
 
 

Neural-Symbolic Learning and Reasoning: Contributions and Challenges 

Artur d’Avila Garcez1, Tarek R. Besold2, Luc de Raedt3, Peter Földiak4, Pascal Hitzler5, Thomas Icard6, 
Kai-Uwe Kühnberger2, Luis C. Lamb7, Risto Miikkulainen8, Daniel L. Silver9 

1City University London, UK; 2Universität Osnabrück, Germany; 3KU Leuven, Belgium; 4Univ. of St. Andrews, UK; 5Wright State Uni-
versity, OH; 6Stanford University, CA; 7UFRGS, Brazil; 8UT Austin, TX; 9Acadia University, Canada 

 
 
 

Abstract 
The goal of neural-symbolic computation is to integrate ro-
bust connectionist learning and sound symbolic reasoning. 
With the recent advances in connectionist learning, in par-
ticular deep neural networks, forms of representation learn-
ing have emerged. However, such representations have not 
become useful for reasoning. Results from neural-symbolic 
computation have shown to offer powerful alternatives for 
knowledge representation, learning and reasoning in neural 
computation. This paper recalls the main contributions and 
discusses key challenges for neural-symbolic integration 
which have been identified at a recent Dagstuhl seminar. 

 1. Introduction    
In order to respond to one of the main challenges of Artifi-
cial Intelligence (AI), that is, the effective integration of 
learning and reasoning (Valiant 2008), both symbolic in-
ference and statistical learning need to be combined in an 
effective way. However, over the last three decades, statis-
tical learning and symbolic reasoning have been developed 
largely by distinct research communities in AI (but see 
below for exceptions). More recently, developments in 
deep learning have been connected strongly with and have 
contributed novel insights into representational issues. So 
far these representations have been low level, and have not 
been integrated with the high-level symbolic representa-
tions used in knowledge representation.  It is exactly in this 
area that neural-symbolic learning and reasoning has been 
relevant for over two decades, having addressed many rel-
evant representational issues, e.g. the binding problem 
(Feldman, 2013; Sun, 1994). Neural-Symbolic Learning 
and Reasoning seeks to integrate principles from neural-
networks learning and logical reasoning. It is an interdisci-
plinary field involving components of knowledge represen-
tation, neuroscience, machine learning and cognitive sci-
ence. This note briefly overviews some of the achieve-
ments in neural-symbolic computation and outlines some 
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key challenges and opportunities. These challenges have 
been identified at a recent Dagstuhl seminar on Neural-
Symbolic Learning and Reasoning, in Wadern, Germany 
(September 2014), which marked the tenth anniversary of 
the workshop series on Neural-Symbolic Learning and 
Reasoning, which started at IJCAI 2005 in Edinburgh. For 
details about the seminar presentations, please visit: 
http://www.dagstuhl.de/14381. For more information about 
the workshop series, please visit www.neural-
symbolic.org. Another area that is relevant to Valiant’s 
challenge is that of statistical relational learning and prob-
abilistic logic learning (Getoor et al., 2007; De Raedt et al., 
2007), which aim at integrating probabilistic graphical 
models rather than connectionist methods with logical and 
relational reasoning. 
 The integration of the symbolic and connectionist para-
digms of AI has been pursued by a relatively small re-
search community over the last two decades and has yield-
ed several significant results.  Over the last decade, neural-
symbolic systems have been shown capable of overcoming 
the so-called propositional fixation of neural networks, as 
McCarthy (1988) put it in response to Smolensky (1988); 
see also (Hinton, 1990). Neural networks were shown ca-
pable of representing modal and temporal logics (d’Avila 
Garcez and Lamb, 2006) and fragments of first-order logic 
(Bader, Hitzler, Hölldobler, 2008; d’Avila Garcez, Lamb, 
Gabbay, 2009). Further, neural-symbolic systems have 
been applied to a number of problems in the areas of bioin-
formatics, control engineering, software verification and 
adaptation, visual intelligence, ontology learning, and 
computer games (Borges, d’Avila Garcez, and Lamb, 
2011; de Penning et al., 2011; Hitzler, Bader and d’Avila 
Garcez, 2005). Most of the work on knowledge representa-
tion and learning in neural networks has focused on varia-
ble-free logic fragments. However, one should note that 
several approaches have dealt with alternative formaliza-
tions of variable binding, and the representation of rela-
tions (Bader, Hitzler, and Hölldobler, 2008; d’Avila 
Garcez, Lamb, and Gabbay, 2009; Pinkas, Lima, and Co-
hen, 2012; Franca, d’Avila Garcez and Zaverucha, 2014).  
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 In deep learning (Hinton, Osindero, and Teh, 2006), the 
generalization of abstract representations from raw data 
may be a fundamental objective, but how it happens is not 
fully understood (Tran and d'Avila Garcez, 2013). Deep 
architectures seek to manage complex issues of representa-
tion abstraction, modularity, and the trade-off between 
distributed and localist representations. Several techniques 
developed under the umbrella of neural-symbolic computa-
tion can be useful towards this goal. For instance, fibring 
neural networks offer the expression of levels of symbolic 
abstraction. Connectionist modal logics are modular by 
construction (d’Avila Garcez, Lamb and Gabbay, 2007).  
 In what follows, challenges and opportunities for neural-
symbolic integration are outlined, as a summary of the 
discussions held at the Dagstuhl seminar. In a nutshell: (i) 
the mechanisms for structure learning remain to be fully 
understood, whether they consist of hypothesis search at 
the concept level, including (probabilistic) Inductive Logic 
Programming (ILP) and statistical AI approaches, or itera-
tive adaptation processes such as Hebbian learning and 
contrastive divergence; (ii) the learning of generalizations 
of symbolic rules is a crucial process and not well under-
stood - the adoption of neural networks that can offer de-
grees of modularity, such as deep networks, and the neural-
symbolic methods for knowledge insertion and extraction 
from neural networks may help shed light into this ques-
tion; (iii) effective knowledge extraction from large-scale 
networks remains a challenge - computational complexity 
issues and the provision of compact, expressive descrip-
tions continue to be a barrier for explanation, lifelong 
learning and transfer learning. Items (i)-(iii) above open up 
a number of research opportunities, to be discussed next. 
 

