
Citation: Armenta, M.; Judge, T.;

Painchaud, N.; Skandarani, Y.;

Lemaire, C.; Gibeau Sanchez, G.;

Spino, P.; Jodoin, P.-M. Neural

Teleportation. Mathematics 2023, 11,

480. https://doi.org/10.3390/

math11020480

Academic Editor: Xiang Li

Received: 8 December 2022

Revised: 4 January 2023

Accepted: 6 January 2023

Published: 16 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Neural Teleportation
Marco Armenta 1,2,*,†, Thierry Judge 1,†, Nathan Painchaud 1 , Youssef Skandarani 3, Carl Lemaire 1,
Gabriel Gibeau Sanchez 1, Philippe Spino 1 and Pierre-Marc Jodoin 1

1 Department of Computer Science, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
2 Department of Mathematics, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
3 Department of Computer Science, Université de Bourgogne Franche-Comte, 21000 Dijon, France
* Correspondence: marco.armenta@usherbrooke.ca
† These authors contributed equally to this work.

Abstract: In this paper, we explore a process called neural teleportation, a mathematical consequence
of applying quiver representation theory to neural networks. Neural teleportation teleports a network
to a new position in the weight space and preserves its function. This phenomenon comes directly
from the definitions of representation theory applied to neural networks and it turns out to be a
very simple operation that has remarkable properties. We shed light on the surprising and counter-
intuitive consequences neural teleportation has on the loss landscape. In particular, we show that
teleportation can be used to explore loss level curves, that it changes the local loss landscape, sharpens
global minima and boosts back-propagated gradients at any moment during the learning process.

Keywords: quiver representations; neural networks; teleportation

MSC: 16G20; 68T07

1. Introduction

Despite years of research, our theoretical understanding of neural networks, their
loss landscape and their behavior during training and testing is still limited. A recent
novel theoretical analysis of neural networks, using quiver representation theory given
by [1], has been introduced, where the algebraic and combinatorial nature of neural net-
works is exposed. Among other things, the authors present a by-product of represent-
ing neural networks through the lens of quiver representation theory, i.e., the notion of
neural teleportation.

This is the mathematical foundation that explains why practitioners of deep learning
have observed the property of scale invariance for the very particular case of neural
networks with positive scale invariant activation functions, see, for example, the work
of [2]. Nevertheless, this type of invariance has not been studied or observed in its full
generality, for example, across batch norm layers, residual connections, concatenation layers
or activation functions other than ReLU. Even more, it has been claimed, for example, by [3],
that there is no scale invariance across residual connections. This is because it is not until
a neural network is drawn as a quiver that the invariance of the network function under
isomorphisms across any architecture becomes obvious (see Appendix A for an illustration
of this). Positive scale invariance also restricts the type of scaling factor, reducing them
to positive real numbers and positive scale invariant activation functions, while neural
teleportation allows to teleport any neural architecture with any non-zero scaling factor.

In this work, we intend to exhibit empirical evidence that using quiver representation
theoretic concepts produces measurable changes on the behaviours of deep neural networks.
Due to its mathematical nature, neural teleportation is an intrinsic property of every neural
network, and so it is independent of the architecture, the activation functions and even
the task at hand or the data. Here, we perform extensive experiments on classification

Mathematics 2023, 11, 480. https://doi.org/10.3390/math11020480 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11020480
https://doi.org/10.3390/math11020480
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8269-5704
https://doi.org/10.3390/math11020480
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11020480?type=check_update&version=1

Mathematics 2023, 11, 480 2 of 27

tasks with feedforward neural networks with different activation functions and scaling
factor sampling.

As will be explained later, neural teleportation is the mathematical consequence of
applying the concept of isomorphisms of quiver representations to neural networks. This
process has the unique property of changing the weights and the activation functions of a
network while, at the same time, preserving its function, i.e., a teleported network makes
the same predictions for the same input values as the original, non-teleported network.

Isomorphisms of quiver representations have already been used on neural networks,
often unbeknownst to the authors, through the concept of positive scale invariance (also
called positive homogeneity) of some activation functions, see [2–5]. However, representation
theory lays down the mathematical foundations of this phenomenon and explains why
this has been observed only on networks with positive scale invariant activation functions.
Following the quiver representation theoretic approach to neural networks, it becomes
clear that any neural network can be teleported with an isomorphism, as opposed to
what is remarked in the literature. Namely, it has been claimed that there is no scale
invariance across residual connections [3] or on the parameters beta and gamma for batch
norm layers [6]. We explain (see Appendix A for illustrations on residual connections
and batchnorm layers) how the quiver approach is essential to apply teleportation to
any architecture.

The concept of positive scale invariance derives from the fact that one can choose a
positive number c for each hidden neuron of a ReLU network, multiply every incoming
weight to that neuron by c and divide every outgoing weight by c and still have the same
network function. Note that models such as maxout networks [7], leaky rectifiers [8] and
deep linear networks [9] are also positive scale-invariant. This concept in previous works
is always restricted to positive scale-invariant activation functions and to positive scaling
factors. However, the generality in which quiver representation theory describes neural
networks allows to teleport any architecture, with any activation function and any non-zero
scaling factor.

In this paper, we show that neural teleportation is more than a trick, as it has concrete
consequences on the loss landscape and the network optimization. We account for various
theoretical and empirical consequences that teleportation has on neural networks.

Our findings can be summarized as follows:

1. Neural teleportation can be used to explore loss level curves;
2. Micro-teleportation vectors have the property of being perpendicular to back-propagated

gradients computed with any kind and amount of labeled data, even random data
with random labels;

3. Neural teleportation changes the flatness of the loss landscape;
4. The back-propagated gradients of a teleported network scale with respect to the

scaling factor;
5. Randomly teleporting a network before training speeds up gradient descent (with and

without momentum). Actually, we also found that one teleportation can accelerate
training even when used at the middle of the training.

2. Neural Teleportation

In this section, we explain what neural teleportation is and the implications it has on
the loss landscape and the back-propagated gradients. For more details on the theoretical
interpretation of neural networks according to quiver representation theory, please refer to
the work of [1].

2.1. Isomorphisms and Change of Basis (CoB)

Neural networks are often pictured as oriented graphs. [1] show that neural network
graphs are a specific kind of quiver with a loop at every hidden node. They call these
graphs network quivers (c.f. Figure 1a). They also mention that neural networks, as they

Mathematics 2023, 11, 480 3 of 27

are generally defined, are network quivers with a weight assigned to every edge and an
activation function at every loop (c.f. Figure 1b).

Figure 1. (a) Network quiver Q as introduced by [1]. (b) Neural network based on Q with weights
W and activation functions f . Input, hidden, bias, and output neurons are in yellow, gray, orange
and red, respectively. (c) Same neural network but with a change of basis (CoB) τε at each neuron
ε. (d) Neural teleportation of the weights attached to neuron d. The resulting activation function is
gd(x) = τd fd(x/τd).

According to representation theory, two quiver representations are equivalent if an
isomorphism exists between the two. Mathematically, neural networks are quiver repre-
sentations with activation functions, and this allows to apply isomorphisms of quiver
representations directly to every neural network independently of the architecture or the
task at hand.

