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Abstract

Temporal-difference learning (TD), coupled with neural networks, is among the
most fundamental building blocks of deep reinforcement learning. However, due
to the nonlinearity in value function approximation, such a coupling leads to non-
convexity and even divergence in optimization. As a result, the global convergence
of neural TD remains unclear. In this paper, we prove for the first time that neural
TD converges at a sublinear rate to the global optimum of the mean-squared pro-
jected Bellman error for policy evaluation. In particular, we show how such global
convergence is enabled by the overparametrization of neural networks, which also
plays a vital role in the empirical success of neural TD.1

1 Introduction

Given a policy, temporal-different learning (TD) [49] aims to learn the corresponding (action-
)value function by following the semigradients of the mean-squared Bellman error in an online
manner. As the most-used policy evaluation algorithm, TD serves as the “critic” component of many
reinforcement learning algorithms, such as the actor-critic algorithm [31] and trust-region policy
optimization [47]. In particular, in deep reinforcement learning, TD is often applied to learn value
functions parametrized by neural networks [36, 39, 24], which gives rise to neural TD. As policy
improvement relies crucially on policy evaluation, the optimization efficiency and statistical accuracy
of neural TD are critical to the performance of deep reinforcement learning. Towards theoretically
understanding deep reinforcement learning, the goal of this paper is to characterize the convergence
of neural TD.

Despite the broad applications of neural TD, its convergence remains rarely understood. Even
with linear value function approximation, the nonasymptotic convergence of TD remains open until
recently [6, 33, 14, 48, 45], although its asymptotic convergence is well understood [28, 55, 9, 32,
8]. Meanwhile, with nonlinear value function approximation, TD is known to diverge in general
[4, 11, 55]. To remedy this issue, [7] propose nonlinear (gradient) TD, which uses the tangent
vectors of nonlinear value functions in place of the feature vectors in linear TD. Unlike linear TD,
which converges to the global optimum of the mean-squared projected Bellman error (MSPBE),
nonlinear TD is only guaranteed to converge to a local optimum asymptotically. As a result, the
statistical accuracy of the value function learned by nonlinear TD remains unclear. In contrast to such
conservative theory, neural TD, which straightforwardly combines TD with neural networks without
the explicit local linearization in nonlinear TD, often learns a desired value function that generalizes
well to unseen states in practice [18, 2, 26]. Hence, a gap separates theory from practice.
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There exist three obstacles towards closing such a theory-practice gap: (i) MSPBE has an expectation
over the transition dynamics within the squared loss, which forbids the construction of unbiased
stochastic gradients [50]. As a result, even with linear value function approximation, TD largely
eludes the classical optimization framework, as it follows biased stochastic semigradients. (ii) When
the value function is parametrized by a neural network, MSPBE is nonconvex in the weights of the
neural network, which may introduce undesired stationary points such as local optima and saddle
points [30]. As a result, even an ideal algorithm that follows the population gradients of MSPBE may
get trapped. (iii) Due to the interplay between the bias in stochastic semigradients and the nonlinearity
in value function approximation, neural TD may even diverge [4, 11, 55], instead of converging to
an undesired stationary point, as it lacks the explicit local linearization in nonlinear TD [7]. Such
divergence is also not captured by the classical optimization framework.

Contribution. Towards bridging theory and practice, we establish the first nonasymptotic global rate
of convergence of neural TD. In detail, we prove that randomly initialized neural TD converges to the

global optimum of MSPBE at the rate of 1/T with population semigradients and at the rate of 1/
p
T

with stochastic semigradients. Here T is the number of iterations and the (action-)value function is
parametrized by a sufficiently wide two-layer neural network. Moreover, we prove that the projection
in MSPBE allows for a sufficiently rich class of functions, which has the same representation power
of a reproducing kernel Hilbert space associated with the random initialization. As a result, for a
broad class of reinforcement learning problems, neural TD attains zero MSPBE.

