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Abstract

Rememberingwhat a speaker said depends on attention. During conversational speech, the emphasis is onworkingmemory, but

listening to a lecture encourages episodic memory encoding. With simultaneous interference from background speech, the need

for auditory vigilance increases.We recreated these context-dependent demands on auditory attention in 2 ways. The first was to

require participants to attend to one speaker in either the absence or presence of a distracting background speaker. The second

was to alter the task demand, requiring either an immediate or delayed recall of the content of the attended speech. Across 2 fMRI

studies, common activated regions associated with segregating attended from unattended speech were the right anterior insula

and adjacent frontal operculum (aI/FOp), the left planum temporale, and the precuneus. In contrast, activity in a ventral right

frontoparietal systemwas dependent on both the task demand and the presence of a competing speaker. Additionalmultivariate

analyses identified other domain-general frontoparietal systems, where activity increased during attentive listening but was

modulated little by the need for speech stream segregation in the presence of 2 speakers. These results make predictions about

impairments in attentive listening in different communicative contexts following focal or diffuse brain pathology.
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Introduction

Listening to a speaker so that what was said is understood and re-

membered requires attention. The duration of both attention and

the time over which the content of what was heard has to be re-

membered is influenced by context. Thus, taking turns during con-

versations depends on periods of brief attentive listening, with

memory focused principally on what was just said before making

a response. In this context, the emphasis is on working memory.

In contrast, attendance at a lecture is an hour well spent only if

the listener reliably maintains attention over time while encoding

details of the semantic contentof the lectureasenduringmemories.

In addition to the communicative goal, another factor in-

fluencing attentive listening is the auditory environment.

We often hear speech in social situations, so that the “attended”

speech has to be segregated from that of other speakers in the

near vicinity. Research on speech-in-speech masking has been

mainly directed at the auditory cues that listeners use to over-

come the peripheral (energetic, at the level of the cochlea) and

central (informational) masking (Brungart 2001). These include

spatial information, differences in voice pitch and prosody, and

the asynchronyof the onset andoffset of speech sounds (Bregman

1990; Darwin and Hukin 2000a; 2000b; Feng and Ratnam 2000;

Carlyon 2004; Snyder and Alain 2007; Darwin 2008).

Less research has been directed at the demands made on do-

main-general systems for attention that contribute to under-

standing and remembering what a speaker has said in different

communicative contexts, and how their function alters in response

to the challenge of listening to a speaker in the presence of

© The Author 2015. Published by Oxford University Press.

This is anOpenAccess article distributedunder the terms of the Creative CommonsAttribution License (http://creativecommons.org/licenses/by/4.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Cerebral Cortex, November 2015;25: 4284–4298

doi: 10.1093/cercor/bhu325

Advance Access Publication Date: 16 January 2015

Original Article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.oxfordjournals.org


background speech. The 2 functional neuroimaging studies re-

ported here investigated whole-brain activity as normal partici-

pants attended to the verbal message conveyed by a speaker. On

different trials, the speaker was talking in the absence or presence

of another speaker. In both studies, the “attended” and “compet-

ing” speakers were of different sex, offering cues conveyed by

pitch and vocal-tract sizes to assist in the segregation of compet-

ing speech streams. Spatial informationwasalso included in some

trials in one of the studies. Importantly, the task demand was al-

tered between the 2 studies. In one, the participants knew that

they would answer questions about what they had heard only

after the completion of scanning, requiring the series of sentences

to be encoded as episodicmemories. In the other, the participants

responded to a question immediately after each sentence, thereby

placing demands mainly on working memory.

The aim was to investigate the participation of networks in-

volved in domain-general attention and cognitive control as parti-

cipants listened to speech. The existence of these networks iswell

established, and they have been demonstrated in a wide range of

functional neuroimaging studies. Although it is accepted that they

are involved in top-down control across a broad range of task con-

texts and there is consensus about their anatomical distribution,

whether they are truly divisible in terms of functional dissocia-

tions and the precise nature of their processing roles is the subject

of continuing researchonhumans. This is based onboth function-

al neuroimaging studies on normal participants and lesion-deficit

analyses onpatientswith focal lesions (examples, fromnumerous

publications of original research and review articles, include:

Dosenbach et al. 2007; 2008; Corbetta et al. 2008; Shallice et al.

2008; Vincent et al. 2008; Singh-Curry and Husain 2009; Duncan

2010; Hampshire et al. 2010; Menon and Uddin 2010; Roca et al.

2010; Corbetta and Shulman 2011; Woolgar et al. 2011; Hampshire

et al. 2012; Woolgar et al. 2013; Duncan 2013; Aron et al. 2014).

In the 2 studies presented here, we refer to 4 of these networks

by anatomical labels. Based on the published literature, cited earl-

ier, these consist of 2 dorsal frontoparietal systems, symmetrically

distributedbetween thehemispheres, a third,more ventral, fronto-

parietal system that is usually considered to be predominantly

right-lateralized, and a fourth that is distributed between dorsal

midline frontal cortex and bilateral anterior insular and adjacent

frontal opercular cortex. The present studies were designed to in-

vestigateactivityacross thesenetworks during speechcomprehen-

sion, and differences, if any, of the modulation of this activity by

contexts encountered in everyday life. A better understanding of

the participation of these networks in communication in the nor-

mal brain will inform a common problem encountered by patients

with diverse common pathologies, such as stroke, neurodegenera-

tive disease, or traumatic brain injury (TBI). These patients often

find that attending to speakers when they are distracted by back-

ground speech, orwhen theyhave topayattentionover longer per-

iods, is particularly problematic. As a consequence, the additional

impairment in registering verbal information will aggravate any

deficit in the encoding of verbal information. As attention and cog-

nitive control are potential targets for symptom-modifying

pharmacotherapy (for example, Klinkenberg et al. 2011; Robertson

2014), thepresent studyanticipates future investigations of the dis-

eased brain and its potential response to such agents.

Materials and Methods

Subjects

Two experiments were performed. One involved 29 healthy par-

ticipants (11 females, 2 left-handed) with a mean age of 44 years

(range 23–71). In the second, there were 25 healthy participants

(13 females, all right-handed) with a mean age of 66 years

(range 51–83). The subjects were recruited from the community,

through personal contacts and advertisements. None had a his-

tory of neurological or psychiatric disorders. Although none re-

ported difficulty with hearing, the loudness of the stimuli was

adjusted for each participant to a level at which they reported

they could hear the stimuli clearly during scanning. All had nor-

mal or corrected-to-normal vision.Written consentwas obtained

from all participants, with prior approval from the North West

Thames ethics committee.

Experiment 1

Stimuli

There were 2 auditory speech conditions, with equal numbers of

stimuli in each condition. In the first, the participants heard the

voice of a male speaker alone. In the second, they heard the sim-

ultaneous voices of amale and female speaker, with the separate

voices mixed into the same channel; that is, diotic presentation

with no spatial cues (Fig. 1). The participants were informed be-

fore the start of scanning that they would be asked questions

about what the male speaker had said at the completion of scan-

ning, without knowing in advance what form these questions

would take.

All sentences, spoken by themale or female, were recorded in

an anechoic chamber and adjusted to 2-s duration, using Sound

Studio 2.2.4 (Felt Tip softwarewww.felttip.com). The participants

were required to attend to the sentences spoken by the native

English male speaker. These sentences were taken from the

Speech Intelligibility in Noise (SPIN) test (Kalikow et al. 1977).

They have previously been used in an fMRI study on language

comprehension (Obleser et al. 2007). Sixty-four sentences were

randomly chosen from SPIN. All sentences ended in a noun,

and these final nounswere reallocated to produce an equal num-

ber of sentences each with a semantically incongruous noun

ending. This resulted in a total of 128 sentences. The addition

of an incongruous ending to half the sentences spoken by the

male speaker was intended to determine whether breeching an

anticipated sentence endingmodulated activity within the high-

er-order networks regulating attention and cognitive control dur-

ing speech comprehension.

The recorded sentences were adjusted using Praat (http://

www.fon.hum.uva.nl/praat/) to have the same root-mean-

squared average intensity. The sentences spoken by the native

English female speaker were recorded and adjusted in the same

manner as those spoken by themale speaker. She read aloud sen-

tences from a variety of sources, including subsections of con-

temporary news stories, Wikipedia, and a children’s book.

During the diotic presentation of 2 speakers, themale and female

sentences were mixed together equally with a 0-dB signal-

to-noise ratio. In addition, there were 2 low-level baseline con-

ditions: one with bursts of a continuous pure tone at 400 Hz,

without any task demand (Tones) and onewith no auditory stim-

uli (Silence). The 400-Hz tone bursts were adjusted to have the

same duration and equivalent root-mean-squared intensity to

the sentences.