Isomorphisms are given by sets of non-zero real numbers subject to some conditions.
One such set of non-zero numbers is called a change of basis (CoB), see, for example, [10],
where each node of the quiver is assigned a non-zero number. In order to apply an
isomorphism to a neural network, each neuron ε must be assigned a CoB represented by
τε ∈ IR 6=0 in Figure 1c.

However, isomorphisms of quiver representations are very general and they may
break implementations of neural network layers. For example, applying an isomorphism
to a convolutional layer may not result in a convolutional layer. However, in any case,
we will always obtain a network with the exact same network function. It was proved
by [1] that these isomorphisms can be restricted to preserve the implementation of neural
network layers for any architecture. Neural teleportation is the process of applying one of
such particular isomorphisms of quiver representations to neural networks.

The following is not an exhaustive list of all the cases for teleportation. It seems
case-by-case because we break it down for the most common layers. It is precisely here
where the quiver approach to neural networks is required to define a general teleportation
for any neural network [1]. The conditions over the CoB (to be defined latter) to produce a
teleportation of a neural network are the following.

1. The CoB of every input, output and bias neuron must be equal to 1 (i.e., τa, τb, τh, τi, τj =
1 in Figure 1c).

2. Neurons k, l connected by a residual connection should have the same CoB: τk = τl .
See Appendix A for details.

3. For convolutional layers, the neurons of a given feature map should share the
same CoB.

4. For batch norm layers, a CoB must be assigned to parameters β and γ, but not to the
mean and variance. See Appendix A for details.

5. The CoBs of neurons connected by a dense connection are obtained by concatenating
those in its input layers.

Condition 1 is the isomorphism condition. Any two networks related by a CoB satisfying
this condition are said to be isomorphic. Applying the notion of isomorphism of quiver
representation to neural networks leads to the following theorem:

Mathematics 2023, 11, 480 4 of 27

Theorem 1 ([1]). Isomorphic neural networks have the same network function.

Said otherwise, despite having different weights and different activation functions,
isomorphic neural networks return the same predictions for the same inputs. It also means
that they have exactly the same loss values (c.f. [1] for the proof).

Conditions 2 to 5 have to do with the architecture of the network. They ensure that
the produced isomorphic networks share the same architecture (again c.f. [1] for more
details). These conditions ensure that the teleportation of a residual connection remains a
residual connection (condition 2), the teleportation of a conv layer remains a conv layer
(condition 3), the teleportation of a batch norm remains a batch norm (condition 4) and
the teleportation of a dense layer remains a dense layer (condition 5). Please note that [3]
introduced a concept similar to condition 3.

2.2. Teleporting a Neural Network

Neural teleportation is a process by which the weights W and the activation functions
f of a neural network are converted to a new set of weights V, and a new set of activation
functions g. From a practical standpoint, this process is illustrated in Figure 1d.

Considering wab ∈ IR, the weight of the connection from neuron a to neuron b, and
τa ∈ IR 6=0 (resp. τb ∈ IR 6=0) the CoB of neuron a (resp. b). The teleportation of that weight
is simply:

vab =
τb
τa

wab. (1)

To teleport an entire network, this operation is carried out for every weight of the
network. Note that positive homogeneity, see [2–5], implies a similar operation but with
the restriction of positive scaling factors. In the case of batch norm layers, the parameter γ
is treated like a weight between two hidden neurons and β as a weight starting from a bias
neuron [1]. As such, γ and β are teleported like any other weight using Equation (1).

Neural teleportation also applies to activation functions. If fd is the activation function
of neuron d in Figure 1d, then the teleported activation is

gd(x) = τd · fd

(
x
τd

)
. (2)

This is a critical operation to make sure the pre- and post-teleported networks have
the same function. We can see that if τd > 0 and fd is positive scale invariant (such as
ReLU) then gd(x) = τd fd(x/τd) = τd/τd fd(x) = fd(x), and so positive scale invariance is
a consequence of neural teleportation.

3. Previous Work

It was shown that positive scale invariance affects training by inducing symmetries
on the weight space. As such, many methods have tried to take advantage of it, for
example, [2,4,11,12]. Our notion of teleportation gives a different perspective as (i) it allows
any non-zero real-value CoB to be used as scaling parameters, (ii) it acts on any kind of
activation functions, and (iii) our approach does not impose any constraints on the structure
of the network nor the data it processes. Moreover, neural teleportation does not require
new update rules as it only has to be applied once during training to produce an impact.

Refs. [2,3] accounted for the fact that ReLU networks can be represented by the values
of “basis paths” connecting input neurons to output neurons. Ref. [3] made clear that these
paths are interdependent and proposed an optimization based on it. They designed a space
that manages these dependencies, proposing an update rule for the values of the paths that
are later converted back into network weights. Unfortunately, their method only works for
neural nets having the same number of neurons in each hidden layer. Furthermore, they
guarantee no invariance across residual connections. This is unlike neural teleportation,
which works for any network architecture, including residual networks.

Mathematics 2023, 11, 480 5 of 27

Scale-invariance in networks with batch normalization has been observed by [6,13],
but not in the sense of quiver representations.

Positive scale invariance of ReLU networks has also been used to prove that common
flatness measures can be manipulated by the re-scaling factors [5]. Here, we experimentally
show that the loss landscape changes when teleporting a network with positive or negative
CoB, regardless of its architecture and activation functions. Note that the proofs of [5]
are for two layer neural networks while we teleport deeper and much more sophisticated
architectures, and provide empirical evidence of how teleportation sharpens the local
loss landscape.

4. Neural Teleportation and the Loss Landscape

Despite its apparent simplicity, neural teleportation has surprising consequences on
the loss landscape. In this section, we underline such consequences and lay empirical
evidence for it.

4.1. Inter- and Intra-Loss Landscape Teleportation

As mentioned before, teleporting a positive scale invariant activation function fd
with a positive τd results in gd = fd. This means that the teleported network ends up
inside the same loss landscape but with weights V at a different location than W (c.f.,
Figure 2a). In other cases (for τd negative or non-positive scale invariant activation functions
fd), neural teleportation changes the activation function and, thus, the overall loss land-
scape. For example, with τd < 0 and fd a ReLU function, the teleportation of fd becomes:
gd(x) = τdmax(0, x/τd) = min(0, τdx/τd) = min(0, x).

Figure 2. (a) 2D slice of a loss landscape with a W dot as the location of a given network. The V
dots are two teleported versions of W inside the same landscape while the MV dot stands for a
micro-teleportation of W. (b) The dots are teleported versions of W in a different loss landscape. Since
neural teleportation preserves the network function, the six networks have the same loss value. In
the case of ReLU, for example, the teleported networks with intra-landscape teleportation lie in the
same landscape.

Thus, the way CoB values are chosen has a concrete effect on how a network is
teleported. A trivial case is when τε = 1 for every hidden neuron ε, which leads to no
transformation at all: V = W and g = f . For our method, we choose the CoB values by
randomly sampling either of two distributions. The first one is a uniform distribution
centered on 1: τε ∈ [1− σ, 1 + σ] with 0 < σ < 1. We call σ the CoB-range; the larger σ is,
the more different the teleported network weights V will be from W. In addition, when
this sampling operation is combined with positive scale invariant activation function (like
ReLU), the teleported activation functions stay unchanged (g = f) and, thus, the new
weights V are guaranteed to stay within the same landscape as the original set of weights
W (as in Figure 2a). We, thus, call this operation an intra-landscape neural teleportation.