At the core of our analysis is the overparametrization of the two-layer neural network for value
function approximation [59, 41, 1, 3], which enables us to circumvent the three obstacles above. In
particular, overparametrization leads to an implicit local linearization that varies smoothly along the
solution path, which mirrors the explicit one in nonlinear TD [7]. Such an implicit local linearization
enables us to circumvent the third obstacle of possible divergence. Moreover, overparametrization
allows us to establish a notion of one-point monotonicity [25, 19] for the semigradients followed by
neural TD, which ensures its evolution towards the global optimum of MSPBE along the solution
path. Such a notion of monotonicity enables us to circumvent the first and second obstacles of bias
and nonconvexity. Broadly speaking, our theory backs the empirical success of overparametrized
neural networks in deep reinforcement learning. In particular, we show that instead of being a curse,
overparametrization is indeed a blessing for minimizing MSPBE in the presence of bias, nonconvexity,
and even divergence.

More Related Work. There is a large body of literature on the convergence of linear TD under
both asymptotic [28, 55, 9, 32, 8] and nonasymptotic [6, 33, 14, 48] regimes. See [16] for a detailed
survey. In particular, our analysis is based on the recent breakthrough in the nonasymptotic analysis
of linear TD [6] and its extension to linear Q-learning [60]. An essential step of our analysis is
bridging the evolution of linear TD and neural TD through the implicit local linearization induced by
overparametrization.

To incorporate nonlinear value function approximation into TD, [7] propose the first convergent
nonlinear TD based on explicit local linearization, which however only converges to a local optimum
of MSPBE. See [21, 5] for a detailed survey. In contrast, we prove that, with the implicit local
linearization induced by overparametrization, neural TD, which is simpler to implement and more
widely used in deep reinforcement learning than nonlinear TD, provably converges to the global
optimum of MSPBE.

There exist various extensions of TD, including least-squares TD [12, 10, 34, 22, 56] and gradient
TD [51, 52, 7, 37, 17, 57, 54]. In detail, least-squares TD is based on batch update, which loses the
computational and statistical efficiency of the online update in TD. Meanwhile, gradient TD follows
unbiased stochastic gradients, but at the cost of introducing another optimization variable. Such a
reformulation leads to bilevel optimization, which is less stable in practice when combined with
neural networks [42]. As a result, both extensions of TD are less widely used in deep reinforcement
learning [18, 2, 26]. Moreover, when using neural networks for value function approximation, the
convergence to the global optimum of MSPBE remains unclear for both extensions of TD.

Our work is also related to the recent breakthrough in understanding overparametrized neural
networks, especially their generalization error [59, 41, 1, 3]. See [20] for a detailed survey. In
particular, [15, 1, 3, 13, 29, 35] characterize the implicit local linearization in the context of supervised
learning, where we train an overparametrized neural network by following the stochastic gradients
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of the mean-squared error. In contrast, neural TD does not follow the stochastic gradients of any
objective function, hence leading to possible divergence, which makes the convergence analysis more
challenging.

2 Background

In Section 2.1, we briefly review policy evaluation in reinforcement learning. In Section 2.2, we
introduce the corresponding optimization formulations.

2.1 Policy Evaluation

We consider a Markov decision process (S,A,P, r, �), in which an agent interacts with the environ-
ment to learn the optimal policy that maximizes the expected total reward. At the t-th time step, the
agent has a state st 2 S and takes an action at 2 A. Upon taking the action, the agent enters the
next state st+1 2 S according to the transition probability P(· | st, at) and receives a random reward
rt = r(st, at) from the environment. The action that the agent takes at each state is decided by a
policy ⇡ : S ! ∆, where ∆ is the set of all probability distributions over A. The performance of
policy ⇡ is measured by the expected total reward, J(⇡) = E[

P1

t=0 �
trt | at ⇠ ⇡(st)], where � < 1

is the discount factor.