Study Design

The study relied on “sparse sampling” (Hall et al. 1999) during

functional image acquisition, so that all stimuli were heard with-

outmasking by background scanner noise. For an individual trial,

the stimuli were presented during a period of 8 s when there was

no data acquisition (and hence no scanner noise). Datawere then
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acquired during the ensuing 2 s. As soon as one epoch of data ac-

quisition was completed, a visual cue, “listen to the male voice”,

would appear and remain for 8 s when the sentences were pre-

sented. When the pure tones were presented, the visual cue

was “listen to the sounds.” During a sixth condition, without

the presentation of stimuli or any task demand (Silence), the par-

ticipants saw the single word “relax.”During each trial, the parti-

cipants listened through ear-defending headphones (MR Confon,

http://www.mr-confon.de/en/) to 3 different sentences spoken

consecutively by themale speaker, masked by the female speak-

er on half the trials, or 3 consecutive identical pure tones. The

first sentence or tone commenced 0.5 s after the onset of the vis-

ual cue, and there were 0.5 s separating each of the 3 consecutive

stimuli delivered during each trial. The presentation of the stim-

uli, with intervening periods, was completewithin 8 s, afterwhich

the scannerwas triggered to acquire data. Each participant under-

went 2 runs of functional imaging data acquisition, a run consist-

ing of eachof the 4 conditions presented 6 times. This required the

presentation of 144 sentenceswith either themale speaking alone

with sentence endings that were either predictable (MALONE/PRED)

or unpredictable (MALONE/NON-PRED), or in the presence of the

female speaker (MFDIOTIC/PRED andMFDIOTIC/NON-PRED). As the data-

base only contained 128 sentences, 16 sentences were presented

twice. The order of conditions during each run was pseudo-

randomizedwithin subjects. The 2 runswere separated by the ac-

quisition of a high-resolution T1-weighted anatomical MR scan.

Following the scanning session, the participants were pre-

sented with a forced-choice sentence recognition task on a list

of 120 written sentences. Eighty sentences were those spoken

by the male speaker during the scanning session, half when he

spoke alone and half when his voice was partially masked by

the female speaker. An equal number were chosen from those

with and without a semantically predictable ending. None of

the sentences were drawn from the 16 that had been presented

twice. Of the remaining 40 sentences, 20 were those spoken by

the female speaker and 20 had not been presented during the

scanning session. The participants were required to indicate

which sentences they recognized as having been spoken by the

male speaker during the scanning session. Subjects were famil-

iarized with the experiment, both with the prompts and with ex-

amples of the stimuli. The example stimuli were not used during

the scanning session.

Image Acquisition

MRI datawere obtained on a Philips Intera 3.0 Tesla scanner using

dual gradients, a phased-array head coil, and sensitivity en-

coding with an undersampling factor of 2. Functional magnetic

resonance images were obtained using a T2*-weighted gradi-

ent-echo, echoplanar imaging (EPI) sequence (repetition time

8 s; acquisition time 2 s; echo time, 30 ms; flip angle, 90°).

Thirty-two axial slices with a slice thickness of 3.25 mm and an

interslice gap of 0.75 mmwere acquired in ascending order (reso-

lution, 2.19 × 2.19 × 4 mm; field of view, 280 × 224 × 128 mm).

As described earlier, “sparse” sampling was used so that the

subjects heard all stimuli without background scanner noise.

To correct for magnetic field inhomogeneities, a quadratic shim

gradient was used. In addition, high-resolution (1 mm3) T1-

weighted structural images were acquired for each subject. The

trials were programed using E-prime software (Psychology Soft-

ware Tools) and then presented on an IFIS-SA system (In Vivo

Corporation).

Experiment 2

Stimuli

Five speech auditory conditions were used (Fig. 1). The first audi-

tory condition was a female speaker alone (FALONE). The second

was the female speaker in the presence of background babble

(FBABBLE), with the voice and babble mixed into the same chan-

nel to remove spatial cues (diotic presentation). The third was

the female speaker in the presence of a male speaker, again

with diotic presentation (FMDIOTIC). The fourth and fifth conditions

had competing female and male speakers, as in the third

condition, but in these a simulated azimuth spatial cue was

added (dichotic presentation). This was either with the female

speaker at 30° to the left and the male speaker at 30° to the

Figure 1.A diagrammatic representation of the auditory conditions heard during Studies 1 and 2. Study 1 included Conditions A + C. Study 2 had all 5 auditory conditions.

(A) The attended speaker alone (Study 1 =male, Study 2 = female); (B) background babble delivered with the attended speaker through the same channel (diotic

presentation); (C) simultaneous voices of a male and female speaker presented diotically; (D + E) Competing female and male speech, as Condition C, presented

dichotically with a spatial cue (either with the female speaker at 30° to the left and the male speaker at 30° to the right, or vice versa).
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right (FLEFTMRIGHT) of the midline, or vice versa (MLEFTFRIGHT).

Each participant included in this study was rehearsed to ensure

that they perceived the intended directionality of the fourth and

fifth auditory conditions.

Factual statements, taken from children encyclopedias and

books, were spoken by a native English female and male speaker

and recorded in an anechoic chamber. The stimuli, edited in

Sound Studio 2.2.4 (Felt Tip software www.felttip.com), were

6- to 7-s duration. Babble was created using online audio from

the BBC sound effect library (“cocktail party —close perspective

and atmosphere”) and cut to the desired length. Spatial cueing

for FLEFTMRIGHT and MLEFTFRIGHT was introduced by manipulating

intensity using a public-domain database of high spatial-

resolution, head-related transfer functions (CIPIC HRTF data-

base) (Algazi et al. 2001). This simulates the effects of sound

scattering due to different pinna, head, and torso dimensions.

Stimuli included 384 female and 288 male statements and 48

babble speech, randomly chosen. The stimuli were adjusted

using Praat (http://www.fon.hum.uva.nl/praat/) to have the

same root-mean-squared average intensity. The female target

sentences and matched-length male and babble competing sen-

tences were mixed together at 3:0 dB signal-to-noise ratios, to

make hearing the female slightly easier. The participants never

heard the same sentence twice at any point during the practice

sessions or the tasks.

The instruction to the subjects was the same for all auditory

conditions: listen to the female speaker, understand the state-

ment she makes, and prepare to answer a written question (pre-

sented in Helvetica, font size 70, on a computer screen, which

was projected to a 45° angled mirror 10 cm from the participants

eyes), with a “yes” or “no” button press response on the next trial.

The response trial (Response) was the sixth condition. For the

conditions when there was only a female speaker or a female

speaking against background babble, all the questions related

to what the female speaker had said accurate responses being

equally divided between “yes” and “no.” In the 3 conditions

when therewas a competingmale speaker, half the questions re-

lated to what the female speaker had said and half to what the

male speaker had said. During each trial with a distracting

male speaker, the phrases spoken by the female andmale speak-

ers were unrelated in meaning. As an example, the participant

heard the female speaker say “She rummaged about in the closet

looking for a recipe, turning overall of hermother’s recipe books,”

while the male speaker said “The white-tailed deer is tan or red-

dish-brown in the summerand grayish-brown in thewinter.”The

question in the immediately ensuing trial related either to what

the female had said (“Shewas looking for a recipe?”), or what the

male speaker had said (“The deer is white in winter?”). The sub-

jects were not informed beforehand that questions might relate

to the content of the speech of the unattended male speaker, to

ensure they did not attempt to divide attention between the 2

speakers. Each participant undertook 2 short practice runs of

the auditory attention task prior to scanning. The seventh condi-

tion was a Silence condition, the same as in the first study.

Study Design

The conventional “sparse” sampling used for image acquisition

in the first study was modified to further improve signal-to-

noise. Interleaved silent steady state (ISSS) imaging was used.

This ensured that all stimuli were heard with minimal back-

ground scanner noise, while providing greater time course infor-

mation than conventional sparse scanning (Schwarzbauer et al.

2006). During the ISSS runs, volume acquisition was accom-

plished using 5 “imaging” volumes followed by 4 “quiet” volumes,

giving 10 s of gradient activity followed by 8 s of reduced scanner

noise. Radiofrequency (RF) activity, which does not contribute to

scanner noise, in the form of adiabatic fat saturation and slice ex-

citation, was continued in all volumes to keep the recovery of the

longitudinal magnetization equal throughout all volumes. There

was no data acquisition during the quiet volumes as all gradient

activity was turned off, aside from the concomitant slice select

gradient. The slice select gradient’s refocusing lobe was also

turned off. The slice select gradient was necessary to keep the se-

lective RF excitation equivalent. This gradient lobe used a 20 mT/

m/ms slew rate in all volumes, whereas the peak slew rate in the

imaging volumes was 230 mT/m/ms.

For an individual trial, the auditory stimuli were presented

during a period of 8 s when there was no data acquisition and

much reduced scanner noise. As in the first study, the stimuli

were played through ear-defending headphones. Data were

then acquired during the ensuing 10 s of the response trial, con-

sisting of 5 TRs, each of 2 s duration. Once the auditory stimulus

was delivered, a jitter period (averaging 2 s across the trials) oc-

curred before the visual question would appear and remain for

7–9 s during the response trial, allowing the participants’ time

to read the question and respond with a “yes/no” button press.

Each condition, including Silence, was presented as a block of 4

consecutive trials, presented twice during each run. There were

2 runs, with the order of conditions during each run pseudo-ran-

domized within subjects.