The other distribution is a mixture of two equal-sized uniform distributions: one
centered at +1 and the other at −1: τε ∈ [1 − σ, 1 + σ] ∪ [−1 − σ,−1 + σ]. With high

Mathematics 2023, 11, 480 6 of 27

probability, a network teleported with this sampling will end up in a new loss landscape, as
illustrated in Figure 2b. We, thus, call this operation an inter-landscape neural teleportation.

4.2. Loss Level Curves

Since τε can be assigned any non-zero real values, a network can be teleported an
infinite amount of times to an infinite amount of locations within the same landscape or
across different landscapes. This is illustrated in Figure 2, where W is teleported to 5.

We validated this assertion by teleporting an MLP 100 times with an inter-landscape
sampling and a CoB-range of σ = 0.9. While the mean average difference between the
original weights W and the teleported weights V is of 0.08 (a large value considering that
the magnitude of W is of 0.18), the average loss difference was in the order of 10−10, i.e., no
more than a floating point error.

4.3. Micro Teleportation

One can easily see that the gradient of a function is always perpendicular to its local
level curve (c.f. [14] chap. 2). However, back-propagation computes noisy gradients that
depend on the amount of data used, that is, the batch-size. Thus, the noisy back-propagated
gradients do not a priori have to be strictly perpendicular to the local loss level curves.

This concern can be (partly) answered via the notion of micro-teleportation, which
derives from the previous subsection. Let us consider the intra-landscape teleportation of a
network with positive scale invariant activation functions (such as ReLU) with a CoB-range
σ close to zero. In that case, τε ≈ 1 for every neuron ε and the teleported weights V
(computed following Equation (1)) end up being very close to W. We call this a micro-
teleportation and illustrate it in Figure 1a (the MV dot illustrates the micro teleportation
of W).

Because V and W are isomorphic, they both lie on the same loss level curve. Thus, if σ

is small enough, the vector
−−→
WV between W and V is locally co-linear to the local loss level

curve. We call
−−→
WV a micro-teleportation vector.

A rather counter-intuitive empirical property of micro-teleportations is that
−−→
WV is

perpendicular to any back-propagated gradient across different batch sizes, because we know
that the back-propagated gradient depends on the batch size but the teleportation does
not. Moreover, if one uses L2 regularization the loss is not the same anymore before and
after teleportation, so it does not make sense that micro teleportation is perpendicular
to the gradient as we were using L2 regularization in our experiments. This surprising
observation leads to the following conjecture.

Conjecture 1: For any neural network, any dataset and any loss function, there exists a sufficiently
small CoB-range σ so that every micro-teleportation produced with it is perpendicular to the
back-propagated gradient with any batch size.

We empirically assessed this conjecture by computing the angle between micro-
teleportation vectors and back-propagated gradients of four models (MLP, VGG, ResNet
and DenseNet) on three datasets (CIFAR-10, CIFAR-100 and random data) 2 different
batch sizes (8 and 64) with a CoB-range σ = 0.001. A cross-entropy loss was used for
all models. Figure 3 shows angular histograms for VGG on CIFAR-10 and an MLP (with
one hidden layer of 128 neurons) on random data (results for other configurations are in
the Appendix A). The first row shows the angular histogram between micro-teleportation
vectors and gradients. We used batch sizes of 8 for MLP and 64 for VGG. As can be seen,
both histograms exhibit a clear Dirac delta on the 90o angle. As a mean of comparison,
we report angular histograms between micro-teleportation vectors and random vectors,
between back-propagated gradients and random vectors, and between random vectors.
While random vectors in a high-dimensional space are known to be quasi-orthogonal (c.f
work of [15]), by no means are they exactly orthogonal, as shown by the green histograms.
The Dirac delta of the first row versus the wider green distributions is a clear illustration of
our conjecture.

Mathematics 2023, 11, 480 7 of 27

89.8 90.0 90.2

89.8 90.0 90.2

89.8 90.0 90.2

89.8 90.0 90.2

Micro-teleportation

 Gradient

Micro-
teleportation

 Random Vector

Gradient

 Random Vector

Random Vector

 Random Vector

VGG on CIFAR-10

 vs

 vs

 vs

 vs

89.8 90.0 90.2

89.8 90.0 90.2

89.8 90.0 90.2

89.8 90.0 90.2

Micro-teleportation

 Gradient

Micro-teleportation

 Random Vector

Gradient

 Random Vector

Random Vector

 Random Vector

MLP on Random Data

 vs

 vs

 vs

 vs

Figure 3. (Top) Angle histograms between micro-teleportation vectors and back-prop. gradients for
VGGnet on CIFAR-10 data and MLP on random data. The other rows are angle histograms between
micro-teleportation vectors and random vectors, between gradient and random vectors and between
random vectors.

These empirical findings suggest that although back-propagation computes noisy
gradients, their orientation in the weight space does not entirely depend on the data nor
the loss function. In other words, back-propagation computes gradients that point to
directions perpendicular to micro-teleportation vectors, but micro-teleportation vectors
do not depend on the loss nor the data. Finally, we note that this conjecture is false if one
adds a regularization term that does not depend directly on the output of the network, for
example, l2 regularization adds a term that depends on the weights but not on the output
of the network.

4.4. Teleportation and Landscape Flatness

It has been shown by [5] for positive scale invariant activation functions, that one
can find a CoB (called reparametrization in their paper) so that the most commonly used
measures for flatness can be manipulated to obtain a sharper minimum with the exact same
network function. We empirically show that neural teleportation systematically sharpens
the found minima, independently of the architecture or the activation functions.

A commonly used method to compare the flatness of two trained networks is to plot
the 1D loss/accuracy curves on the interpolation between the two sets of weights. It is
also well known that small batch sizes produce flatter minima than bigger batch sizes. We
trained on CIFAR-10 a 5 hidden-layer MLP two times, first with a batch size of 8 (network
A) than with a batch size of 1024 (network B). Then, as performed by [16], we plotted
the 1D loss/accuracy curves on the interpolation between the two weight vectors of the
networks (c.f. Figure 4a). We then performed the same interpolation but between the
teleportation of A and B with CoB-ranges σ of 0.6, 0.9, and 0.99. As can be seen from
Figure 4, the landscape becomes sharper as the CoB-range increases. Said otherwise, a
larger teleportation leads to a locally-sharper landscape. More experiments with other
models can be found in Appendix A.

Mathematics 2023, 11, 480 8 of 27

Figure 4. (a) Loss/accuracy profiles obtained by linearly interpolating between two optimized MLP
A and B. Network A is for x = 0 and B for x = 1 (green vertical lines). Dotted lines are for training
and solid lines for validation. Remaining plots are similar interpolations but between teleported
versions of A and B with CoB range σ of (b) 0.6, (c) 0.9, and (d) 0.99.

5. Optimization

In the previous section, we showed that teleportation moves a network along a loss
level curve and sharpens the local loss landscape. In this section, we show that teleportation
increases the magnitude of the local normalized gradient and accelerates the convergence
rate when used during training, even only once. Moreover, we empirically show that this
impact is controlled by the CoB-range factor σ.