Given policy ⇡, policy evaluation aims to learn the following two functions, the value function
V π(s) = E[

P1

t=0 �
trt | s0 = s, at ⇠ ⇡(st)] and the action-value function (Q-function) Qπ(s, a) =

E[
P1

t=0 �
trt | s0 = s, a0 = a, at ⇠ ⇡(st)]. Both functions form the basis for policy improvement.

Without loss of generality, we focus on learning the Q-function in this paper. We define the Bellman
evaluation operator,

T πQ(s, a) = E[r(s, a) + �Q(s0, a0) | s0 ⇠ P(· | s, a), a0 ⇠ ⇡(s0)], (2.1)

for which Qπ is the fixed point, that is, the solution to the Bellman equation Q = T πQ.

2.2 Optimization Formulation

Corresponding to (2.1), we aim to learn Qπ by minimizing the mean-squared Bellman error (MSBE),

min
θ

MSBE(✓) = E(s,a)⇠µ

⇥� bQθ(s, a)� T π bQθ(s, a)
�2⇤

, (2.2)

where the Q-function is parametrized as bQθ with parameter ✓. Here µ is the stationary distribution
of (s, a) corresponding to policy ⇡. Due to Q-function approximation, we focus on minimizing the
following surrogate of MSBE, namely the projected mean-squared Bellman error (MSPBE),

min
θ

MSPBE(✓) = E(s,a)⇠µ

⇥� bQθ(s, a)�ΠFT
π bQθ(s, a)

�2⇤
. (2.3)

Here ΠF is the projection onto a function class F . For example, for linear Q-function approximation

[49], F takes the form { bQθ0 : ✓0 2 Θ}, where bQθ0 is linear in ✓0 and Θ is the set of feasible
parameters. As another example, for nonlinear Q-function approximation [7], F takes the form

{ bQθ +rθ
bQ>
θ
(✓0 � ✓) : ✓0 2 Θ}, which consists of the local linearization of bQθ0 at ✓.

Throughout this paper, we assume that we are able to sample tuples in the form of (s, a, r, s0, a0)
from the stationary distribution of policy ⇡ in an independent and identically distributed manner,
although our analysis can be extended to handle temporal dependence using the proof techniques of
[6]. With a slight abuse of notation, we use µ to denote the stationary distribution of (s, a, r, s0, a0)
corresponding to policy ⇡ and any of its marginal distributions.

3 Neural Temporal-Difference Learning

TD updates the parameter ✓ of the Q-function by taking the stochastic semigradient descent step
[49, 53, 50],

✓0  ✓ � ⌘ ·
� bQθ(s, a)� r(s, a)� � bQθ(s

0, a0)
�
·rθ

bQθ(s, a), (3.1)

3



which corresponds to the MSBE in (2.2). Here (s, a, r, s0, a0) ⇠ µ and ⌘ > 0 is the stepsize. In
a more general context, (3.1) is referred to as TD(0). In this paper, we focus on TD(0), which is
abbreviated as TD, and leave the extension to TD(�) to future work.

In the sequel, we denote the state-action pair (s, a) 2 S⇥A by a vector x 2 X ✓ R
d with d > 2. We

consider S to be continuous and A to be finite. Without loss of generality, we assume that kxk2 = 1
and |r(x)| is upper bounded by a constant r for any x 2 X . We use a two-layer neural network

bQ(x;W ) =
1p
m

mX

r=1

br�(W
>
r x) (3.2)

to parametrize the Q-function. Here � is the rectified linear unit (ReLU) activation function �(y) =
max{0, y} and the parameter ✓ = (b1, . . . , bm,W1, . . . ,Wm) are initialized as br ⇠ Unif({�1, 1})
and Wr ⇠ N(0, Id/d) for any r 2 [m] independently. During training, we only update W =
(W1, . . . ,Wm) 2 R

md, while keeping b = (b1, . . . , bm) 2 R
m fixed as the random initialization.

To ensure global convergence, we incorporate an additional projection step with respect to W . See
Algorithm 1 for a detailed description.

