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Abstract

This paper introduces a neural model for

concept-to-text generation that scales to large,

rich domains. It generates biographical sen-

tences from fact tables on a new dataset of

biographies from Wikipedia. This set is an

order of magnitude larger than existing re-

sources with over 700k samples and a 400k

vocabulary. Our model builds on conditional

neural language models for text generation.

To deal with the large vocabulary, we ex-

tend these models to mix a fixed vocabulary

with copy actions that transfer sample-specific

words from the input database to the gener-

ated output sentence. To deal with structured

data, we allow the model to embed words

differently depending on the data fields in

which they occur. Our neural model signif-

icantly outperforms a Templated Kneser-Ney

language model by nearly 15 BLEU.

1 Introduction

Concept-to-text generation renders structured

records into natural language (Reiter et al., 2000). A

typical application is to generate a weather forecast

based on a set of structured meteorological mea-

surements. In contrast to previous work, we scale

to the large and very diverse problem of generating

biographies based on Wikipedia infoboxes. An

infobox is a fact table describing a person, similar to

a person subgraph in a knowledge base (Bollacker

et al., 2008; Ferrucci, 2012). Similar generation

applications include the generation of product

descriptions based on a catalog of millions of items

with dozens of attributes each.

Previous work experimented with datasets that

contain only a few tens of thousands of records such

as WEATHERGOV or the ROBOCUP dataset, while

our dataset contains over 700k biographies from

∗Rémi performed this work while interning at Facebook.

Wikipedia. Furthermore, these datasets have a lim-

ited vocabulary of only about 350 words each, com-

pared to over 400k words in our dataset.

To tackle this problem we introduce a statistical

generation model conditioned on a Wikipedia in-

fobox. We focus on the generation of the first sen-

tence of a biography which requires the model to

select among a large number of possible fields to

generate an adequate output. Such diversity makes

it difficult for classical count-based models to esti-

mate probabilities of rare events due to data sparsity.

We address this issue by parameterizing words and

fields as embeddings, along with a neural language

model operating on them (Bengio et al., 2003). This

factorization allows us to scale to a larger number of

words and fields than Liang et al. (2009), or Kim

and Mooney (2010) where the number of parame-

ters grows as the product of the number of words

and fields.

Moreover, our approach does not restrict the re-

lations between the field contents and the gener-

ated text. This contrasts with less flexible strategies

that assume the generation to follow either a hybrid

alignment tree (Kim and Mooney, 2010), a proba-

bilistic context-free grammar (Konstas and Lapata,

2013), or a tree adjoining grammar (Gyawali and

Gardent, 2014).

Our model exploits structured data both globally

and locally. Global conditioning summarizes all in-

formation about a personality to understand high-

level themes such as that the biography is about a

scientist or an artist, while as local conditioning de-

scribes the previously generated tokens in terms of

the their relationship to the infobox. We analyze the

effectiveness of each and demonstrate their comple-

mentarity.

2 Related Work

Traditionally, generation systems relied on rules and

hand-crafted specifications (Dale et al., 2003; Re-

iter et al., 2005; Green, 2006; Galanis and Androut-
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sopoulos, 2007; Turner et al., 2010). Generation is

divided into modular, yet highly interdependent, de-

cisions: (1) content planning defines which parts of

the input fields or meaning representations should

be selected; (2) sentence planning determines which

selected fields are to be dealt with in each output

sentence; and (3) surface realization generates those

sentences.

Data-driven approaches have been proposed to

automatically learn the individual modules. One ap-

proach first aligns records and sentences and then

learns a content selection model (Duboue and McK-

eown, 2002; Barzilay and Lapata, 2005). Hierar-

chical hidden semi-Markov generative models have

also been used to first determine which facts to dis-

cuss and then to generate words from the predi-

cates and arguments of the chosen facts (Liang et al.,

2009). Sentence planning has been formulated as a

supervised set partitioning problem over facts where

each partition corresponds to a sentence (Barzilay

and Lapata, 2006). End-to-end approaches have

combined sentence planning and surface realiza-

tion by using explicitly aligned sentence/meaning

pairs as training data (Ratnaparkhi, 2002; Wong and

Mooney, 2007; Belz, 2008; Lu and Ng, 2011). More

recently, content selection and surface realization

have been combined (Angeli et al., 2010; Kim and

Mooney, 2010; Konstas and Lapata, 2013).