We remark that once a neural network is initialized, it is assigned a specific network
function and, in principle, a teleported network of this initialized network (which will have
the same network function) does not have to train better than the original network and,
nevertheless, the teleported network trains better.

In all of our experiments we used L2 regularization and learning rate decay at epoch 80.

5.1. Back-Propagated Gradients of a Teleportation

It has already been noticed by [2,5], that under positive scaling of ReLU networks, the
gradient scales inversely than the weights with respect to the CoB. Here, we show that the
back-propagated gradient of a teleported network has the same property, regardless of the
architecture of the network, the data, the loss function and the activation functions.

Let (W, f) be a neural network with a set of weights W and activation functions f .
We denote W [`] the weight tensor of the `-th layer of the network, and analogously for the
teleportation V[`]. The CoB τ at layer ` is denoted τ[`], which is a column vector of non-zero
real numbers. Let us also consider a data sample (x, t) with x the input data and t the target
value and dW, dV the gradient of the networks (W, f) and (V, g) with respect to (x, t) the
gradient of the loss with respect to W and V at (x,t). Following Equation (1), we have that

V[`] =
1

τ[`−1]
·W [`] · τ[`], (3)

where the operation 1
τ[`−1] ·W [`] multiplies the columns of the matrix W [`] by the coordinate

values of vector 1
τ[`−1] , while the operation W [`] · τ[`] multiplies the rows of matrix W [`] by

the coordinate values of the vector τ[`].

Theorem 2. Let (V, g) be a teleportation of the neural network (W, f) with respect to the CoB
τ. Then

dV[`] = τ[`−1] · dW [`] · 1
τ[`]

for every layer ` of the network (proof in the Appendix A).

If we look at the magnitude of the teleported gradient, we have that

‖dV‖ =
√

∑i,j

(
dWi,j

τj

τi

)2
.

Mathematics 2023, 11, 480 9 of 27

We can see that the ratio τ2
a /τ2

b appears multiplying the squared non-teleported
gradient dW2. For an intra-landscape teleportation, τa is randomly sampled from a uniform
distribution [1− σ, 1 + σ] for 0 < σ < 1. Since τa, τb are independent random variables, the
mathematical expectation of this squared ratio is:

E
[
τ2

a /τ2
b
]

= E
[
τ2

a
]
·E
[
1/τ2

b
]

=
∫ 1+σ

1−σ τ2
a P(τa)dτa ·

∫ 1+σ
1−σ P(τb)/τ2

b dτb

= σ2+3
3(1−σ2)

.

Thus, when σ→ 0 (i.e., no teleportation as described in Section 4.1), then E
[
τ2

a /τ2
b
]
→

1, which means that on average the gradients are multiplied by 1 and thus remain un-
changed. However, when σ → 1, then E

[
τ2

a /τ2
b
]
→ ∞, which means that the gradients

magnitude is multiplied by an increasingly large factor.
We empirically validate this proposition with four different networks in Figure 5

(plots for the other models and datasets can be found in the Appendix A). There we put
the CoB-range σ on the x-axis versus 20 different teleportations for which we computed
the absolute difference of normalized gradient magnitude: |‖dW‖/‖W‖ − ‖dV‖/‖V‖|.
We can see that a larger CoB-range leads to a larger difference between the normalized
gradient magnitudes.

0.0 0.2 0.4 0.6 0.8

0.000

0.001

0.002

0.003

0.004

0.005

|
||
d
W

||
/|

|W
||

 -
 |

|d
(T

W
)|

|/
||

T
W

||
 | MLP

0.0 0.2 0.4 0.6 0.8

0.00

0.01

0.02

0.03

0.04 VGG

|
||

d
W

||
/|

|W
||

 -
 |

|d
(T

W
)|

|/
||

T
W

||
 |

0.0 0.2 0.4 0.6 0.8

0.00

0.05

0.10

0.15

0.20

0.25

0.30

|
||
d
W

||
/|

|W
||

 -
 |

|d
(T

W
)|

|/
||

T
W

||
 | ResNet

0.0 0.2 0.4 0.6 0.8

0.00

0.01

0.02

0.03

0.04

0.05

0.06

|
||

d
W

||
/|

|W
||

 -
 |

|d
(T

W
)|

|/
||

T
W

||
 | DenseNet

Figure 5. Mean absolute difference (±std-dev) between the back-propagated gradients’ magnitudes of
teleported networks and their original non-teleported network. Larger CoB generate larger gradients.
Results are for CIFAR-10. Plots for these same models on CIFAR-100 can be found in Appendix A.

This shows that randomly teleporting a neural network increases the sharpness of the
surrounding landscape and, thus, the magnitude of the local gradient. This holds true for
any network architecture and any dataset. This analysis also holds true for inter-landscape
CoB sampling since the CoB-range σ appears squared always.

5.2. Gradient Descent and Teleportation

From the previous subsection we obtain that the CoB-range controls the difference
on the normalized gradients. Here we empirically show that the CoB-range also has an
influence on the training when teleportation is applied once during training.

In order to assess this, we trained four models: an MLP with five hidden layers
with 500 neurons each, a VGGnet, a ResNet18, and a DenseNet, all with ReLU activation.
Training was conducted on two datasets (CIFAR-10 and CIFAR-100) with two optimizers
(vanilla SGD and SGD with momentum), and three different learning rates (0.01, 0.001 and
0.0001) for a total of 72 configurations. For each configuration, we trained the network with
and without neural teleportation right after initialization. Training was performed five
times for 100 epochs. The chosen CoB range σ is 0.9 with an inter-landscape sampling for
all these experiments. The teleported and non-teleported networks were initialized with
the same randomized operator following the “Kaiming” method.

This resulted into a total of 720 training curves that we averaged across the learning
rates (±std-dev shades), see Figure 6 (plots for the other models and datasets can be found
in Appendix A). As can be seen, neural teleportation accelerates gradient descent (with
and without momentum) for every model on every dataset.

Mathematics 2023, 11, 480 10 of 27

Figure 6. Average loss of ResNet on CIFAR100 (left) and DenseNet on CIFAR10 (right) over 5 experi-
ments, with and without teleportation, at the beginning of the training with CoB of 0.9. Learning rate
increases from top to bottom rows. We also show a shadow around the average curves at two times
the standard deviation over the five experiments.

To make sure that these results are not unique to ReLU networks, we trained the
MLP on CIFAR-10 and CIFAR-100 with three different activation functions: LeakyReLU,
Tanh and ELU, again with and without neural teleportation after the uniform initialization,

Mathematics 2023, 11, 480 11 of 27

which is the default PyTorch init mode for fully connected layers. As can be seen from
Figure 7 (plots for the other models and datasets can be found in Appendix A), here
again, one teleportation accelerates gradient descent (with and without momentum) across
datasets and models.

Figure 7. Average loss of MLPs with ELU activation function on CIFAR10 (left) and Tanh on
CIFAR100 (right) over 5 experiments for each, with and without teleportation, at the beginning of the
training with CoB of 0.9. Learning rate increases from top to bottom rows. We also show a shadow
around the average curves at two times the standard deviation over the five experiments.