Algorithm 1 Neural TD

1: Initialization: br ⇠ Unif({�1, 1}), Wr(0) ⇠ N(0, Id/d) (r 2 [m]), W = W (0),
Initialization: SB = {W 2 R

md : kW �W (0)k2  B} (B > 0)
2: For t = 0 to T � 2:
3: Sample a tuple (s, a, r, s0, a0) from the stationary distribution µ of policy ⇡
4: Let x = (s, a), x0 = (s0, a0)

5: Bellman residual calculation: �  bQ(x;W (t))� r � � bQ(x0;W (t))

6: TD update: fW (t+ 1) W (t)� ⌘� ·rW
bQ(x;W (t))

7: Projection: W (t+ 1) argminW2SB
kW �fW (t+ 1)k2

8: Averaging: W  t+1
t+2 ·W + 1

t+2 ·W (t+ 1)
9: End For

10: Output: bQout(·) bQ(· ;W )

To understand the intuition behind the global convergence of neural TD, note that for the TD update
in (3.1), we have from (2.1) that

E(s,a,r,s0,a0)⇠µ

⇥� bQθ(s, a)� r(s, a)� � bQθ(s
0, a0)

�
·rθ

bQθ(s, a)
⇤

= E(s,a)⇠µ

⇥� bQθ(s, a)� E[r(s, a) + �Q(s0, a0) | s0 ⇠ P(· | s, a), a0 ⇠ ⇡(s0)]
�
·rθ

bQθ(s, a)
⇤

= E(s,a)⇠µ

⇥� bQθ(s, a)� T π bQθ(s, a)
�

| {z }
(i)

·rθ
bQθ(s, a)| {z }
(ii)

⇤
. (3.3)

Here (i) is the Bellman residual at (s, a), while (ii) is the gradient of the first term in (i). Although the
TD update in (3.1) resembles the stochastic gradient descent step for minimizing a mean-squared
error, it is not an unbiased stochastic gradient of any objective function. However, we show that the
TD update yields a descent direction towards the global optimum of the MSPBE in (2.3). Moreover,
as the neural network becomes wider, the function class F that ΠF projects onto in (2.3) becomes
richer. Correspondingly, the MSPBE reduces to the MSBE in (2.2) as the projection becomes closer
to identity, which implies the recovery of the desired Q-function Qπ such that Qπ = T πQπ. See
Section 4 for a more rigorous characterization.

4 Main Results

In Section 4.1, we characterize the global optimality of the stationary point attained by Algorithm 1
in terms of minimizing the MSPBE in (2.3) and its other properties. In Section 4.2, we establish the
nonasymptotic global rates of convergence of neural TD to the global optimum of the MSPBE when
following the population semigradients in (3.3) and the stochastic semigradients in (3.1), respectively.

We use the subscript Eµ[·] to denote the expectation over the randomness of the tuple (s, a, r, s, a0)
(or its concise form (x, r, x0)) conditional on all other randomness, e.g., the random initialization
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and the random current iterate. Meanwhile, we use the subscript Einit,µ[·] when we are taking the
expectation over all randomness, including the random initialization.

4.1 Properties of Stationary Point

We consider the population version of the TD update in Line 6 of Algorithm 1,

fW (t+ 1) W (t)� ⌘ · Eµ

⇥
�
�
x, r, x0;W (t)

�
·rW

bQ
�
x;W (t)

�⇤
, (4.1)

where µ is the stationary distribution and �(x, r, x0;W (t)) = bQ(x;W (t))� r� � bQ(x0;W (t)) is the

Bellman residual at (x, r, x0). The stationary point W † of (4.1) satisfies the following stationarity
condition,

Eµ[�(x, r, x
0;W †) ·rW

bQ(x;W †)]>(W �W †) � 0, for any W 2 SB . (4.2)