Image Acquisition

Access to the scanner used for the first experiment was no longer

feasible at the time of the second study, and so the second study

wasperformedonanalternative3Tscanner. T2*-weightedgradient-

echo planar images were collected on a 3T Siemens Tim Trio

scanner with a 12-channel phased-array head coil. Thirty-five

contiguous axial slices at each of 2 echo times (13 and 31 ms)

with a slice thickness of 3 mm were acquired in interleaved

order (resolution, 3 × 3 × 3 mm; field of view, 192 × 192 × 105 mm),

with a repetition time of 2 s, and 242 volumes were acquired

in 14 m:42 s. To correct for magnetic field inhomogeneities,

the manufacturer-provided higher-order shim procedure was

used. High-resolution (1 mm3) T1-weighted structural images

were also acquired for each subject. Stimuli were presented

using the Psychophysics Toolbox (Brainard 1997) underMATLAB

(Mathworks).

Data Analysis

Univariate Whole-Brain Analyses

For both studies, these analyses were carried out within the

framework of the general linear model using FEAT (FMRI Expert

Analysis Tool) Version 5.98, part of FSL (FMRIB’s Software Library,

http://www.fmrib.ox.ac.uk/fsl). The following image preproces-

sing steps were applied: realignment of EPI images for motion

correction using MCFLIRT (Jenkinson et al. 2002); nonbrain re-

moval using BET (Brain Extraction Tool) (Smith 2002); spatial

smoothing using a 6-mm full-width half-maximum Gaussian

kernel; grand-mean intensity normalization of the entire four-

dimensional dataset by a single multiplicative factor; and

high-pass temporal filtering (Gaussian-weighted least-squares

straight linefitting, with sigma = 50 s) to correct for baseline drifts

in the signal. Time series statistical analysis was carried out

using FILM (FMRIB’s Improved Linear Modeling) with local

autocorrelation correction. Registration to high-resolution struc-

tural and Montreal Neurological Institute (MNI) standard space

images (MNI 152) were carried out using FMRIB’s Linear Image
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Registration Tool (FLIRT). Z (Gaussianized T/F) statistic images

were threshold using clusters determined by Z > 2.3 and a cor-

rected cluster significance threshold of P = 0.05.

The combination of the different runs at the individual sub-

ject level was carried out using a fixed-effects model. Individual

design matrices were created, modeling the different behavioral

conditions. Contrast images of interest in each study were pro-

duced from these individual analyses and used in the second-

level higher analysis. Higher-level between-subject analysis

was carried out using a mixed-effects analysis with the FLAME

(FMRIB’s Local Analysis of Mixed Effects) tool, part of FSL. Final

statistical images were corrected for multiple comparisons using

Gaussian Random Field-based cluster inference with a height

threshold of Z > 2.3 and a cluster significance threshold of P < 0.05.

In the first study, 1 TR was acquired at the end of each trial,

and the recorded signal will have been an accurate representa-

tion of the net neural activity in response towhichever stimulus

had been delivered over the preceding 8 s. The second study re-

quired a more complex analysis, as 5 TRs were acquired during

the response trials. To ensure accurate allocation of the TRs to

specific stimulus- or response-evoked hemodynamic response

functions (HRFs), individual time series explanatory variables

(EVs) were generated using the tools from the FSL library

(glm_gui). Three column format data were entered to produce

a single-column time series EV that was used in the remaining

analysis. For the auditory conditions, the columns included

timing for when the sound started and its duration, whereas

for the response period, it included the onset of the question

and the duration it remained on the screen. This allowed a de-

sign that accurately represented the timing of the scanning

protocol, to ensure the analysis weighted the HRFs evoked

by listening and responding toward their appropriate con-

ditions. Thus, the design matrix modeled the first TR strongly

toward listening; the fifth TR strongly toward reading the ques-

tion, deciding the answer and responding based on what had

been heard in the previous trial and held in working memory;

with the other 3 TRs weighted appropriately in between these

2 extremes.

The datawere analyzed using a standard random-effects gen-

eral linear model, using tools from the FSL library (FEAT version

5.98) (Smith et al. 2004). After image preprocessing, which re-

quired anatomical normalization with realignment of the EPI

images, removing motion effects between scans and smoothing

to 5-mm full-width half-maximum Gaussian kernel, the data

were entered into a univariate statistical analysis within FSL,

based on the general linear model. Within the design matrix,

the 4 auditory verbal conditionswere entered into a factorial ana-

lysis of variance. Main effects and interactions were thresholded

(Z > 2.3) with a cluster significance threshold of P < 0.05 to correct

for whole-brain analyses (Beckmann et al. 2003).

Independent Component Analysis

For each study, this was carried out using group temporal con-

catenation probabilistic independent component analysis

(ICA) implemented in MELODIC (Multivariate Exploratory Linear

Decomposition into Independent Components) Version 3.10,

part of the FSL software (Beckmann and Smith 2004). This ap-

proach to the ICA was used rather than tensor-ICA (Beckmann

and Smith 2005), as the temporal presentation of the stimuli

was different between subjects. Such multivariate analysis

can extract important information from the data that are not

always apparent from a subtractive univariate analysis (for ex-

ample, Leech et al. 2012). ICA takes advantage of low-frequency

fluctuations in the fMRI data to separate the signal into spatially

distinct components. A particular advantage of ICA, which in-

creases sensitivity when detecting net regional neural re-

sponses, is controlling for time series unrelated to brain

function. These will be identified as separate components; for

example, movement-related artifact not removed by the initial

image preprocessing.

Data preprocessing for the ICA included masking of nonbrain

voxels, voxel-wise de-meaning of the data, and normalization of

the voxel-wise variance of the noise. The ICA for each study was

set up to decompose the data into 20 independent components

containing distributed neural networks, movement artifact, and

physiological noise. The choice of the number of component

maps reflects a tradeoff between granularity and noise. It is mo-

tivated by the attempt to maximize the homogeneity of function

within each network while maximizing the heterogeneity be-

tween them. Previous applications of ICA to fMRI data have

used 20–30 component maps (Beckmann et al. 2005; Smith

et al. 2009; Leech et al. 2011), and this study adopted the same

approach.

The data were projected into a 20-dimensional subspace

using principal component analysis. The whitened observations

were decomposed into a set of 20 component maps and asso-

ciated vectors describing the temporal variations across all runs

and subjects by optimizing for non-Gaussian spatial source dis-

tributions using a fixed-point iteration technique (Hyvärinen

1999). Estimated component maps were divided by the standard

deviation of the residual noise and thresholded by fitting a

Gaussian/Gamma mixture model to the histogram of intensity

values (Beckmann and Smith 2004).

Region-of-Interest Analysis

This post hoc analysis was performed to relate activity in a ven-

tral right frontoparietal network across all the auditory condi-

tions in the second study and relate activity generated in these

regions to those in the first study. A right frontal and right inferior

parietal ROI were defined from activated regions evident in the

univariate contrasts from the first study and applied to the se-

cond (see later). Themean effect size in each of the listening con-

ditions, relative to rest, was determined for each functionally

defined ROI. These means were plotted as bar charts with 95%

confidence intervals.

Ideally, a direct whole-brain comparison between the 2 stud-

ies would be the preferred method to ROI analyses. There are

issues concerning different signal-to-noise characteristics be-

tween scanners, which to resolve completely would require com-

plex analyses of individual scanner performances. Nevertheless,

it has been proposed that between-group analyses, when the

data for the groups have been acquired on different scanners,

adds relatively little to the variance in the BOLD signal (Bennett

and Miller 2010). Therefore, we performed a whole-brain com-

parison in addition to the ROI analyses. When performing this

direct comparison between groups, we entered the scanner as a

covariate in the design matrix.

Results

Study 1

Behavioral

A d’ signal-detection measure (controlling for response bias) was

used in the analyses of the forced-choice recognition memory

test at the end of the scanning session. Subjects performed better

than chance for all sentence types spoken by themale (two-tailed

Student’s t-tests, for all 4 stimulus types: Female vs. MALONE/PRED
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t28 = −14.4, P < 0.0001; Female vs. MALONE/NON-PRED t28 = −8.8,

P < 0.0001; Female vs. MFDIOTIC/PRED t28 =−11.5, P < 0.0001; Female

vs. MFDIOTIC/NON-PRED t28 = −8.3, P < 0.0001). The mean results

for correctly identifying the male sentences were as follows:

(MALONE/PRED) = 74.5%, (MALONE/NON-PRED) = 55.5%, (MFDIOTIC/PRED) =

55.7%, and (MFDIOTIC/NON-PRED) = 46.9%. A 2 × 2 repeated-measures

analysis-of-variance (ANOVA), with the factors diotic/single

speech and semantically predictable/unpredictable sentence

ending, was performed. When the male spoke alone, the sen-

tences were remembered significantly better than when there

was distraction by the female speaker (F1,28 = 4.7, P < 0.05), and

the sentences with predictable sentence endings were remem-

bered significantly better than those with unpredictable endings

(F1,28 = 18.2, P < 0.001). There was no significant interaction be-

tween the 2 factors (F1,28 < 2, P > 0.1).