At the intersection of rule-based and statisti-

cal methods, hybrid systems aim at leveraging hu-

man contributed rules and corpus statistics (Langk-

ilde and Knight, 1998; Soricut and Marcu, 2006;

Mairesse and Walker, 2011).

Our approach is inspired by the recent success of

neural language models for image captioning (Kiros

et al., 2014; Karpathy and Fei-Fei, 2015; Vinyals et

al., 2015; Fang et al., 2015; Xu et al., 2015), ma-

chine translation (Devlin et al., 2014; Bahdanau et

al., 2015; Luong et al., 2015), and modeling conver-

sations and dialogues (Shang et al., 2015; Wen et al.,

2015; Yao et al., 2015).

Our model is most similar to Mei et al. (2016)

who use an encoder-decoder style neural network

model to tackle the WEATHERGOV and ROBOCUP

tasks. Their architecture relies on LSTM units and

an attention mechanism which reduces scalability

compared to our simpler design.

Figure 1: Wikipedia infobox of Frederick Parker-Rhodes. The

introduction of his article reads: “Frederick Parker-Rhodes (21

March 1914 – 21 November 1987) was an English linguist,

plant pathologist, computer scientist, mathematician, mystic,

and mycologist.”.

3 Language Modeling for Constrained
Sentence generation

Conditional language models are a popular choice

to generate sentences. We introduce a table-

conditioned language model for constraining text

generation to include elements from fact tables.

3.1 Language model

Given a sentence s = w1, . . . , wT with T words

from vocabulary W , a language model estimates:

P (s) =
T
∏

t=1

P (wt|w1, . . . , wt−1) . (1)

Let ct = wt−(n−1), . . . , wt−1 be the sequence of

n − 1 context words preceding wt. An n-gram lan-

guage model makes an order n Markov assumption,

P (s) ≈
T
∏

t=1

P (wt|ct) . (2)

3.2 Language model conditioned on tables

A table is a set of field/value pairs, where values are

sequences of words. We therefore propose language

models that are conditioned on these pairs.

Local conditioning refers to the information

from the table that is applied to the description of the

words which have already generated, i.e. the previ-

ous words that constitute the context of the language
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Table (gf , gw)

name John Doe

birthdate 18 April 1352

birthplace Oxford UK

occupation placeholder

spouse Jane Doe

children Johnnie Doe

input text (ct, zct)

John Doe ( 18 April 1352 ) is a

ct 13944 unk 17 37 92 25 18 12 4

zct

(name,1,2) (name,2,1) ∅ (birthd.,1,3) (birthd.,2,2) (birthd.,3,1) ∅ ∅ ∅

(spouse,2,1)

(children,2,1)

output candidates (w ∈ W ∪Q)

the . . . april . . . placeholder . . . john . . . doe

w 1 . . . 92 . . . 5302 . . . 13944 . . . unk

zw

∅ (birthd.,2,2) (occupation,1,1) (name,1,2) (name,2,1)

(spouse,2,1)

(children,2,1)

Figure 2: Table features (right) for an example table (left); W ∪Q is the set of all output words as defined in Section 3.3.

model. The table allows us to describe each word

not only by its string (or index in the vocabulary)

but also by a descriptor of its occurrence in the ta-

ble. Let F define the set of all possible fields f . The

occurrence of a word w in the table is described by

a set of (field, position) pairs.

zw =
{

(fi, pi)
}m

i=1
, (3)

where m is the number of occurrences of w. Each

pair (f, p) indicates that w occurs in field f at posi-

tion p. In this scheme, most words are described by

the empty set as they do not occur in the table. For

example, the word linguistics in the table of Figure 1

is described as follows:

zlinguistics = {(fields, 8); (known for, 4)}, (4)

assuming words are lower-cased and commas are

treated as separate tokens.