2. State-of-The-Art Results and Challenges  
Representation: Most of the work on neural-symbolic 
learning and reasoning has focused on propositional logics. 
Early approaches were based essentially on the connection-
ist representation of propositional logic, a line of research 
which has since been substantially extended to other 
finitary logics (d’Avila Garcez, Lamb, Gabbay 2009). 
Some primary proposals for overcoming the propositional 
fixation of neural networks include (Gust, Kühnberger, and 
Geibel, 2007) which leverages variable-free representa-
tions of predicate logic using category-theoretic Topoi, 
(Bader, Hitzler, and Hölldobler, 2008) for predicate Horn 
logic programs (with function symbols) which utilizes an 
encoding of logic as vectors of real numbers mediated by 
the Cantor set, and (Guillame-Bert, Broda, and d’Avila 
Garcez, 2010) for learning first-order rules based on term 
encoding also as vectors. These systems have been shown 
to work in limited proof-of-concept settings or small ex-
amples, and attempts to achieve useful performance in 
practice have so far not been successful. To advance, it 
may well be necessary to consider logics of intermediate 
expressiveness, such as description logics (Krötzsch, Ru-

dolph, and Hitzler, 2013), so-called propositionalization 
methods, as used by ILP (Blockeel et. al, 2011; França, 
Zaverucha, and d'Avila Garcez, 2014) and answer-set pro-
gramming (Lifschitz, 2002), and modal logics (d'Avila 
Garcez, Lamb and, Gabbay, 2007), known to be more ex-
pressive than propositional logic and decidable. More re-
cent results regarding the integration of description logics 
and rules (Krisnadhi, Maier, and Hitzler, 2011, Krötzsch et 
al., 2011) indicate the feasibility of the approach w.r.t. neu-
ral-symbolic integration. The variable binding problem, 
though, and how neural networks reason with variables 
remain central to this enterprise (d’Avila Garcez, Broda, 
Gabbay 2002; Feldman, 2006; Pinkas, Lima, and Cohen, 
2012).  
 There has been much successful work in the neural-
symbolic computation community on extracting logical 
expressions from trained neural networks, and using this 
extracted knowledge to seed learning in further tasks (see 
d'Avila Garcez, Lamb, and Gabbay (2009) for an over-
view). Meanwhile, there has been some suggestive recent 
work showing that neural networks can learn entire se-
quences of actions, thus amounting to "mental simulation" 
of some concrete, temporally extended activity. There is 
also a very well developed logical theory of action, for 
instance related to the basic propositional logic of pro-
grams PDL (Harel, Kozen, and Tiuryn, 2001), capturing 
what holds true after various combinations of actions. A 
natural place to extend the aforementioned work would be 
to explore extraction from a trained network exhibiting this 
kind of simulation behavior, a PDL expression capturing a 
high-level description of that sequence of actions. As ar-
gued by Feldman (2006), if the brain is not a network of 
neurons that represent things, but a network of neurons that 
do things, action models should be playing a central role.  
 As regards knowledge representation in the brain, one of 
the key challenges is to understand how neural activations, 
which are widely distributed and sub-symbolic, give rise to 
behavior that is symbolic, such as language and logical 
reasoning. Recent advances in fMRI and MEG analysis 
make it possible to develop and test such theories. For in-
stance, formal concept analysis (Ganter and Wille, 1999; 
Endres and Foldiak, 2009) leads to characterization of se-
mantic structures in the brain, and conceptual attribute rep-