Also, note that

bQ(x;W ) =
1p
m

mX

r=1

br�(W
>
r x) =

1p
m

mX

r=1

br 1{W
>
r x > 0}W>

r x

and rWr
bQ(x;W ) = br 1{W

>
r x > 0}x almost everywhere in R

md. Meanwhile, recall that SB =
{W 2 R

md : kW �W (0)k2  B}. We define the function class

F†
B,m =

⇢
1p
m

mX

r=1

br 1{(W
†
r )

>x > 0}W>
r x : W 2 SB

�
, (4.3)

which consists of the local linearization of bQ(x;W ) at W = W †. Then (4.2) takes the following
equivalent form

⌦ bQ(· ;W †)� T π bQ(· ;W †), f(·)� bQ(· ;W †)
↵
µ
� 0, for any f 2 F†

B,m, (4.4)

which implies bQ(· ;W †) = Π
F

†
B,m

T π bQ(· ;W †) by the definition of the projection induced by h·, ·iµ.

By (2.3), bQ(· ;W †) is the global optimum of the MSPBE that corresponds to the projection onto

F†
B,m.

Intuitively, when using an overparametrized neural network with width m ! 1, the average
variation in each Wr diminishes to zero. Hence, roughly speaking, we have 1{Wr(t)

>x > 0} =

1{Wr(0)
>x > 0} with high probability for any t 2 [T ]. As a result, the function class F†

B,m defined

in (4.3) approximates

FB,m =

⇢
1p
m

mX

r=1

br 1{Wr(0)
>x > 0}W>

r x : W 2 SB

�
. (4.5)

In the sequel, we show that, to characterize the global convergence of Algorithm 1 with a sufficiently

large m, it suffices to consider FB,m in place of F†
B,m, which simplifies the analysis, since the

distribution of W (0) is given. To this end, we define the approximate stationary point W ⇤ with
respect to the function class FB,m defined in (4.5).

Definition 4.1 (Approximate Stationary Point W ⇤). If W ⇤ = (W ⇤
1 , . . . ,W

⇤
m) 2 SB satisfies

Eµ[�0(x, r, x
0;W ⇤) ·rW

bQ0(x;W
⇤)]>(W �W ⇤) � 0, for any W 2 SB , (4.6)

where we define

bQ0(x;W ) =
1p
m

mX

r=1

br 1{Wr(0)
>x > 0}W>

r x, (4.7)

�0(x, r, x
0;W ) = bQ0(x;W )� r � � bQ0(x

0;W ), (4.8)

then we say that W ⇤ is an approximate stationary point of the population update in (4.1). Here W ⇤

depends on the random initialization b = (b1, . . . , bm) and W (0) = (W1(0), . . . ,Wm(0)).
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The next lemma proves that such an approximate stationary point always exists, since it corresponds
to the fixed point of the operator ΠFB,m

T π, which is a contraction in the `2-norm associated with
the stationary distribution µ.

Lemma 4.2 (Existence and Optimality of W ⇤). There exists an approximate stationary point W ⇤ for

any b 2 {�1, 1}m and W (0) 2 R
md. Also, bQ0(· ;W

⇤) is the global optimum of the MSPBE that
corresponds to the projection onto FB,m in (4.5).

Proof. See Appendix B.1 for a detailed proof.

4.2 Global Convergence

In this section, we establish the main results on the global convergence of neural TD in Algorithm 1.
We first lay out the following regularity condition on the stationary distribution µ.

Assumption 4.3 (Regularity of Stationary Distribution µ). There exists a constant c0 > 0 such that
for any ⌧ � 0 and w ⇠ N(0, Id/d), it holds almost surely that

Eµ

⇥
1{|w>x|  ⌧}

��w
⇤
 c0 · ⌧/kwk2. (4.9)

Assumption 4.3 regularizes the density of µ in terms of the marginal distribution of x. In particular, it
is straightforwardly implied when the density of µ in terms of state s is upper bounded.