Conditioning both on the field type and the po-

sition within the field allows the model to encode

field-specific regularities, e.g., a number token in a

date field is likely followed by a month token; know-

ing that the number is the first token in the date field

makes this even more likely.

The (field, position) description scheme of the ta-

ble does not allow to express that a token terminates

a field which can be useful to capture field transi-

tions. For biographies, the last token of the name

field is often followed by an introduction of the birth

date like ‘(’ or ‘was born’. We hence extend our de-

scriptor to a triplet that includes the position of the

token counted from the end of the field:

zw =
{

(fi, p
+
i , p

−
i )

}m

i=1
, (5)

where our example becomes:

zlinguistics = {(fields, 8, 4); (known for, 4, 13)}.

We extend Equation 2 to use the above informa-

tion as additional conditioning context when gener-

ating a sentence s:

P (s|z) =

T
∏

t=1

P (wt|ct, zct) , (6)

where zct = zwt−(n−1)
, . . . , zwt−1 are referred to as

the local conditioning variables since they describe

the local context (previous word) relations with the

table.

Global conditioning refers to information from

all tokens and fields of the table, regardless whether

they appear in the previous generated words or not.

The set of fields available in a table often impacts

the structure of the generation. For biographies, the

fields used to describe a politician are different from

the ones for an actor or an athlete. We introduce

global conditioning on the available fields gf as

P (s|z, gf ) =
T
∏

t=1

P (wt|ct, zct , gf ). (7)

Similarly, global conditioning gw on the available
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words occurring in the table is introduced:

P (s|z, gf , gw) =
T
∏

t=1

P (wt|ct, zct , gf , gw). (8)

Tokens provide information complementary to

fields. For example, it may be hard to distinguish a

basketball player from a hockey player by looking

only at the field names, e.g. teams, league, position,

weight and height, etc. However the actual field

tokens such as team names, league name, player’s

position can help the model to give a better pre-

diction. Here, gf ∈ {0, 1}F and gw ∈ {0, 1}W

are binary indicators over fixed field and word

vocabularies.

Figure 2 illustrates the model with a schematic ex-

ample. For predicting the next word wt after a given

context ct, the language model is conditioned on sets

of triplets for each word occurring in the table zct ,
along with all fields and words from this table.

3.3 Copy actions

So far we extended the model conditioning with fea-

tures derived from the fact table. We now turn to

using table information when scoring output words.

In particular, sentences which express facts from a

given table often copy words from the table. We

therefore extend our model to also score special field

tokens such as name 1 or name 2 which are sub-

sequently added to the score of the corresponding

words from the field value.

Our model reads a table and defines an output do-

main W∪Q. Q defines all tokens in the table, which

might include out of vocabulary words (/∈ W). For

instance Park-Rhodes in Figure 1 is not in W . How-

ever, Park-Rhodes will be included in Q as name 2

(since it is the second token of the name field) which

allows our model to generate it. This mechanism

is inspired by recent work on attention based word

copying for neural machine translation (Luong et al.,

2015) as well as delexicalization for neural dialog

systems (Wen et al., 2015). It also builds upon older

work such as class-based language models for dialog

systems (Oh and Rudnicky, 2000).

4 A Neural Language Model Approach

A feed-forward neural language model (NLM) es-

timates P (wt|ct) with a parametric function φθ

(Equation 1), where θ refers to all learnable param-

eters of the network. This function is a composition

of simple differentiable functions or layers.

4.1 Mathematical notations and layers

We denote matrices as bold upper case letters (X,

Y, Z), and vectors as bold lower-case letters (a, b,

c). Ai represents the ith row of matrix A. When

A is a 3-d matrix, then Ai,j represents the vector

of the ith first dimension and jth second dimension.