Univariate Whole-Brain Analysis

Thedatawere entered into a 2 (MFDIOTIC/PRED andMFDIOTIC/NON-PRED) ×

2 (MALONE/PRED and MALONE/NON-PRED) ANOVA. There was a signifi-

cant main effect of listening to diotic compared with single

speech (Fig. 2A). The regions with significantly greater activity

were as follows: bilateral superior temporal gyri (STG), the dorsal

anterior cingulate cortex and adjacent medial aspect of the su-

perior frontal gyrus (dACC/SFG), and bilateral anterior insular

cortices and adjacent frontal opercula (aI/FOp), the so-called cin-

gulo-opercular network; an extensive right lateral prefrontal and

inferior parietal cortical network, centered on the posterior mid-

dle frontal and supramarginal gyri (MFG/SMG), respectively; and

a posterior midline region, within the precuneus. There was no

main effect of the semantic predictability of sentence ending,

and there were no significant interactions.

Multivariate Whole-Brain Analysis

The data were entered into an independent components

analysis (ICA), specifying 20 components. Nine contrasts be-

tween conditions were chosen a priori (Tone > Rest; All speech

> Rest; [MALONE/PRED +MALONE/NON-PRED] > Rest; [MALONE/PRED +

MALONE/NON-PRED] > Tone; [MFDIOTIC/PRED +MFDIOTIC/NON-PRED] >

Tone; [MFDIOTIC/PRED +MFDIOTIC/NON-PRED] > Rest; [MALONE/NON-PRED +

MFDIOTIC/NON-PRED] > [MALONE/PRED +MFDIOTIC/PRED]; [MALONE/PRED +

MFDIOTIC/PRED] > [MALONE/NON-PRED +MFDIOTIC/NON-PRED]; [MFDIOTIC/PRED

+MFDIOTIC/NON-PRED] > [MALONE/PRED +MALONE/NON-PRED]), and signifi-

cance was set at P < 0.005 Bonferroni-correcting for multiple con-

trasts. Components where most or all of the signal was confined

to edges of the brain, or was locatedwithin the ventricular systems

and white matter, were discarded as related to motion or other

artifacts. From the remaining components, the 3 that demonstrated

significant differences between conditions are presented here

(Fig. 2B–D) (see Supplementary, Table 1, for “centre of mass”

coordinates).

Component 2 (Fig. 2B) demonstrated a hierarchy of acti-

vation between conditions, all significant at P < 0.00001:

[Tones > Silence], [(MALONE/PRED +MALONE/NON-PRED) > Tones], and

[(MFDIOTIC/PRED+MFDIOTIC/NON-PRED) > (MALONE/PRED+MALONE/NON-PRED)].

The majority of the activity was distributed along the left and

right STG (primary and association auditory cortices).

Component 3 (Fig. 2C) also contained activity along the left

and right STG. However, activity that correlated with this subsys-

tem within auditory association cortex was observed in the

dACC/SFG, the left inferior frontal gyrus (IFG), and between the

left and right inferior frontal and intraparietal sulci (IFS/IPS).

There was additional activity in both lateral cerebellar hemi-

spheres, and the dACC/SFG and IFS/IPS networks have been de-

scribed as having common functional connections with the

cerebellum (Dosenbach et al. 2008). There was 1 lateralized re-

gion, in the left posterior middle and inferior temporal gyri. For

Component 3, activity during the 2 main speech conditions was

greater than Silence, significant at P < 0.000001: [(MALONE/PRED +

MALONE/NON-PRED) > Silence] and [(MFDIOTIC/PRED+MFDIOTIC/NON-PRED)

> Silence]. Activity was also greater for the contrast of listening to

Tones with Silence, P = 0.009. Other contrasts were not significant,

correcting for multiple contrasts.

Component 4 (Fig. 2D) comprised activity that had a distribu-

tion similar to that observed as the main effect of listening to 2

speakers compared with single speech in the univariate ana-

lysis. Activity in this component was significantly different be-

tween listening when there were 2 speakers compared with 1:

[(MFDIOTIC/PRED+MFDIOTIC/NON-PRED) > (MALONE/PRED+MALONE/NON-PRED)],

P = 0.00007.

Nocomponentdemonstratedanyeffect of the semanticpredict-

ability of sentence endings [(MALONE/NON-PRED +MFDIOTIC/NON-PRED) >

or < (MALONE/PRED +MFDIOTIC/PRED)]. The inclusion of this ex-

perimental manipulation into the design had been to observe

whether a reaction to an unanticipated stimulus ending modu-

lated the response of higher-order cortices involvedwith the cog-

nitive control and attention involved in listening to speech. In the

absence of any observable modulation, this experimental ma-

nipulation is not considered further.

Summary of Findings From Study 1

Component 2 of the ICA analysis demonstrated that bilateral pri-

mary and association auditory cortex responded in a “bottom-

up”manner to stimuli of increasing auditory complexity: Silence

<< Tones <<MALONE <<MFDIOTIC. Components 3 and 4 demon-

strated that overlapping networks within auditory cortex were

also demonstrating correlated activity with multiple higher-

order systems: the bilateral cingulo-opercular and IFS/IPS net-

works, and the ventral right frontoparietal network (MFG/SMG)

and precuneus that was also evident as the main effect of lis-

tening to 2 speakers in the univariate whole-brain ANOVA.

Therefore, activity within auditory cortex was simultaneously

influenced by both the complexity of ascending auditory signal

and by top-down signal from networks that have been asso-

ciated with attention and cognitive control. However, there

was a dissociation of activity across these high-order networks,

most evident in their visualization as separate components

within the ICA. The cingulo-opercular and IFS/IPS networks ac-

tivated together and responded to any listening condition, in-

cluding when the participants heard pure tones without an

explicit task demand. Any difference in activity within these

networks between listening to MFDIOTIC and to MALONE was

small, but much more evident in the network consisting of right

MFG/SMG and the precuneus. There was anatomical overlap be-

tween these 2 broad networks, in both STG, right IFS/IPS and in

dACC/SFG.

Study 2

Behavioral

A pilot study on 5 subjects was performed to determine whether

the probe questions could be answered above chance through

using prior knowledge, even though the questions had been de-

signed to relate specifically to the previous statement by the fe-

male or male speaker. For all female and all male sentences,

the mean responses (39–49%) were not above chance (50%). In

contrast, the participants during scanning in response to

questions on statements spoken by the female were all sig-

nificantly more accurate than chance (P < 0.0001). However, a
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repeated-measures ANOVA showed a significant difference

in accuracy between conditions (F1,24 = 8.604, P < 0.0001). One-

sample t-tests, Bonferroni corrected for multiple compari-

sons, demonstrated that FSINGLE = FBABBLE =MLEFTFRIGHT (P > 0.5).

However, FALONE > FMDIOTIC (P < 0.05), >FLEFTMRIGHT (P < 0.0001),

and MLEFTFRIGHT > FLEFTMRIGHT (P < 0.05). Therefore, accuracy on

questions about the female statements was not statistically dif-

ferent across both masked and unmasked conditions except for

a small but significant decline on FMDIOTIC and a greater decline

on FLEFTMRIGHT. In the latter condition, the “attended” speech

was directed toward the right hemisphere, nondominant for

language.

Figure2.Axial slices are shown in radiological convention, that is the right hemisphere on the left of each slice, beginningwith themost ventral slice. (A) Univariatewhole-

brain analysis of Study 1. The significant main effect of competing speech (MFDIOTIC/NON-PREDICTABLE +MFDIOTIC/PREDICATBLE) contrasted with noncompeting (MALONE/NON-

PREDICTABLE +MALONE/PREDICTABLE) speech is projected as a red/yellow overlay, with a voxel-level threshold Z > 2.3, cluster-level threshold, P < 0.05. (1) Superior temporal

gyri (STG); (2) anterior insula and frontal operculum (aI/FOp); (3) lateral prefrontal and inferior parietal cortical network (MFG/SMG); (4) precuneus; (5) dorsal anterior

cingulate cortex and adjacent superior frontal gyrus (dACC/SFG). (B–D) Results from the 20-component independent-component analysis (ICA). (B). Component 2

demonstrated regions with significant activity during all listening conditions (including Tones) > Silence (P < 0.00001). (1) Bilateral STG. (C). Component 3 demonstrated

areas of significant activity for all speech listening conditions > Silence (P < 0.00001). (1) Bilateral STG, (5) dACC/SFG, (6) Bilateral inferior frontal sulci (IFS), (7) bilateral

intraparietal sulcus (IPS), (8) lateral cerebellar hemispheres. (D). Component 4 demonstrated a main effect of diotic speech (MFDIOTIC/NON-PREDICTABLE +MFDIOTIC/

PREDICATBLE) > single speech (MALONE/NON-PREDICATBLE +MALONE/PREDICTABLE) (P < 0.00007). (1) Bilateral STG, (2) right aI/FOp, (3) MFG/SMG, (4) precuneus, (5) dACC/SFG.
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The responses to questions on statements spoken by the “un-

attended” male speaker were significantly more accurate than

chance during FMDIOTIC and FLEFTMRIGHT (P < 0.0001), although a

little below chance during MLEFTFRIGHT (mean 43%, chance 50%,

t = 2.25, P < 0.05). A repeated-measures ANOVA on the response

to the sentences spoken by the male speaker during FMDIOTIC,

MLEFTFRIGHT, and FLEFTMRIGHT demonstrated a significant differ-

ence in accuracy between conditions (F1,24 = 30.5, P < 0.0001).