Population Update: The next theorem establishes the nonasymptotic global rate of convergence of
neural TD when it follows population semigradients. Recall that the approximate stationary point W ⇤

and bQ0(· ;W
⇤) are defined in Definition 4.1. Also, B is the radius of the set of feasible W , which is

defined in Algorithm 1, T is the number of iterations, � is the discount factor, and m is the width of
the neural network in (3.2).

Theorem 4.4 (Convergence of Population Update). We set ⌘ = (1��)/8 in Algorithm 1 and replace

the TD update in Line 6 by the population update in (4.1). Under Assumption 4.3, the output bQout of
Algorithm 1 satisfies

Einit,µ

⇥� bQout(x)� bQ0(x;W
⇤)
�2⇤  16B2

(1� �)2T
+O(B3m�1/2 +B5/2m�1/4),

where the expectation is taken with respect to all randomness, including the random initialization and
the stationary distribution µ.

Proof. The key to the proof of Theorem 4.4 is the one-point monotonicity of the population semigra-

dient g(t), which is established through the local linearization bQ0(x;W ) of bQ(x;W ). See Appendix
C.5 for a detailed proof.

Stochastic Update: To further prove the global convergence of neural TD when it follows stochastic
semigradients, we first establish an upper bound of their variance, which affects the choice of the
stepsize ⌘. For notational simplicity, we define the stochastic and population semigradients as

g(t) = �
�
x, r, x0;W (t)

�
·rW

bQ
�
x;W (t)

�
, g(t) = Eµ[g(t)]. (4.10)

Lemma 4.5 (Variance Bound). There exists �2
g = O(B2) such that the variance of the stochastic

semigradient is upper bounded as Einit,µ[kg(t)� g(t)k22]  �2
g for any t 2 [T ].

Proof. See Appendix B.2 for a detailed proof.

Based on Theorem 4.4 and Lemma 4.5, we establish the global convergence of neural TD in Algorithm
1.

Theorem 4.6 (Convergence of Stochastic Update). We set ⌘ = min{(1��)/8, 1/
p
T} in Algorithm

1. Under Assumption 4.3, the output bQout of Algorithm 1 satisfies

Einit,µ

⇥� bQout(x)� bQ0(x;W
⇤)
�2⇤ 

16(B2 + �2
g)

(1� �)2
p
T

+O(B3m�1/2 +B5/2m�1/4).
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Proof. See Appendix C.6 for a detailed proof.

As the width of the neural network m ! 1, Lemma 4.2 implies that bQ0(· ;W
⇤) is the global

optimum of the MSPBE in (2.3) with a richer function class FB,1 to project onto. In fact, the

function class FB,1 � bQ(· ;W (0)) is a subset of an RKHS with H-norm upper bounded by B.

Here bQ(· ;W (0)) is defined in (3.2). See Appendix A.2 for a more detailed discussion on the
representation power of FB,1. Therefore, if the desired Q-function Qπ(·) falls into FB,1, it is the
global optimum of the MSPBE. In such a case, by Lemma 4.2 and Theorem 4.6, we approximately

obtain Qπ(·) = bQ0(· ;W
⇤) through bQout(·).

More generally, the following proposition quantifies the distance between bQ0(· ;W
⇤) and Qπ(·) in

the case that Qπ(·) does not fall into the function class FB,m. In particular, it states that the `2-norm

distance k bQ0(· ;W
⇤)�Qπ(·)kµ is upper bounded by the distance between Qπ(·) and FB,m.

Proposition 4.7 (Convergence of Stochastic Update to Qπ). It holds that k bQ0(· ;W
⇤)�Qπ(·)kµ 

(1� �)�1 · kΠFB,m
Qπ(·)�Qπ(·)kµ, which by Theorem 4.6 implies

Einit,µ

⇥� bQout(x)�Qπ(x)
�2⇤ 

32(B2 + �2
g)

(1� �)2
p
T

+
2Einit,µ

⇥�
ΠFB,m

Qπ(x)�Qπ(x)
�2⇤

(1� �)2

+O(B3m�1/2 +B5/2m�1/4).