In order to measure the impact of the initialization procedure, we ran a similar experi-
ment with a basic Gaussian initialization as well as an Xavier initialization. We obtained

Mathematics 2023, 11, 480 12 of 27

the same pattern for the Gaussian case; for the Xavier initialization, teleportation helps the
training of the VGG net, while for the others the difference is less prominent, see Figure 8
(plots for the other models and datasets can be found in Appendix A).

Figure 8. Average loss of VGG with normal initialization on CIFAR10 (left) and ResNet with xavier
initialization on CIFAR100 (right) both traing with SGD with momentum over 5 experiments for
each, with and without teleportation, at the beginning of the training with CoB of 0.9. Learning rate
increases from top to bottom rows. We also show a shadow around the average curves at two times
the standard deviation over the five experiments.

Given a neural network W, we produced another one, V, by first teleporting W to
τW and then sampling V from the sphere with center W and radius vector W − τW. We

Mathematics 2023, 11, 480 13 of 27

called this a pseudo-teleportation. We then trained the four models with the same regime,
comparing pseudo-teleportation to no teleportation. Results in Figure 9 reveal that pseudo-
teleportation does not improve gradient descent training (plots for the other models and
datasets can be found in Appendix A).

Figure 9. Average loss of ResNet on CIFAR10 (left) and DenseNet on CIFAR100 (right) both training
with SGD over 5 experiments for each, with and without pseudo-teleportation, at the beginning of the
training with CoB of 0.9. Learning rate increases from top to bottom rows. We also show a shadow
around the average curves at two times the standard deviation over the five experiments.

We show in Figure 10 the weight histograms of an MLP network initialized with a
uniform distribution (PyTorch’s default) before (left) and after (right) teleportation.

Mathematics 2023, 11, 480 14 of 27

Figure 10. Weight histogram of an MLP before teleportation (left) and after teleportation (right) with
CoB-range of 0.9. Initialization is the standard on PyTorch which is uniform and contains values
between −0.05 and 0.05 while the teleported weights are more broadly distributed as shown in
the zooms.

For all the previous experiments, we teleported the neural networks at the beginning
of the training. Finally, we performed another set of experiments by teleporting the neural
network once at epoch 30. We can clearly see the jump in accuracy right after the teleportation
in Figure 11. In Figure 12, we compare the training curve of a model with a training where we
teleport once at epoch 30 with different CoB-ranges of 0.7, 0.8 and 0.9. We can see how the
bigger the Cob-range, the higher the impact on validation accuracy. Experiments shown in
Figures 11 and 12 were run with a learning rate of 0.0001 on CIFAR-10.

Figure 11. Validation accuracy for VGG (left) and ResNet (right). We plot two curves for each model, the
orange curves are the usual SGD training and the blue curves are SGD with one teleportation at epoch 30.

Figure 12. Validation accuracy for ResNet (left) and DenseNet (right). We plot four curves for each
model each one corresponding to applying one teleportation at epoch 30 with different CoB-ranges.

6. Conclusions

In this paper, we provided empirical evidence that neural teleportation can project
the weights (and the activation functions) of a network to an infinite amount of places
in the weight space while always preserving the network function. We show that: (1) It

Mathematics 2023, 11, 480 15 of 27

can be used to explore loss level curves; (2) Micro-teleportation vectors are always per-
pendicular to back-propagated gradients (Figure 3); (3) teleportation reduces the land-
scape flatness (Figure 2) and increases the magnitude of the normalized local gradient
(Figures 5 and 12) proportionally to the CoB range σ used, and (4) applying one telepor-
tation during training accelerates the convergence of gradient descent with and without
momentum (Figures 6–8 and 11).

Although teleportation looks only like a trick to preserve the network function by
just rescaling the weights and the activation functions, it is more than a trick as (i) it
comes from the foundational definitions and constructions of representation theory, which
neural networks exactly satisfy, and (ii) it has unexpected properties on neural network
training when applied once. The latter underlines the fact that we really do not know
the landscape of neural networks and that more tools (or new mathematics) are needed
for further understanding. Moreover, in principle, a neural network and its teleportation
should train very similarly, since they both have the same network function, and we have
demonstrated that this is not the case.

We conclude that neural teleportation, which is a very simple operation, has remark-
able and unexpected properties. We expect these phenomena to motivate the study of the
link between neural networks and quiver representations.

Finally, we acknowledge that several different types of change of basis sampling can
be performed instead of the uniform distribution around 1 and −1 that we have chosen. In
any case, if there are other types of change of basis sampling for which the properties of
interest do not hold, then we ask: what makes uniform sampling different?

Author Contributions: Methodology, T.J.; Software, N.P., Y.S., C.L., G.G.S. and P.S.; Investiga-
tion, M.A.; Supervision, P.-M.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Our results can be reproduced with the code available here: https:
//github.com/vitalab/neuralteleportation, accessed on 24 December 2022.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Residual Connections and Batchnorm

Here, we present an illustration of how teleportation acts on both residual connections
and batchnorm as performed by ([1], chap. 5).

Consider a simple neural network with 5 neurons where the second and fourth neurons
are connected by a residual connection, i.e., its underlying graph (quiver) is of the form

Armenta and Judge et al

Appendix

Residual connections and batchnorm

Here we present an ilustration of how teleportation acts on both residual connections and
batchnorm as done by (Armenta and Jodoin, 2020, chap. 5).

Consider a simple neural network with 5 neurons where the second and fourth neurons
are connected by a residual connection, i.e., its underlying graph (quiver) is of the form

a b c d e
α β γ δ

ε

and the neural network looks like

R R R R R.

fb fc fd

Wα Wβ Wγ Wδ

1

where fb, fc and fd are activation functions. A CoB of this neural newtork is of the form
τ = (1, τb, τc, τd, 1), so that the teleportation with respect to τ is the following neural
newtork

R R R R R.

τb · fb τc · fc τd · fd
Wατb Wβ/τb Wγτd Wδ/τd

τb/τd

where τb · fb(x) = τbfb(x/τb). So if τb = τd then the the teleported network looks as follows

R R R R R.

τb · fb τc · fc τb · fd
Wατb Wβ/τb Wγτb Wδ/τb

1

Therefore, if the CoBs of layers connected with residual connections are equal then the
teleportation produced with that CoB will have a residual connection in the same place as
the original network.

Consider now the following graph (quiver)

a c

b d

20

and the neural network looks like

Armenta and Judge et al

Appendix

Residual connections and batchnorm

Here we present an ilustration of how teleportation acts on both residual connections and
batchnorm as done by (Armenta and Jodoin, 2020, chap. 5).

Consider a simple neural network with 5 neurons where the second and fourth neurons
are connected by a residual connection, i.e., its underlying graph (quiver) is of the form

a b c d e
α β γ δ

ε

and the neural network looks like

R R R R R.

fb fc fd

Wα Wβ Wγ Wδ

1

where fb, fc and fd are activation functions. A CoB of this neural newtork is of the form
τ = (1, τb, τc, τd, 1), so that the teleportation with respect to τ is the following neural
newtork

R R R R R.

τb · fb τc · fc τd · fd
Wατb Wβ/τb Wγτd Wδ/τd

τb/τd

where τb · fb(x) = τbfb(x/τb). So if τb = τd then the the teleported network looks as follows

R R R R R.