One-sample t-tests, Bonferroni corrected for multiple compari-

sons, demonstrated that FMDIOTIC = FLEFTMRIGHT (P > 0.5), but FLEFT-
MRIGHT >MLEFTFRIGHT (P < 0.0001).

In summary, the subjects did attend to the female speaker in

all conditions but found it most difficult when the female was

presented to the left ear, and therefore, predominantly to the

right cerebral hemisphere. There are limitations to introducing

spatial cues using simulated head-related transfer functions

(HRTFs) (Algazi et al. 2001), which will have deviated to a variable

extent from the HRTF of individual subjects, resulting in weaker

dichotic/diotic contrasts than could be obtained with listening

conditions in free field or with individually determined HRTFs.

Nevertheless, there was a significant behavioral effect, with

more correct responses when the female speaker was “located”

to the right rather than the left of the participants. Further, re-

sponses to what the “unattended” male speaker had said were

least when his voice was presented to the left (that is, predomin-

antly to the right hemisphere) compared with both the FMDIOTIC

andMLEFTFRIGHT conditions. Therefore, spatial cueswere perceived

by the participants during the dichotic listening conditions.

Univariate Whole-Brain Analysis

The first analysis was a contrast of the 2 diotic listening condi-

tions (FBABBLE + FMDIOTIC) with FALONE. This demonstrated a re-

duced distribution of activity compared with the univariate

contrast of MFDIOTIC with MALONE in the first study, with activity

confined to the right aI/IFG, left planum temporale and adjacent

anterior inferior parietal lobe (PT/IPL), right posterolateral STG,

left IPS, and precuneus (Fig. 3A). These regions, with the excep-

tion of the left IPS, were also evident in the contrast of MFDIOTIC
with MALONE in the first study (Fig. 3B). When the 2 conditions

with spatial cues (MLEFTFRIGHT and FLEFTMRIGHT) were each con-

trasted with FMDIOTIC, it was evident that these 2 conditions

with spatial cues resulted in greater activity in the precuneus,

the left PT/IPL and the dACC/SFG (Fig. 3C). Therefore, speech-

masked-by-speech without spatial cues activated these 2 re-

gions relative to FALONE, but activity increased significantly in

the presence of spatial cues. Activity in these regions was not

significantly greater if the female speaker was presented to

the right or left ear during the dichotic listening conditions.

The spatial cues also resulted in greater activity in anterior re-

gions associated with eye movements, the frontal eye fields

(Fig. 3C), which form part of the so-called dorsal attentional net-

work (Corbetta et al. 2008).

Networks for attention and cognitive control demonstrate an-

ticorrelated activity with the default mode network (DMN), a sys-

tem that is most active during “Rest” states and deactivated

by attending and responding to external stimuli (Fox et al.

2005). A prominent posterior component of the DMN is located

centered on the posterior cingulate cortex. Figure 4 demonstrates

the contrast of MLEFTFRIGHT + FLEFTMRIGHT with the rest condition

(Silence) and vice versa. The posteriormidline activity associated

with attending to one speaker in the presence of another, most

evident when spatial cues were included, was located dorsal to

the midline posterior component of the DMN.

Multivariate Whole-Brain Analysis

An independent components analysis (ICA), specifying 20 com-

ponents to all trials, was performed. Of themultiple contrasts be-

tween conditions, 11 contrasts were chosen a priori (FALONE > Rest;

FBABBLE > FALONE; FMDIOTIC > FALONE; MLEFTFRIGHT > FALONE; FLEFT
MRIGHT > FALONE; FMDIOTIC > FBABBLE; [MLEFTFRIGHT FLEFTMRIGHT] >

[FMDIOTIC + FBABBLE]; [FMDIOTIC + FBABBLE] > [MLEFTFRIGHT FLEFTMRIGHT];

FLEFTMRIGHT >MLEFTFRIGHT; MLEFTFRIGHT > FLEFTMRIGHT; [FALONE +

FMDIOTIC + FBABBLE +MLEFTFRIGHT] > FLEFTMRIGHT) with a Bonferroni-

corrected significance level set at P < 0.005 (see Supplementary,

Table 1, for “center of mass” coordinates).

Component 1 (not illustrated) showed the expected activity in

bilateral STG, with all the Listening trials combined > Rest (P <

0.00001), and the diotic and dichotic listening trials each > FALONE

(P < 0.0001), but there was no difference between Response (dur-

ing which no external or self-generated speech was heard) and

Silence (P = 1). Components 2–4 contained data relevant to activ-

ity within the cingulo-opercular and frontoparietal networks. In

Component 2 (Fig. 5A), the activity was specific for the Response

trials, with Response > all the Listening trials (P < 0.00001) and

Response > Silence (P < 0.00001), but activity for all the Listening

trials combined was no greater than Silence (P = 1). Activity was

distributed between the cingulo-opercular and IFS/IPS networks,

and the lateral cerebellar hemispheres. In addition, therewas ac-

tivity in the primary and association visual cortices (as the parti-

cipants had to respond to written questions). There was

anticorrelated activity in both STG, consistent with the absence

of auditory input during the Response trials. In Component 3

(Fig. 5B), activity during the Response trialswas > all the Listening

trials combined (P < 0.00001), but activity during all the Listening

trials combined > Silence (P < 0.00001), and FALONE > Silence

(P < 0.00001). There was no difference in activity between any of

the individual Listening trials, with the exception of FLEFTMRIGHT

>MLEFTFRIGHT (P = 0.002), the former condition being the one in

which the participants were least successful in attending to the

female speaker. Although there was activity in the cingulo-oper-

cular and IFS/IPS networks, as in Component 4 (Fig. 5C), the

prominent activity in both cerebellar hemispheres was absent,

and there was strongly left-lateralized activity in the left IFG,

posterior inferolateral temporal lobe, and inferior parietal cortex.

The only prominent right cortical activity was centered on the

posterior MFG. In Component 4 (Fig. 5C), the hierarchy of activity

was very similar to that observed in Component 3 (Response

trials > all the Listening trials combined [P < 0.00001]; Listen-

ing trials combined > Silence [P < 0.00001]; and FALONE > Silence

[P < 0.00001]). Again there was no difference in activity between

any of the individual Listening trials (P > 0.15). The distribution

of activity in Component 4 (Fig. 5C) was closely similar to that

in Component 2, butwith little activity in visual cortex andno an-

ticorrelated activity in the STG, but greater activity evident in the

basal ganglia and thalami. Therewas no component demonstrat-

ing activity in right inferior parietal cortex, in marked contrast to

the results from the first study.

ROI Analysis

An initial comparison between studies employed region-of-

interest (ROI) data from the listening trials. The peaks of activity

in the posterior right MFG and the right SMG from the first study

were defined, and 8-mm spheres as ROIs were used to extract

the signal across conditions from both the first and second stud-

ies. The results are presented as bar plots in Figure 6, with 95%

confidence intervals. These plots illustrate a clear dissociation

of activity across the 2 studies in both ROIs. Within the right

frontal region, the dissociation between the 2 studies was due
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to the different response to the single speaker as a result of the

change in task demand: There was increased activity relative to

rest, and on a par with that elicited by the diotic and dichotic lis-

tening tasks, in the second study. In contrast, in the right SMG,

there was no response to any of the auditory conditions during

the second study relative to Silence, amajor change from the re-

sponse of this region to speech-masked-by-speech in the first

study. Although using the peaks of activity from the first study

to interrogate data from the second biases this comparison, and

so no direct statistical analyses were applied to the data pre-

sented in Figure 6, it was apparent that the right frontal and

right parietal regions retuned different profiles of activity across

the tasks in the 2 studies. Thus, the loss of differential activity in

right frontal cortex in the second study was due to increased

activity during FALONE as the consequence of a task that loaded

working memory. In contrast, this task demand resulted in

reduced activity across all listening tasks in right inferior par-

ietal cortex.

A whole-brain comparison between the 2 studies was per-

formed, correcting for multiple comparisons, in which MFDIOTIC

versus MALONE in the first study was compared with FMDIOTIC ver-

sus FALONE in the second study, entering “scanner” (+1, −1) as a

covariate in the design matrix. This demonstrated the greater

right frontoparietal activity in the first study compared with the

second, correcting for multiple comparisons, as shown in Fig-

ure 6E. However, and predictably from the profiles of activity

from the ROI data, this contrast failed to demonstrate the dissoci-

ation of responses between listening conditions in right frontal

and right inferior parietal cortices in the second study as the re-

sult of loadingworkingmemory. Therefore, the ROI datawere es-

sential to interrogate in detail the outcome of the whole-brain

comparisons between studies.