Proof. See Appendix B.3 for a detailed proof.

Proposition 4.7 implies that if Qπ(·) 2 FB,1, then bQout(·)! Qπ(·) as T,m!1. In other words,
neural TD converges to the global optimum of the MSPBE in (2.3), or equivalently, the MSBE in
(2.2), both of which have objective value zero.

5 Proof Sketch

In the sequel, we sketch the proofs of Theorems 4.4 and 4.6 in Section 4.

5.1 Implicit Local Linearization via Overparametrization

Recall that as defined in (4.7), bQ0(x;W ) takes the form

bQ0(x;W ) = Φ(x)>W,

where Φ(x) =
1p
m

·
�
1{W1(0)

>x > 0}x, . . . ,1{Wm(0)>x > 0}x
�
2 R

md,

which is linear in the feature map Φ(x). In other words, with respect to W , bQ0(x;W ) linearizes the

neural network bQ(x;W ) defined in (3.2) locally at W (0). The following lemma characterizes the

difference between bQ(x;W (t)), which is along the solution path of neural TD in Algorithm 1, and

its local linearization bQ0(x;W (t)). In particular, we show that the error of such a local linearization

diminishes to zero as m ! 1. For notational simplicity, we use bQt(x) to denote bQ(x;W (t)) in

the sequel. Note that by (4.7) we have bQ0(x) = bQ(x;W (0)) = bQ0(x;W (0)). Recall that B is the
radius of the set of feasible W in (4.5).

Lemma 5.1 (Local Linearization of Q-Function). There exists a constant c1 > 0 such that for any
t 2 [T ], it holds that

Einit,µ

h�� bQt(x)� bQ0

�
x;W (t)

���2
i
 4c1B

3 ·m�1/2.

Proof. See Appendix C.1 for a detailed proof.
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As a direct consequence of Lemma 5.1, the next lemma characterizes the effect of local linearization
on population semigradients. Recall that g(t) is defined in (4.10). We denote by g0(t) the locally

linearized population semigradient, which is defined by replacing bQt(x) in g(t) with its local

linearization bQ0(x;W (t)). In other words, by (4.10), (4.7), and (4.8), we have

g(t) = Eµ

⇥
�
�
x, r, x0;W (t)

�
·rW

bQ
�
x;W (t)

�⇤
, (5.1)

g0(t) = Eµ

⇥
�0
�
x, r, x0;W (t)

�
·rW

bQ0

�
x;W (t)

�⇤
. (5.2)

Lemma 5.2 (Local Linearization of Semigradient). Let r be the upper bound of the reward r(x) for
any x 2 X . There exists a constant c2 > 0 such that for any t 2 [T ], it holds that

Einit

⇥
kg(t)� g0(t)k22

⇤
 (56c1B

3 + 24c2B + 6c1Br2) ·m�1/2.

Proof. See Appendix C.2 for a detailed proof.

Lemmas 5.1 and 5.2 show that the error of local linearization diminishes as the degree of over-
parametrization increases along m. As a result, we do not require the explicit local linearization in
nonlinear TD [7]. Instead, we show that such an implicit local linearization suffices to ensure the
global convergence of neural TD.

5.2 Proofs for Population Update

The characterization of the locally linearized Q-function in Lemma 5.1 and the locally linearized
population semigradients in Lemma 5.2 allows us to establish the following descent lemma, which
extends Lemma 3 of [6] for characterizing linear TD.

Lemma 5.3 (Population Descent Lemma). For {W (t)}t2[T ] in Algorithm 1 with the TD update in
Line 6 replaced by the population update in (4.1), it holds that

kW (t+ 1)�W ⇤k22  kW (t)�W ⇤k22 �
�
2⌘(1� �)� 8⌘2

�
· Eµ

h⇣
bQ0

�
x;W (t)

�
� bQ0(x;W

⇤)
⌘2i

+ 2⌘2 · kg(t)� g0(t)k22 + 2⌘B · kg(t)� g0(t)k2| {z }
Error of Local Linearization

.