τb · fb τc · fc τb · fd
Wατb Wβ/τb Wγτb Wδ/τb

1

Therefore, if the CoBs of layers connected with residual connections are equal then the
teleportation produced with that CoB will have a residual connection in the same place as
the original network.

Consider now the following graph (quiver)

a c

b d

20

https://github.com/vitalab/neuralteleportation
https://github.com/vitalab/neuralteleportation

Mathematics 2023, 11, 480 16 of 27

where fb, fc and fd are activation functions. A CoB of this neural newtork is of the form
τ = (1, τb, τc, τd, 1), so that the teleportation with respect to τ is the following neural newtork

Armenta and Judge et al

Appendix

Residual connections and batchnorm

Here we present an ilustration of how teleportation acts on both residual connections and
batchnorm as done by (Armenta and Jodoin, 2020, chap. 5).

Consider a simple neural network with 5 neurons where the second and fourth neurons
are connected by a residual connection, i.e., its underlying graph (quiver) is of the form

a b c d e
α β γ δ

ε

and the neural network looks like

R R R R R.

fb fc fd

Wα Wβ Wγ Wδ

1

where fb, fc and fd are activation functions. A CoB of this neural newtork is of the form
τ = (1, τb, τc, τd, 1), so that the teleportation with respect to τ is the following neural
newtork

R R R R R.

τb · fb τc · fc τd · fd
Wατb Wβ/τb Wγτd Wδ/τd

τb/τd

where τb · fb(x) = τbfb(x/τb). So if τb = τd then the the teleported network looks as follows

R R R R R.

τb · fb τc · fc τb · fd
Wατb Wβ/τb Wγτb Wδ/τb

1

Therefore, if the CoBs of layers connected with residual connections are equal then the
teleportation produced with that CoB will have a residual connection in the same place as
the original network.

Consider now the following graph (quiver)

a c

b d

20

where τb · fb(x) = τb fb(x/τb). So if τb = τd then the the teleported network looks as follows

Armenta and Judge et al

Appendix

Residual connections and batchnorm

Here we present an ilustration of how teleportation acts on both residual connections and
batchnorm as done by (Armenta and Jodoin, 2020, chap. 5).

Consider a simple neural network with 5 neurons where the second and fourth neurons
are connected by a residual connection, i.e., its underlying graph (quiver) is of the form

a b c d e
α β γ δ

ε

and the neural network looks like

R R R R R.

fb fc fd

Wα Wβ Wγ Wδ

1

where fb, fc and fd are activation functions. A CoB of this neural newtork is of the form
τ = (1, τb, τc, τd, 1), so that the teleportation with respect to τ is the following neural
newtork

R R R R R.

τb · fb τc · fc τd · fd
Wατb Wβ/τb Wγτd Wδ/τd

τb/τd

where τb · fb(x) = τbfb(x/τb). So if τb = τd then the the teleported network looks as follows

R R R R R.

τb · fb τc · fc τb · fd
Wατb Wβ/τb Wγτb Wδ/τb

1

Therefore, if the CoBs of layers connected with residual connections are equal then the
teleportation produced with that CoB will have a residual connection in the same place as
the original network.

Consider now the following graph (quiver)

a c

b d

20

Therefore, if the CoBs of layers connected with residual connections are equal then the
teleportation produced with that CoB will have a residual connection in the same place as
the original network.

Consider now the following graph (quiver)

a c

b d

We can describe the batchnorm operation on this graph if we consider a layer with
only one neuron as follows

R R

R R

γ/σ2

−µ β

1 1

where the bottom neurons are considered as bias neurons. It is easy to see that if we
feed an input x through this network (i.e., in the top left neuron) we obtain the desired
operation x 7→ x − µ 7→ (x − µ)(γ/σ2) + β. A CoB for this simple layer is of the form
τ = (τa, τb, τc, τd) where τb = τd = 1 because the bottom neurons are considered as bias
neurons. So, a teleportation of the previous batchnorm layer with a CoB τ = (τa, 1, τc, 1) is
of the form

R R

R R

γτc/σ2τa

−µτa βτc

1 1

and so if τa = 1 then we obtain the layer

R R

R R

γτc/σ2

−µ βτc

1 1

Mathematics 2023, 11, 480 17 of 27

which is a batchnorm layer since the mean and variance µ and σ2 remain the same
after teleportation.

Appendix A.2. Micro-Teleportations

Following Section 4.3 on micro-teleportations, we provide more angular histograms
between back-propagated gradients and random micro-teleportations of the network. We
present here some more histograms for models MLP, VGG, ResNet and DenseNet on
datasets CIFAR-10, CIFAR-100 and random data. Each histogram in Figures A1–A3 was
computed with 100 random micro-teleportations with a CoB-range σ = 0.001.

89.8 90.0 90.2

Micro-teleportation
 vs

 Gradient

89.8 90.0 90.2

Micro-teleportation
 vs

 Random Vector

89.8 90.0 90.2

Gradient
 vs

 Random Vector

89.8 90.0 90.2

Random Vector
 vs

 Random Vector

MLP on CIFAR-100, batch size 64

89.8 90.0 90.2

Micro-teleportation
 vs

 Gradient

89.8 90.0 90.2

Micro-teleportation
 vs

 Random Vector

89.8 90.0 90.2

Gradient
 vs

 Random Vector

89.8 90.0 90.2

Random Vector
 vs

 Random Vector

VGG on Random Data, batch size 8

Figure A1. Micro teleportation experiments for MLP on CIFAR-100 and VGG on random data.

89.8 90.0 90.2

Micro-teleportation
 vs

 Gradient

89.8 90.0 90.2

Micro-teleportation
 vs

 Random Vector

89.8 90.0 90.2

Gradient
 vs

 Random Vector

89.8 90.0 90.2

Random Vector
 vs

 Random Vector

ResNet on CIFAR-100, batch size 8

89.8 90.0 90.2

Micro-teleportation
 vs

 Gradient

89.8 90.0 90.2

Micro-teleportation
 vs

 Random Vector

89.8 90.0 90.2

Gradient
 vs

 Random Vector

89.8 90.0 90.2

Random Vector
 vs

 Random Vector

ResNet on Random Data, batch size 64

Figure A2. Micro teleportation experiments for ResNet on CIFAR-100 and random data.

Mathematics 2023, 11, 480 18 of 27

89.8 90.0 90.2

Micro-teleportation
 vs

 Gradient

89.8 90.0 90.2

Micro-teleportation
 vs

 Random Vector

89.8 90.0 90.2

Gradient
 vs

 Random Vector

89.8 90.0 90.2

Random Vector
 vs

 Random Vector

DenseNet on CIFAR-10, batch size 8

89.8 90.0 90.2

Micro-teleportation
 vs

 Gradient

89.8 90.0 90.2

Micro-teleportation
 vs

 Random Vector

89.8 90.0 90.2

Gradient
 vs

 Random Vector

89.8 90.0 90.2

Random Vector
 vs

 Random Vector

DenseNet on Random Data, batch size 64

Figure A3. Micro teleportations experiments for DenseNet on CIFAR-10 and random data.

Appendix A.3. Teleportation and Landscape Flatness

Following Section 4.4, we trained a VGGnet with two different batch sizes and then
produced a 1D loss plot by interpolating the two models. We then re-produced 1D loss
plots by teleporting the models. As shown in Figure A4, neural teleportation has the effect
of sharpening the loss landscape.