Figure 3. Axial slices displayed as in Figure 2. (A). Univariate whole-brain analysis of Study 2. There was a significant main effect of diotic (FBABBLE + FMDIOTIC) contrasted

with single speech (FALONE) speech projected as a red/yellow overlay,with avoxel-level threshold Z > 2.3, cluster-level threshold P < 0.05. (1) Anterior insular/inferior frontal

cortex (aI/IFG), (2) left planum temporale and adjacent anterior inferior parietal lobe (PT/IPL) and right posterior superior temporal gyrus (STG), (3) precuneus, (B) sagittal

and axial views showing regions of common significant activity generated from the univariate analysis contrasting diotic speech to single speech, projected as red/yellow

overlay in Study 1 and blue overlay in Study 2, with a voxel-level threshold Z > 2.3, cluster-level threshold P < 0.05. (1) Right aI/IFG, (3) (displayed onmidline sagittal views)

precuneus, (4) Left PT/IPL. (C). Demonstrates axial slices from the univariate contrast of Dichotic (MLEFTFRIGHT + FLEFTMRIGHT) > Diotic (FMDIOTIC). (3) Precuneus, (4) Left

PT/IPL; (6) anterior cingulate cortex (ACC) and probably activity localized to frontal eye and supplementary eye fields.
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Contrasting Correct and Incorrect Responses for Study 2

Response trials from Study 2 were separated into correct and in-

correct across all Listening conditions. Direct contrasts between

these 2 groups of scan data for the preceding listening trials de-

monstrated that there was increased activity in the auditory cor-

tices and the cingulo-opercular network when there was a

subsequent correct response (Fig. 7A). In contrast, the reverse

contrast demonstrated activity in anterior and posterior midline

regions that are components of the DMN (Fig. 7B).

Summary of Findings from Study 2 Contrasted with Those from

Study 1

The univariate contrast of (FBABBLE + FMDIOTIC) with FALONE identi-

fied only a subset regions of activity observed in the first study:

Activity was confined to the right aI/IFG, left PT/IPL, right poster-

olateral STG, and precuneus. On contrasting the dichotic (MLEFT-

FRIGHT and FLEFTMRIGHT) with the diotic (FMDIOTIC) listening

conditions, greater activity in the left PT/IPL and precuneus was

associated with the spatial cues that assisted in the segregation

of one speech stream from another. The conjunction of activity

in the right aI/FOp in the first and second studies indicated a cen-

tral role for this region in supporting speech stream segregation,

independent of the context of task during listening (that is, a re-

quirement for immediate or delayed recall of the content of the

“attended” speech). In contrast, activity in the right MFG and

SMG was strongly dependent on the context, most notably with

the preparation for an immediate response to what was heard

abolishing activity in the SMG. The ICA showed that this task

was associated with a left fronto-temporoparietal network.

Throughout all these networks, with the exception of SMG,

activity was always greater during the Response trials relative to

the Listening trials; but as in the first study, the widely distributed

bilateral system comprising cingulo-opercular cortex, IFS/IPS, and

cerebellar cortex was active during the listening trials, but was not

modulated byspeech-in-speechmasking. Associatedwith activity

in the cerebral and cerebellar hemispheres, Study 2 also demon-

strated bilateral basal ganglia and thalamic activity, not observed

in the first study. This can be attributed to the change in data ac-

quisition for the second study (seeMaterials andMethods section)

to improve sensitivity,whichmayhave raised signal in the subcor-

tical nuclei above the statistical threshold.

Discussion

The 2 studies presented here were designed to demonstrate the

local and distributed systems, particularly those involved in

attention and cognitive control, when listening to a speaker

and recalling what was said. Two experimental manipulations

were designed to capture everyday listening conditions: the pres-

ence or absence of background competing speech; and task de-

mand, namely delayed or immediate recall of what had been

said by the “attended” speaker. Based on the results of the 2

fMRI studies, there were 3 cortical nodes that responded to

speech-in-speech masking irrespective of the task demand: the

precuneus, the left PT/IPL, and the right aI/FOp. We will start by

discussing these common regions.

As lesions of the precuneus are extremely rare, neuropsycho-

logical lesion-deficit analyses to determine the function of this

region do not exist. However, functional neuroimaging studies

have implicated this region in a number of quite different func-

tions (Cavanna and Trimble 2006). This must relate to multiple

overlapping components within this region that form parts of

anatomically and functionally dissociable networks, as has

been shown for the adjacent posterior cingulate cortex (Leech

and Sharp 2014). One function of the precuneus is egocentric spa-

tial orientation, which has often been considered in terms of

visuospatial navigation (for review, see Boccia et al. 2014). The

precuneus is a component of the “dorsal attentional network”

(DAN), which incorporates the dorsal precuneus and bilateral

medial intraparietal sulci, superior parietal lobules, midline sup-

plementary eye field, and frontal eye fields. The DAN has been

most often investigated in relation to its response to visual

tasks, becoming active as participants voluntarily focus attention

on perceptually distinctive visual stimuli that are salient within

the context of a specific task-dependent goal (for reviews, see

Corbetta et al. 2008; Corbetta and Shulman 2011). However, one

recent study has also strongly implicated the precuneus in

detecting a target sound in complex acoustic environments

(Zündorf et al. 2013). In the present study, this region was more

active during the diotic presentation of 2 speakers compared

with attending to a single speaker, and therefore in the absence

of separate spatial cues for the 2 speakers. This is compatible

with a top-down role in the detection of the salient speech

stream based on nonspatial perceptual cues, such as voice

pitch; but, as in the study of Zündorf et al. (2013), activity in-

creased significantly when there were auditory cues indicating

a spatial separation of the 2 speakers. Furthermore, associated

with this increased activity with spatial cues, there was also an

increase in activity in regions located to the supplementary eye

field and the frontal eye fields. Although this was unexpected,

and therefore appropriate recordings were not made, in future

studies, it will of interest to determine whether spatial cues dur-

ing speech streamsegregation are accompanied byautomatic eye

movements toward the “attended” speaker.

Figure 4. Univariate whole-brain analysis of Study 2, exploring 3 contrasts with a

voxel-level threshold Z > 2.3 and cluster-level threshold, P < 0.05. (A) (sagittal

midline projection) and (B) (axial section): dichotic (FLEFTMRIGHT +MLEFTFRIGHT)

against diotic (FMDIOTIC + FBABBLE) projected as a green overlay. (1) precuneus,

(2) left planum temporale and adjacent anterior inferior parietal lobe (PT/IPL).

(C) (sagittal midline projection): rest against Diotic projected as a blue overlay.

(1) Precuneus and adjacent posterior cingulate cortex (PCC). (D) (Sagittal midline

projection): Rest against Dichotic projected as a red overlay. (1) Precuneus

and PCC.
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Although of different design, and employing nonverbal audi-

tory stimuli, the study of Zündorf et al. (2013) also demonstrated

an increased response of the left PT to spatial cues, with evidence

of some right posterior temporal involvement. Across the 2 stud-

ies reported here, activity in the left PT increased in response to

one speaker, increased further when there was more than one

speaker, andwas greatestwhen spatial cueswere present. Griffiths

and Warren (2002) proposed that the PT is a computational hub,

directing both spectrotemporal and spatial information to

wider distributed networks engaged in the identification, seman-

tic recognition, and auditory stream segregation of sounds, both

environmental and verbal. These authors specifically proposed

that the PT may be a central node in solving the “cocktail party”

problem, and the results presented here support this hypothesis.

Interestingly, a clinical study on stroke patients by Zündorf et al.

(2014), and using the complex nonverbal sounds used in their

earlier study (Zündorf et al. 2013), indicated that the right poster-

ior temporal cortex, including the PT, is central to sound localiza-

tion. However, patients with lesions that included the left PT

were underrepresented because such patientswere often too lan-

guage-impaired to participate. We would argue on the basis of

the present study that segregating one speech stream from

others, using all available nonspatial and spatial cues, is depend-

ent on the left PT, although activity also evident in the right pos-

terior STG suggests that this functionmay be shared between the

cerebral hemispheres.

We turn now to the role of the right aI/FOp. A decade ago, it

was proposed that this region is specialized for initiating re-

sponse inhibition and task switching (reviewed in Aron et al.