resentations (Binder and Desai 2011) make it possible to 
model how semantics concepts map to brain areas. A major 
challenge for the future is to understand how such seman-
tics are constructed and affected by context, such as a se-
quence of words in a sentence.  
Consolidation: Learning to Reason (L2R) is a framework 
that makes learning an integral part of the reasoning pro-
cess (Khardon and Roth, 1997). L2R studies the entire pro-
cess of learning a knowledge base (KB) representation 
from examples of the truth-table of a logical expression, 
and then reasoning with that knowledge base by querying 
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it with similar examples. Learning is done specifically for 
the purpose of reasoning with the learned knowledge in the 
Probably Approximately Correct (PAC) sense. This work 
has close connections to the neuroidal model developed by 
Valiant (2000) that examines computationally tractable 
learning and reasoning given PAC constraints. These con-
straints consider limiting the agent’s environment via a 
probability distribution over the input space and relaxing 
performance bounds on learning and reasoning (Khardon 
and Roth, 1999). Despite interesting early findings (Val-
iant, 2008; Juba, 2013), there is much work to be done to 
make this a practical approach. A major question is how a 
L2R agent can develop a complete KB over time when 
examples of the logical expressions arrive with values for 
only part of the input space.  
 This suggests that a Lifelong Machine Learning (LML) 
approach is needed that can consolidate the knowledge of 
individual examples over many learning episodes (Silver, 
2013a; Fowler, 2011). The consolidation of learned 
knowledge facilitates the efficient and effective retention 
and transfer of knowledge (e.g. rapid and beneficial induc-
tive bias) when learning a new task (Silver, 2013b). It is 
also a challenge because of the computational complexity 
of knowledge extraction and the need for compact repre-
sentations that would enable efficient reasoning about what 
has been learned. Deep networks, however, represent 
knowledge at different levels of abstraction in a modular 
way. This may be related to the representation of modal 
logics, which are intrinsically modular (d’Avila Garcez, 
Lamb, and Gabbay, 2007) and decidable, offering a sweet 
spot in the complexity-expressiveness landscape (Vardi, 
1996). Modularity of deep networks seem suitable to rela-
tional knowledge extraction, which may reduce the compu-
tational complexity of extraction (d’Avila Garcez, Broda, 
and Gabbay, 2001). 
Transfer: Knowledge transfer between, at first site, unre-
lated domains is a characteristic feature and crucial corner-
stone of human learning. As, for example, evidenced by 
the work in (Gentner, Holyoak, and Kokinov, 2001), anal-
ogy is considered essential for learning abstract concepts or 
procedures and for adapting existing knowledge to newly 
encountered scenarios and contexts. Whilst most of the 
prominent computational models of analogy, such as the 
Structure Mapping Engine (Falkenhainer, Forbus, and 
Gentner 1989) or Heuristic-Driven Theory Projection 
(Schmidt, Krumnack, Gust, Kühnberger, 2014) are logic-
based, recent developments in structure learning in a neu-
ral-symbolic paradigm may open the way for an applica-
tion of analogy on a sub-symbolic level. The expected gain 
is enormous: instead of having to retrain a network model 
on a new domain, already obtained insights could mean-
ingfully be transferred between different networks, giving 
subsequent models a head start. Still, many questions have 
to be answered with two of the most foundational ones 