Figure A4. (a) Loss/accuracy profiles obtained by linearly interpolating between two optimized VGG
A and B. Network A is for x = 0 and B for x = 1 (green vertical lines). Dotted lines are for training
and solid lines for validation. Remaining plots are similar interpolations but between teleported
versions of A and B with CoB range σ of (b) 0.6, (c) 0.9, and (d) 0.99.

Appendix A.4. Back-Propagated Gradients of a Teleportation

Here, we give the proof of Theorem 5.1 and reproduce the experiment shown in
Figure 5 for the CIFAR-100 dataset. Results are shown in Figure A5.

0.0 0.2 0.4 0.6 0.8

0.000

0.001

0.002

0.003

0.004

0.005

MLP on CIFAR-100

|
||

d
|

||
d
W

||
/|

|W
||

 -
 |

| d
(T

W
)|

|/
||

T
W

||
 |

0.0 0.2 0.4 0.6 0.8

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

|
||

d
W

||
/|

|W
||

 -
 |

| d
(T

W
)|

|/
||

T
W

||
 | VGG on CIFAR-100

0.0 0.2 0.4 0.6 0.8

0.00

0.05

0.10

0.15

0.20

0.25

|
||

d
W

||
/|

|W
||

 -
 |

| d
(T

W
)|

|/
||

T
W

||
 | ResNet on CIFAR-100

0.0 0.2 0.4 0.6 0.8

0.01

0.02

0.03

0.04

0.05
DenseNet on CIFAR-100

|
||

d
W

||
/|

|W
||

 -
 |

| d
(T

W
)|

|/
||

T
W

||
 |

Figure A5. Mean absolute difference (±std-dev) between the back-propagated gradients’ magni-
tudes of teleported networks and their original (non-teleported) network. Larger CoB generate
larger gradients.

Mathematics 2023, 11, 480 19 of 27

Appendix A.5. Proof of Theorem 5.1

We will introduce the notation for a forward pass on a neural network (W, f) with
L hidden layers without bias vertices for clarity. For the forward pass of (W, f) we first
fix a data sample (x, t) and define the vector of activation outputs of neurons at layer ` by
a[`]W , and the vector of pre-activations at layer ` by z[`]W . We will denote by f [`] the vector

of activation functions at layer `. For the input layer we have a[0]W = z[0]W = x. Next, we
define inductively

z[`]W = W [`]a[`−1]
W and a[`]W = f [`]

(
z[`]W

)
(A1)

for every ` = 1, . . . , L + 1.
In the case of the backward pass, we denote the vector of derivatives of activations

in layer ` by d f `, and the vector of derivatives with respect to the activation outputs of
neurons on layer ` by da[`]W . On the output layer we have

da[L+1]
W =

∂L
∂a[L+1]

W

(a[L+1]
W , y) (A2)

where L is the loss function. If we denote by � the point-wise (Hadamard) product of
vectors of the same size, then inductively from layer L + 1 down to the input layer we have

dW [`] =
(

da[`]W � d f [`]
(

z[`]W

))
a[`−1]T

W , (A3)

and also that

da[`−1]
W =

(
W [`]

)T(
da[`]W � d f [`]

(
z[`]W

))
. (A4)

If τ : (W, f) → (V, g) is an isomorphism of neural networks, given by a choice of
change of basis in every hidden neuron and we denote by τ[`] the vector of change of basis
for layer `, then

V[`] =
1

τ[`−1]
·W [`] · τ[`]. (A5)

and for the activation functions we have

g[`](x) = f [`]
(

x · 1
τ[`]

)
· τ[`], (A6)

where the operation 1
τ[`−1] · − on the left of a matrix, multiplies its columns by the coordinate

values of vector 1
τ[`−1] . While the operation − · τ[`] on the right of a matrix, multiplies its

rows by the coordinate values of the vector τ[`]. By transposing Equation (A5), we obtain(
V[`]

)T
= τ[`] ·

(
W [`]

)T
· 1

τ[`−1]
. (A7)

By the chain rule and Equation (A6) we can see that

dg[`](x) = d f [`]
(

x · 1
τ[`]

)
. (A8)

In addition, from the proof of Theorem 4.9 [1],

z[`]V = z[`]W · τ[`] and a[`]V = a[`]W · τ[`]. (A9)

Mathematics 2023, 11, 480 20 of 27

Theorem A1. Let (V, g) be a teleportation of the neural network (W, f) with respect to the CoB
τ. Then

dV[`] = τ[`−1] · dW [`] · 1
τ[`]

for every layer ` of the network.

Proof. We proceed by induction on the steps of the backward pass of the network (V, g).
By Theorem 4.9 of [1], both networks (W, f) and (V, g) give the same output a[L+1]

W = a[L+1]
V ,

so by Equation (A2) we obtain that da[L+1]
W = da[L+1]

V . We can substitute this together with
Equation (A9) into Equation (A3) applied to the neural network (V, g) to obtain

dV[L+1] = da[L+1]
V a[L]

T

V

= da[L+1]
W

(
a[L]W · τ[L]

)T

= dW [L+1] · 1
τ[L]

.

Now, the derivative of the loss function with respect to the activation outputs of layer L in (V, g) can be
written analogously to Equation (A4), in which we substitute Equation (A7) taking into account that the CoB for
the output layer is given by 1’s, so we obtain

da[L]V =
(

V[L+1]
)T

da[L+1]
V

=
(

W [L+1]
)T
· 1

τ[L]
da[L+1]

W

= da[L]W · 1
τ[L]

.

At layer L we obtain

dV[L] =
(

da[L]V � dg[L]
(

z[L]V

))
a[L−1]T

V

=
(

da[L]W · 1
τ[L]

)
� d f [L]

(
z[L]W · τ[L] · 1

τ[L]

)
a[L−1]T

V

=
(

da[L]W � d f [L]
(

z[L]W

)
· 1

τ[L]

)(
a[L−1]

W · τ[L−1]
)T

=
(

da[L]W � d f [L]
(

z[L]W

)
· 1

τ[L]

)(
τ[L−1] · a[L−1]T

W

)
= τ[L−1] ·

(
da[L]W � d f [L]

(
z[L]W

)
a[L−1]T

W

)
· 1

τ[L]

= τ[L−1] · dW [L] · 1
τ[L]

.

We then observe that

da[L−1]
V =

(
V[L]

)T
da[L]V

=

(
τ[L] ·

(
W [L]

)T
· 1

τ[L−1]

)(
da[L]W · 1

τ[L]

)
=
(

W [L]
)T

da[L]W · 1
τ[L−1]

= da[L−1]
W · 1

τ[L−1] .

For the inductive step, we assume the result to be true for layers L + 1, . . . , `+ 1. We will prove the result
holds for layer `. Indeed,

dV[`] =
(

da[`]V � dg[`]
(

z[`]V

))
a[`−1]T

V

=
(

da[`]W · 1
τ[`]

)
� d f [`]

(
z[`]W · τ[`] · 1

τ[`]

)
a[`−1]T

V

=
(

da[`]W � d f [`]
(

z[`]W

)
· 1

τ[`]

)(
a[`−1]

W · τ[`−1]
)T

=
(

da[`]W � d f [`]
(

z[`]W

))(
τ[`−1] · a[`−1]T

W

)
· 1

τ[`]

= τ[`−1] ·
(

da[`]W � d f [`]
(

z[`]W

))
a[`−1]T

W · 1
τ[`]

= τ[`−1] · dW [`] · 1
τ[`]

.