2014). More recently, Hampshire et al. (2010) demonstrated that

this region, as part of the cingulo-opercular network, becomes

active during the detection of important cues, irrespective of

whether this is followed by inhibition or generation of amotor re-

sponse, or evenno external response at all. In their study, across a

range of tasks that resulted in activity in both the cingulo-opercu-

lar and the bilateral IFS/IPS networks, activity was preferentially

greater in the cingulo-opercular network for tasks that most de-

pended on working memory. In the model proposed by Menon

and Uddin (2010), the aI/FOp, forming a component of the cingu-

lo-opercular network, is a core node involved in the generation of

control signals following the perception of salient environmental

events. These signals direct attentional, working memory and

Figure 5. Axial slices displayed as in Figure 2. Multivariate analysis of Study 2, specifying 20 components, with regions of significant activity displayed as red/yellow

overlays. (A). Component 2 demonstrated activity for Response > Listening in (1) bilateral anterior insulae and frontal opercula aI/FOp, (2) visual cortex (4) bilateral

inferior frontal sulci (IFS), (5) bilateral intraparietal sulci (IPS), (6) dorsal anterior cingulate cortex and adjacent superior frontal gyrus (dACC/SFG). This activity was

anticorrelated with (3) bilateral STG, projected as a blue overlay. (B). Component 3 demonstrated activity for Response > all speech Listening conditions combined, all

Listening conditions combined > Silence and FALONE > Silence. (1) aI/Fop, (2) visual cortex, (4) IFS, (5) IPS, (6) ACC, (7) left inferior parietal cortex. (C) Component 4

demonstrated a similar hierarchy of activity across conditions observed in Component 3. (1) aI/FOp, (4) IFS, (5) IPS, (6) ACC, (8) basal ganglia and thalami, (9) lateral

cerebellum.
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Figure 6. Region-of-interest analysis: (A–D) Percentage blood oxygen-level-dependent signal changes for each condition relative to the rest baseline condition. Error bars

are the 95% confidence intervals. Study 1 is depicted in Panels (A) and (B); Study 2 is depicted in Panels C and D. (A) and (C) The results from the ROIs in the right middle

frontal gyrus (MFG) and (B) and (D) from the ROIs in the right supramarginal gyrus (SMG). Conditions labeled as in the text, but with the following abbreviations:

MFD/NP = (MFDIOTIC/NON-PREDICTABLE); MA/NP = (MALONE/NON-PREDICTABLE); MFD/P = (MFDIOTIC/PREDICTABLE); MFA/P = (MFALONE/PREDICTABLE), L = left; R = right. (E). A sagittal view of

the right hemisphere, at X coordinate = 42 mm. The contrast of diotic with single speaking conditions was directly compared in whole-brain analyses between Studies

1 and 2. Predictably, from the profile of activities observed in the ROI analyses, both right frontal (labeled 2) and parietal cortices (labeled 1) were more “active” in Study

1. However, this disguises the dissociation of responses between frontal and parietal cortices: The loss of “contrast” in Study 2 was due to an increase in activity in

response to a single speaker in frontal cortex, but a decline in activity in response to diotic listening in parietal cortex.
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other higher-order control systems toward themental processing

of these events. Efficient processing of external stimuli depends

on deactivation of the DMN (Kelly et al. 2008), a system consid-

ered to direct mental processing toward stimulus-independent

internal thoughts and ruminations, with its functional connect-

ivity increasing during brain development (Fair et al. 2008).

Breakdown of this connectivity as a consequence of diffuse

white matter injury following TBI has been shown to result in

an association between impaired attention and a failure to de-

activate the DMN (Bonnelle et al. 2011). More specifically, this

failure efficiently to deactivate the DMN following TBI has

been related to the tract connecting the right aI/FOp and dACC

(Bonnelle et al. 2012), a consequence of which was impaired per-

formance on a speeded visual task. This result was reflected in

the analysis of the error trials in Study 2, which demonstrated

that listening trials associated with a subsequent incorrect re-

sponse was associated with a failure to deactivate the DMN rela-

tive to the trials followed by a correct response. This effect was

presumably the neural signature of momentary lapses of atten-

tion to the stimuli (Weissman et al. 2006).

The most evident difference between the 2 studies was the

functional dissociations between the response of the right dorso-

lateral prefrontal cortex, centered on the (MFG) and inferior par-

ietal cortex (SMG). In the first study, activity within the ventral

right frontoparietal network was only associated with the pre-

sence of a competing speaker. Therefore, the linguistic and se-

mantic processing of heard speech, and the encoding of the

information as episodic memories in response to the task de-

mand of remembering the information until the end of the scan-

ning session, required minimal involvement of this system.

However, perceptual difficulty as the result of the presence of a

competing speaker markedly increased activity in both the

frontal and parietal components. One explanation for this is

the need for an increase in sustained attention when attempting

to encode the information conveyed by the “attended” speaker on

the perceptually difficult trials, and this system has been asso-

ciated with sustained attention (for a review, see Singh-Curry

and Husain 2009). Changing the task demands in Study 2 so

that an immediate response to what had been heard was re-

quired abolished activity in the right SMG, irrespective of percep-

tual difficulty, while resulting in increased activity in the right

MFG across all trials. Therefore, a task demand with reliance on

working memory rather than longer-term episodic memory en-

coding meant that this ventral right frontoparietal system was

no longer influenced by the need for speech stream segregation.

The ICA analysis demonstrated that one component (Compo-

nent 4), as well as demonstrating activity in cingulo-opercular

and IFS/IPS networks, revealed correlated activity in the left

IFG, posterior inferolateral temporal lobe, and inferior parietal

cortex. This would indicate the operation of a left hemisphere

verbal working memory system, which was also shown to be ac-

tive during the Response trials. Therefore, the task demand had a

major influence on ventral right and left parietal networks, with

tasks depending heavily on working memory resulting exclu-

sively in left hemisphere involvement,whereas episodicmemory

encoding when increased attention was required because of per-

ceptual difficulty depended on right hemisphere involvement.

The cingulo-opercular and IFDS/IPS networks are domain-

general systems for cognitive control and attention and are active

across many different kinds of task (Hampshire et al. 2012;

Fedorenko et al. 2013). It was not surprising that they were

most active during the Response trials of Study 2, although the

ICA analyses of both studies demonstrated that they were also

active during the attentive demands of the listening trials.

Figure 7. Two contrasts from Study 2: all trials with correct responses > all trials with incorrect responses (Panel A), and vice versa (Panel B), voxel-level threshold Z > 2.3,

cluster-level threshold P < 0.05. (1) Anterior insula and adjacent frontal operculum (aI/Fop), (2) bilateral superior temporal gyri (STG), (3) dorsal anterior cingulate cortex

and adjacent superior frontal gyrus (dACC/SFG), (4) precuneus and adjacent posterior cingulate cortex, (5) ventral medial prefrontal cortex.
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However, activity in these systemswasnotmodulated by the per-

ceptual difficulty associated with speech-in-speech masking.

The one exception, as previously discussed, was the right aI/FOp

component of the cingulo-opercular network, strongly influenced

byspeech-in-masking,which indicates a particular role for this re-

gion in regulating attention and cognitive control as perceptual

difficulty increases.

To summarize, the 2 studies described here have demon-

strated the role of networks active during speech stream segrega-

tion during attentive listening, and whether their degree of

involvement is influenced by the duration over which the verbal

information conveyed over time has to be held inmemory. Three

regions, in particular, were central to speech stream segregation:

the left PT, precuneus, and right aI/FOp. Focal lesions of the pre-

cuneus are rare, but patients with a stroke affecting the right

aI/FOp are presumably not that uncommon. Therefore, a future

lesion-deficit analysis could be performed to confirm the pro-

posal that the right aI/FOp is central to activating attention and

memory systems, and deactivating the DMN, when listening to

a speaker in a “cocktail party” auditory environment. Our result

supports the hypothesis that impaired speech perception and

comprehension following an aphasic stroke result in increased

reliance on the function of the right aI/FOp (Geranmayeh et al.

2014).

Supplementary Material

Supplementary material can be found at: http://www.cercor.

oxfordjournals.org/.

Funding

This work was supported by the Medical Research Council

(G1100423). Funding to pay the Open Access publication charges

for this article was provided by the Medical Research Council.

Notes

We thank Stuart Rosen for his assistance with the design of the

auditory stimuli. Conflict of Interest: None declared.

References

Algazi VR, Avendano C, Duda RO. 2001. Elevation localization and

head-related transfer function analysis at low frequencies.

J Acoust Soc Am. 109:1110–1122.

Aron AR, Robbins TW, Poldrack RA. 2014. Inhibition and the right

inferior frontal cortex: one decade on. Trends Cogn Sci.

18:177–185.

Beckmann CF, DeLuca M, Devlin JT, Smith SM. 2005. Investiga-

tions into resting-state connectivity using independent

component analysis. Philos Trans R Soc Lond B Biol Sci.

260:1001–1013.

Beckmann CF, Jenkinson M, Smith SM. 2003. General multilevel

linear modelling for group analysis in FMRI. Neuroimage.

20:1052–1063.

Beckmann CF, Smith SM. 2004. Probabilistic independent compo-

nent analysis for functional magnetic resonance imaging.

IEEE Trans Med Imaging. 23:137–152.

BeckmannCF, Smith SM. 2005. Tensorial extensions of independ-

ent component analysis for multisubject fMRI analysis.

Neuroimage. 25:294–311.

Bennett CM, Miller MB. 2010. How reliable are the results from

functional magnetic resonance imaging? Ann N Y Acad Sci.

1191:133–155.