being: How can the knowledge-level notion of analogical 
transfer practically be implemented in connectionist archi-
tectures? How can possible analogies between different 
domains be discovered on a sub-symbolic level in the first 
place? Some work on heterogeneous transfer learning has 
been directed at these questions (Yang et al, 2009). 
Application: From a practical perspective, neural-
symbolic integration has been applied to training and as-
sessment in simulators, normative reasoning, rule learning, 
integration of run-time verification and adaptation, action 
learning and description in videos (Borges, d’Avila 
Garcez, Lamb, 2011; de Penning et al., 2011). Future ap-
plication areas that seem promising include the analysis of 
complex networks, social robotics and health informatics, 
and multimodal learning and reasoning combining video 
and audio data with metadata. Overall, neural-symbolic 
integration seems suitable in application areas where large 
amounts of heterogeneous data are available and 
knowledge descriptions are needed, such as e.g. when vid-
eo and audio data are tagged with ontological metadata (de 
Penning, 2011, Tran and d’Avila Garcez, 2013), including 
robot navigation and communication, health, genomics, 
hardware/software specification, multimodal data fusion 
for information retrieval, big data understanding and, ulti-
mately, language understanding. Several features illustrate 
the advantages of neural-symbolic computation when it 
comes to specific applications: its explanation capacity, no 
a priori assumptions, its comprehensive cognitive models 
integrating symbolic and statistical learning with sound 
logical reasoning. Ultimately, however, in each of the 
above application areas, measurable criteria for compari-
son should include accuracy and efficiency measures, 
knowledge readability.  

3. Conclusions 
Neural-symbolic computation reaches out to two commu-
nities and seeks to achieve the fusion of competing views, 
when such fusion can be beneficial. In doing so, it sparks 
new ideas and promotes cooperation. Further, neural-
symbolic computation brings together an integrated meth-
odological perspective, as it draws from both neuroscience 
and cognitive systems. Methodologically, it bridges gaps, 
as new ideas can emerge through changes of representa-
tion. In summary, neural-symbolic computation is a prom-
ising approach, both from a methodological and computa-
tional perspective to answer positively to the need for ef-
fective knowledge representation, reasoning and learning 
systems. Both its representational generality (the ability to 
represent, learn and reason about several symbolic sys-
tems) and its learning robustness can open interesting op-
portunities leading to adequate forms of knowledge repre-
sentation, be they purely symbolic, or hybrid combinations 
involving probabilistic or numerical representations. 
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