

This conjecture is supported by recent fMRI studies showing
greater activation of somatosensory cortices when performing
whole-body movements compared to more simple movements,
such as walking (Mizuguchi and Kanosue, 2017; Carius et al.,
2020). EEG studies also support this claim, by showing that
compared to daily life movements, composite actions recruit
a greater cognitive repertoire as reflected by greater ERDs
during AO and MI of complex movements (Gonzalez-Rosa
et al., 2015; Di Nota et al., 2017). These aspects are in line
with the neurostimulation framework supporting the claim
of an enhanced neural network activation triggered by the
combination of both observation and imagery (Jeannerod,
2001; Munzert et al., 2008). In light of this, it is possible to

speculate that the combination of BM and MI has an effect
on the experience-dependent plasticity of alpha and beta brain
oscillations by possibly modulating the shared action network
patterns (Calabresi et al., 2014; Abbruzzese et al., 2016; Di Nota
et al., 2017; Kaneko et al., 2021).

Future Directions for Parkinson’s
Neurorehabilitation
Neuroscientific advances suggest that the degenerated
dopaminergic pathways of the basal ganglia in PD may be
“by-passed” by external sensory stimulation of goal-directed
actions, such as BM observation (Mezzarobba et al., 2021),
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FIGURE 5 | Bar plots of mean ERD/S values of the beta-band for all conditions at electrode positions C3, CP1, CP2, Cz, C4. Error bars are SE (±2).

producing motor improvement, the so-called “paradoxical
akinesia” (Bieńkiewicz et al., 2013; Abbruzzese et al., 2016).
Since parallel findings among PD and healthy participants in
the ability to image kinesthetic movements of a hand after
observation have been found (Bek et al., 2019), our findings
suggest that training based on AOMI of complex movements
could strengthen patients’ synaptic transmission, improve
balance, coordination and muscle strength (Abbruzzese et al.,
2016; Abbruzzese and Pelosin, 2018; Scott et al., 2021). This
could be a particularly relevant training option, especially in
times of pandemics, when the need for new tasks and artificial
tools in telemedicine is at its highest priority (Bokolo, 2020).
Even so, the clinical efficacy of AOMI training still needs
to be confirmed by randomized clinical trials (Abbruzzese
and Pelosin, 2018). Taken together, these results could help
in defining a correct task and cognitive strategy for AOMI
in neurorehabilitation based on BM (Friedrich et al., 2013;
Gonzalez-Rosa et al., 2015; Caligiore et al., 2017). In fact,
in this study, the imagery of jumping involved the whole-
body coordination and balance, and BM stimuli were used to
recruit both sensory and motor information to allow a correct
coordination of upper and lower limbs at a neural level. Another
interesting result, although just observational, was that a different
trend for ERD distributions was found in relation to age classes.
We found a more focal mu desynchronization in the youngest
(18 years old) compared to a more widespread in the oldest
(60 years old) participant. This is in line with another EEG
study showing less lateralized activity in older participants,
reflecting changes in sensorimotor functions due to aging
(Zich et al., 2017b).

Limitations
Even though the study provided promising results, there are
some limitations. First, the small sample size and its age
heterogeneity did not allow us to draw definitive conclusions
since a certain interindividual variability or age effect could be

expected when performing MI (Zich et al., 2017b; Wriessnegger
et al., 2020; Ladda et al., 2021). An example of variability
related to the level of expertise is the familiarity with a specific
movement and the ability to produce MI (e.g., due to past
sports experiences and familiarity with the MI task) (Hétu
et al., 2013; Wriessnegger et al., 2014; Aoyama et al., 2020;
Ladda et al., 2021). Moreover, this study did not take into
account interindividual differences of ERD/S neural correlates
when performing MI (Wriessnegger et al., 2020). In light
of this, future studies should take into account age and
interindividual characteristics, particularly when considering
to provide AOMI training as a neurorehabilitation tool for
patients with PD (Caligiore et al., 2017; Zich et al., 2017a).
This could be carried out by including formal MI assessments
at baseline (e.g., questionnaires on kinesthetic imagery) and
selecting groups based on performance and age a priori.
Ultimately, this would allow to design user-centered training
protocols in line with new models of precision medicine
(Friedrich et al., 2013; Hahn and Lee, 2019) and improve the
application for BCIs (Friedrich et al., 2013; Turconi et al., 2014;
Caligiore et al., 2017).

CONCLUSION

This study provides evidence supporting the neurosimulation
theory (Jeannerod, 2001; Calmels, 2019) by using abstract BM
stimuli. The observation of BM of a complex act combined
with MI, as in the case of jumping, induced a mu and beta
suppression over the Rolandic area compared to the other types
of movements and MI alone. This is believed to be in line
with the existing literature on the advantage of combining AO
and MI tasks (Eaves et al., 2016b). Since jumping is a kind
of movement that involves the whole body, equilibrium, and
coordination, it is plausible to assume that AOMI could improve
both motor learning and performance (Caligiore et al., 2017).
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Moreover, the use of BM stimuli promotes the attentional focus
on the kinematic features of movements and imitative learning
(Abbruzzese et al., 2016; Mezzarobba et al., 2021), as well as
brain plasticity and paradoxical akinesia phenomena in PD
(Polli et al., 2017). Future research is needed to provide clinical
validity for an effective visuomotor training to be included
in physical rehabilitation programs or in BCI applications for
patients with PD (Friedrich et al., 2013; Caligiore et al., 2017;
Abbruzzese and Pelosin, 2018).
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