Boccia M, Nemmi F, Guariglia C. 2014. Neuropsychology of environ-

mentalnavigation inhumans: reviewandmeta-analysis of fMRI

studies in healthy participants. Neuropsychol Rev. 24:236–251.

Bonnelle V, Ham TE, Leech R, Kinnunen KM, Mehta MA,

Greenwood RJ, Sharp DJ. 2012. Salience network integrity

predicts default mode network function after traumatic

brain injury. Proc Nactl Acad Sci USA. 109:4690–4695.

Bonnelle V, Leech R, Kinnunen KM, Ham TE, Beckmann CF, De

Boissezon X, Greenwood RJ, Sharp DJ. 2011. Default mode

network connectivity predicts sustained attention deficits

after traumatic brain injury. J Neurosci. 31:13442–13451.

Brainard DH. 1997. The psychophysics toolbox. Spat Vis. 10:

433–436.

Bregman AS. 1990. Auditory Scene Analysis: The Perceptual

Organization of Sound. Cambridge, MA: MIT Press.

Brungart DS. 2001. Informational and energetic masking effect in

the perception of two simultaneous talkers. J Acoust Soc Am.

109:1101–1109.

Carlyon RP. 2004. How the brain separates sounds. Trends Cogn

Sci. 8:465–471.

Cavanna AE, Trimble MR. 2006. The precuneus: a review of its

functional anatomy and behavioural correlates. Brain.

129:564–583.

Corbetta M, Patel G, Shulman GL. 2008. The reorienting system of

the human brain: from environment to theory of mind.

Neuron. 58:306–324.

Corbetta M, Shulman GL. 2011. Spatial neglect and attention net-

works. Annu Rev Neurosci. 34:569–599.

Darwin CJ. 2008. Listening to speech in the presence of other

sounds. Philos Trans R Soc Lond B Biol Sci. 363:1011–1021.

DarwinCJ, HukinRW. 2000a. Effectiveness of spatial cues, prosody,

and talker characteristics in selective attention. J Acoust Soc

Am. 107:970–977.

Darwin CJ, Hukin RW. 2000b. Effects of reverberation on spatial,

prosodic, and vocal-tract size cues to selective attention.

J Acoust Soc Am. 108:335–342.

Dosenbach NU, Fair DA, Cohen AL, Schlaggar BL, Petersen SE.

2008. A dual-networks architecture of top-down control.

Trends Cogn Sci. 12:99–105.

Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK,

Dosenbach RA, Fox MD, Snyder AZ, Raichle ME, Schlaggar BL,

et al. 2007. Distinct brain networks for adaptive and stable task

control in humans. Proc Natl Acad Sci USA. 104:11073–11078.

Duncan J. 2010. Themultiple-demand (MD) systemof the primate

brain: mental programs for intelligent behaviour. Trends

Cogn Sci. 14:172–179.

Duncan J. 2013. The structure of cognition: attentional episodes

in mind and brain. Neuron. 80:35–50.

Fair DA, Cohen AL, Dosenbach NU, Church JA, Miezin FM,

Barch DM, Raichle ME, Petersen SE, Schlaggar BL. 2008. The

maturing architecture of the brain’s default network. Proc

Natl Acad Sci USA. 105:4028–4032.

Fedorenko E, Duncan J, Kanwisher N. 2013. Broad domain gener-

ality in focal regions of frontal and parietal cortex. Proc Natl

Acad Sci USA. 110:16616–16621.

Feng AS, Ratnam R. 2000. Neural basis of hearing in real-world

situations. Annu Rev Psychol. 51:699–725.

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC,

Raichle ME. 2005. The human brain is intrinsically organized

into dynamic, anticorrelated functional networks. Proc Natl

Acad Sci USA. 102:9673–9678.

Attending to a Speaker Kamourieh et al. | 4297

http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu325/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu325/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu325/-/DC1


Geranmayeh F, Brownsett SL, Wise RJ. 2014. Task-induced brain

activity in aphasic stroke patients: what is driving recovery?

Brain. 137:2632–2648.

Griffiths TD,Warren JD. 2002. The planum temporale as a compu-

tational hub. Trends Neurosci. 27:348–353.

Hall DA, Haggard MP, Akeroyd MA, Palmer AR, Summerfield AQ,

Elliott MR, Gurney EM, Bowtell RW. 1999. “Sparse” temporal

sampling in auditory fMRI. Hum Brain Mapp. 7:213–223.

Hampshire A, Chamberlain SR, Monti MM, Duncan J, Owen AM.

2010. The role of the right inferior frontal gyrus: inhibition

and attentional control. Neuroimage. 50:1313–1319.

Hampshire A, Highfield RR, Parkin BL, OwenAM. 2012. Fractionat-

ing human intelligence. Neuron. 76:1225–1237.

Hyvärinen A. 1999. Fast and robust fixed-point algorithms for in-

dependent component analysis. IEEE Trans Neural Netw.

10:626–634.

Jenkinson M, Bannister P, Brady M, Smith S. 2002. Improved

optimization for the robust and accurate linear registration

andmotion correctionof brain images.Neuroimage. 17:825–841.

Kalikow DN, Stevens KN, Elliott LL. 1977. Development of a test

of speech intelligibility in noise using sentence materials

with controlled word predictability. J Acoust Soc Am. 61:

1337–1351.

Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP. 2008.

Competition between functional brain networks mediates

behavioral variability. Neuroimage. 39:527–537.

Klinkenberg I, Sambeth A, Blokland A. 2011. Acetycholine and

attention. Behav Brain Res. 221:430–442.

Leech R, Braga R, Sharp DJ. 2012. Echoes of the brain within the

posterior cingulate cortex. J Neurosci. 32:215–222.

Leech R, Kamourieh S, Beckmann CF, Sharp DJ. 2011. Fractionat-

ing the default mode network: distinct contributions of the

ventral and dorsal posterior cingulate cortex to cognitive con-

trol. J Neurosci. 31:3217–3224.

Leech R, Sharp DJ. 2014. The role of the posterior cingulate cortex

in cognition and disease. Brain. 137:12–32.

Menon V, Uddin LQ. 2010. Saliency, switching, attention and con-

trol: a network model of insula function. Brain Struct Funct.

214:655–667.

Obleser J, Wise RJ, Alex Dresner M, Scott SK. 2007. Functional in-

tegration across brain regions improves speech perception

under adverse listening conditions. J Neurosci. 27:2283–2289.

Robertson IH. 2014. A right hemisphere role in cognitive reserve.

Neurobiol Aging. 35:1375–1385.

Roca M, Parr A, Thompson R, Woolgar A, Torralva T, Antoun N,

Manes F, Duncan J. 2010. Executive function and fluid intelli-

gence after frontal lobe lesions. Brain. 133:234–247.

Schwarzbauer C, Davis MH, Rodd JM, Johnsrude I. 2006. Inter-

leaved silent steady state (ISSS) imaging: a new sparse im-

aging method applied to auditory fMRI. Neuroimage.

29:774–782.

Shallice T, Stuss DT, Picton TW, Alexander MP, Gillingham S.

2008. Mapping task switching in frontal cortex through

neuropsychological group studies. Front Neurosci. 2:79–85.

Singh-Curry V, Husain M. 2009. The functional role of the inferior

parietal lobe in the dorsal and ventral stream dichotomy.

Neuropsychologia. 47:1434–1448.

Smith SM. 2002. Fast robust automated brain extraction. Hum

Brain Mapp. 17:143–155.

Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE,

Filippini N, Watkins KE, Toro R, Laird AR, et al. 2009. Corres-

pondence of the brain’s functional architecture during

activation and rest. Proc Natl Acad Sci USA. 106:13040–13045.

Smith SM, JenkinsonM,WoolrichMW, BeckmannCF, Behrens TE,

Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I,

Flitney DE, et al. 2004. Advances in functional and structural

MR image analysis and implementation as FSL. Neuroimage.

23(Suppl 1):S208–S219.

Snyder JS, Alain C. 2007. Toward a neurophysiological theory of

auditory stream segregation. Psychol Bull. 133:780–799.

Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL. 2008. Evi-

dence for a frontoparietal control system revealed by intrinsic

functional connectivity. J Neurophysiol. 100:3328–3342.

Weissman DH, Roberts KC, Visscher KM, Woldorff MG. 2006. The

neural bases of momentary lapses in attention. Nat Neurosci.

9:971–978.

Woolgar A, Bor D, Duncan J. 2013. Global increase in task-related

fronto-parietal activity after focal frontal lobe lesion. J Cogn

Neurosci. 25:1542–1552.

Woolgar A, Hampshire A, Thompson R, Duncan J. 2011. Adaptive

coding of task-relevant information in human frontoparietal

cortex. J Neurosci. 31:14592–14599.

Zündorf IC, KarnathHO, Lewald J. 2014. The effect of brain lesions

on sound localization in complex acoustic evnironments.

Brain. 137:1410–1418.

Zündorf IC, Lewald J, Karnath HO. 2013. Neural correlates

of sound localization in complex acoustic environments.

PLoS One. 8:e64259.

4298 | Cerebral Cortex, 2015, Vol. 25, No. 11