It can be appreciated that back-propagation on (V, g) computes a re-scaling of the gradient of (W, f) by the
CoB, just as claimed in the statement of the theorem.

Mathematics 2023, 11, 480 21 of 27

Appendix A.6. Gradient Descent Speed Up

Following Section 5.2, we present the training curves for the remaining models and
datasets of our training experiments on Figures A6–A11.

Figure A6. Average loss of ResNet on CIFAR10 (left) and DenseNet on CIFAR100 (right) over
5 experiments, with and without teleportation, at the beginning of the training with CoB of 0.9.
Learning rate increases from top to bottom rows. We also show a shadow around the average curves
at two times the standard deviation over the five experiments.

Mathematics 2023, 11, 480 22 of 27

Figure A7. Average loss of MLP on CIFAR10 (left) and VGG on CIFAR100 (right) over 5 experiments,
with and without teleportation, at the beginning of the training with CoB of 0.9. Learning rate
increases from top to bottom rows. We also show a shadow around the average curves at two times
the standard deviation over the five experiments.

Mathematics 2023, 11, 480 23 of 27

Figure A8. Average loss of MLP on CIFAR100 (left) and VGG on CIFAR10 (right) over 5 experiments,
with and without teleportation, at the beginning of the training with CoB of 0.9. Learning rate
increases from top to bottom rows. We also show a shadow around the average curves at two times
the standard deviation over the five experiments.

Mathematics 2023, 11, 480 24 of 27

Figure A9. Average loss of MLPs with ELU activation function on CIFAR100 (left) and Tanh on
CIFAR10 (right) over 5 experiments for each, with and without teleportation at the beginning of the
training with CoB of 0.9. Learning rate increases from top to bottom rows. We also show a shadow
around the average curves at two times the standard deviation over the five experiments.

Mathematics 2023, 11, 480 25 of 27

Figure A10. Average loss of VGG with normal initialization on CIFAR100 (left) and ResNet with
Xavier initialization on CIFAR10 (right) both training with SGD with momentum over 5 experiments
for each, with and without teleportation, at the beginning of the training with CoB of 0.9. Learning
rate increases from top to bottom rows. We also show a shadow around the average curves at two
times the standard deviation over the five experiments.

Mathematics 2023, 11, 480 26 of 27

Figure A11. Average loss of MLP with normal initialization on CIFAR100 (left) and DenseNet with
Xavier initialization on CIFAR10 (right) both traing with SGD over 5 experiments for each, with and
without teleportation, at the beginning of the training with CoB of 0.9. Learning rate increases from
top to bottom rows. We also show a shadow around the average curves at two times the standard
deviation over the five experiments.

Mathematics 2023, 11, 480 27 of 27

References
1. Armenta, M.A.; Jodoin, P.M. The Representation Theory of Neural Networks. arXiv 2020, arXiv:2007.12213 .
2. Neyshabur, B.; Salakhutdinov, R.; Srebro, N. Path-SGD: Path-Normalized Optimization in Deep Neural Networks. In Advances in

Neural Information Processing Systems 28 (NIPS 2015); MIT Press: Cambridge, MA, USA, 2015; pp. 2422–2430.
3. Meng, Q.; Zheng, S.; Zhang, H.; Chen, W.; Ye, Q.; Ma, Z.; Yu, N.; Liu, T. G-SGD: Optimizing ReLU Neural Networks in its

Positively Scale-Invariant Space. arXiv 2018, arXiv:1802.03713.
4. Badrinarayanan, V.; Mishra, B.; Cipolla, R. Understanding Symmetries in Deep Networks. arXiv 2015, arXiv:1511.01029.
5. Dinh, L.; Pascanu, R.; Bengio, S.; Bengio, Y. Sharp Minima Can Generalize for Deep Nets. In Proceedings of the 34th International

Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70, pp. 1019–1028.
6. Arora, S.; Li, Z.; Lyu, K. Theoretical Analysis of Auto Rate-Tuning by Batch Normalization. arXiv 2018, arXiv:1812.03981.
7. Goodfellow, I.J.; Warde-Farley, D.; Mirza, M.; Courville, A.; Bengio, Y. Maxout networks. In Proceedings of the 30th International

Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; Volume 3, pp. 1319–1327.
8. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classifica-

tion. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015;
pp. 1026–1034.

9. Saxe, A.M.; Mcclelland, J.L.; Ganguli, S. Exact solutions to the nonlinear dynamics of learning in deep linear neural network.
arXiv 2013, arXiv:1312.6120.

10. Assem, I.; Simson, D.; Skowronski, A. Elements of the Representation Theory of Associative Algebras. Vol. 1: Techniques of Representation
Theory; London Mathematical Society Student Texts; Cambridge University Press: Cambridge, UK, 2006; Volume 65, p. ix, 458.

11. Badrinarayanan, V.; Mishra, B.; Cipolla, R. Symmetry-invariant optimization in deep networks. arXiv 2015, arXiv:1511.01754.
12. Huang, L.; Liu, X.; Qin, J.; Zhu, F.; Liu, L.; Shao, L. Projection based weight normalization: Efficient method for optimization on

oblique manifold in DNNs. Pattern Recognit. 2020, 105, 107317. [CrossRef]
13. Cho, M.; Lee, J. Riemannian Approach to Batch Normalization. In Advances in Neural Information Processing Systems 30 (NIPS

2017); Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 5231–5241.
14. Spivak, M. Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus; Mathematics Monograph Series;

Addison-Wesley Publishing Company: Boston, MA, USA, 1965.
15. Kainen, P.C.; Kůrková, V. Quasiorthogonal Dimension. In Beyond Traditional Probabilistic Data Processing Techniques: Interval,

Fuzzy etc. Methods and Their Applications; Kosheleva, O., Shary, S., Xiang, G., Zapatrin, R., Eds.; Springer International Publishing:
Berlin/Heidelberg, Germany, 2020; pp. 615–629.

16. Li, H.; Xu, Z.; Taylor, G.; Studer, C.; Goldstein, T. Visualizing the Loss Landscape of Neural Nets. In Advances in Neural Information
Processing Systems 31 (NeurIPS 2018); Curran Associates Inc.: Red Hook, NY, USA, 2018; pp. 6391–6401.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.patcog.2020.107317

	Introduction
	Neural Teleportation
	Isomorphisms and Change of Basis (CoB)
	Teleporting a Neural Network

	Previous Work
	Neural Teleportation and the Loss Landscape
	Inter- and Intra-Loss Landscape Teleportation
	Loss Level Curves
	Micro Teleportation
	Teleportation and Landscape Flatness

	Optimization
	Back-Propagated Gradients of a Teleportation
	Gradient Descent and Teleportation

	Conclusions
	Appendix A
	Appendix A.1
	Micro-Teleportations
	Teleportation and Landscape Flatness
	Back-Propagated Gradients of a Teleportation
	Proof of Theorem 5.1
	Gradient Descent Speed Up

	References