Proof. See Appendix C.3 for a detailed proof.

Lemma 5.3 shows that, with a sufficiently small stepsize ⌘, kW (t)�W ⇤k2 decays at each iteration
up to the error of local linearization, which is characterized by Lemma 5.2. By combining Lemmas

5.2 and 5.3 and further plugging them into a telescoping sum, we establish the convergence of bQout(·)

to the global optimum bQ0(· ;W
⇤) of the MSPBE. See Appendix C.5 for a detailed proof.

5.3 Proofs for Stochastic Update

Recall that the stochastic semigradient g(t) is defined in (4.10). In parallel with Lemma 5.3, the
following lemma additionally characterizes the effect of the variance of g(t), which is induced by
the randomness of the current tuple (x, r, x0). We use the subscript EW [·] to denote the expectation
over the randomness of the current iterate W (t) conditional on the random initialization b and W (0).
Correspondingly, EW,µ[·] is over the randomness of both the current tuple (x, r, x0) and the current
iterate W (t) conditional on the random initialization.

Lemma 5.4 (Stochastic Descent Lemma). For {W (t)}t2[T ] in Algorithm 1, it holds that

EW,µ

⇥
kW (t+ 1)�W ⇤k22

⇤

 EW

⇥
kW (t)�W ⇤k22

⇤
�
�
2⌘(1� �)� 8⌘2

�
· EW,µ

h⇣
bQ0

�
x;W (t)

�
� bQ0(x;W

⇤)
⌘2i

+ EW

⇥
2⌘2 · kg(t)� g0(t)k22 + 2⌘B · kg(t)� g0(t)k2

⇤
| {z }

Error of Local Linearization

+EW,µ

⇥
⌘2 · kg(t)� g(t)k22

⇤
| {z }
Variance of Semigradient

.
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Proof. See Appendix C.4 for a detailed proof.

To ensure the global convergence of neural TD in the presence of the variance of g(t), we rescale

the stepsize to be of order T�1/2. The rest proof of Theorem 4.6 mirrors that of Theorem 4.4. See
Appendix C.6 for a detailed proof.

6 Conclusions

In this paper we prove that neural TD converges at a sublinear rate to the global optimum of the
MSPBE for policy evaluation. In particular, we show how such global convergence is enabled by the
overparametrization of neural networks. Our results shed new light on the theoretical understanding
of RL with neural networks, which is widely employed in practice.
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[53] Szepesvári, C. (2010). Algorithms for reinforcement learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 4 1–103.

11



[54] Touati, A., Bacon, P.-L., Precup, D. and Vincent, P. (2017). Convergent tree-backup and retrace
with function approximation. arXiv preprint arXiv:1705.09322.

[55] Tsitsiklis, J. N. and Van Roy, B. (1997). Analysis of temporal-diffference learning with function
approximation. In Advances in Neural Information Processing Systems.

[56] Tu, S. and Recht, B. (2017). Least-squares temporal difference learning for the linear quadratic
regulator. arXiv preprint arXiv:1712.08642.

[57] Wang, Y., Chen, W., Liu, Y., Ma, Z.-M. and Liu, T.-Y. (2017). Finite sample analysis of the
GTD policy evaluation algorithms in Markov setting. In Advances in Neural Information
Processing Systems.

[58] Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine Learning, 8 229–256.

[59] Zhang, C., Bengio, S., Hardt, M., Recht, B. and Vinyals, O. (2016). Understanding deep learn-
ing requires rethinking generalization. arXiv preprint arXiv:1611.03530.

[60] Zou, S., Xu, T. and Liang, Y. (2019). Finite-sample analysis for SARSA and Q-learning with
linear function approximation. arXiv preprint arXiv:1902.02234.

12