Unless otherwise stated, vectors are assumed to be

column vectors. We use [v1;v2] to denote vector

concatenation. Next, we introduce the notation for

the different layers used in our approach.

Embedding layer. Given a parameter matrix

X ∈ R
N×d, the embedding layer is a lookup table

that performs an array indexing operation:

ψX(xi) = Xi ∈ R
d , (9)

where Xi corresponds to the embedding of the ele-

ment xi at row i. When X is a 3-d matrix, the lookup

table takes two arguments:

ψX(xi, xj) = Xi,j ∈ R
d , (10)

where Xi,j corresponds to the embedding of the

pair (xi, xj) at index (i, j). The lookup table op-

eration can be applied for a sequence of elements

s = x1, . . . , xT . A common approach is to concate-

nate all resulting embeddings:

ψX(s) =
[

ψX(x1); . . . ;ψX(xT )
]

∈ R
T×d . (11)

Linear layer. This layer applies a linear trans-

formation to its inputs x ∈ R
n:

γθ(x) = Wx+ b (12)

where θ = {W,b} are the trainable parameters

with W ∈ R
m×n being the weight matrix, and

b ∈ R
m is the bias term.

Softmax layer. Given a context input ct, the

final layer outputs a score for each word wt ∈ W ,

φθ(ct) ∈ R
|W|. The probability distribution is ob-

tained by applying the softmax activation function:

P (wt = w|ct) =
exp(φθ(ct, w))

∑|W|
i=1 exp(φθ(ct, wi))

(13)
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4.2 Embeddings as inputs

A key aspect of neural language models is the use

of word embeddings. Similar words tend to have

similar embeddings and thus share latent features.

The probability estimates of those models are

smooth functions of these embeddings, and a small

change in the features results in a small change

in the probability estimates (Bengio et al., 2003).

Therefore, neural language models can achieve

better generalization for unseen n-grams. Next, we

show how we map fact tables to continuous space in

similar spirit.

Word embeddings. Formally, the embedding

layer maps each context word index to a continuous

d-dimensional vector. It relies on a parameter ma-

trix E ∈ R
|W|×d to convert the input ct into n − 1

vectors of dimension d:

ψE(ct) =
[

ψE(wt−(n−1)); . . . ;ψE(wt−1)
]

. (14)

E can be initialized randomly or with pre-trained

word embeddings.

Table embeddings. As described in Section 3.2,

the language model is conditioned on elements from

the table. Embedding matrices are therefore defined

to model both local and global conditioning infor-

mation. For local conditioning, we denote the maxi-

mum length of a sequence of words as l. Each field

fj ∈ F is associated with 2 × l vectors of d di-

mensions, the first l of those vectors embed all pos-

sible starting positions 1, . . . , l, and the remaining l
vectors embed ending positions. This results in two

parameter matrices Z = {Z+,Z−} ∈ R
|F|×l×d.

For a given triplet (fj , p
+
i , p

−
i ), ψZ+(fj , p

+
i ) and

ψZ−(fj , p
−
i ) refer to the embedding vectors of the

start and end position for field fj , respectively.

Finally, global conditioning uses two parame-

ter matrices Gf ∈ R
|F|×g and Gw ∈ R

|W|×g.

ψGf (fj) maps a table field fj into a vector of

dimension g, while ψGw(wt) maps a word wt into

a vector of the same dimension. In general, Gw

shares its parameters with E, provided d = g.

Aggregating embeddings. We represent each oc-

curence of a word w as a triplet (field, start, end)

where we have embeddings for the start and end po-

sition as described above. Often times a particular

word w occurs multiple times in a table, e.g., ‘lin-

guistics’ has two instances in Figure 1. In this case,

we perform a component-wise max over the start

embeddings of all instances of w to obtain the best

features across all occurrences of w. We do the same

for end position embeddings:

ψZ(zwt) =
[

max
{

ψZ+(fj , p
+
i ), ∀(fj , p

+
i , p

−
i ) ∈ zwt

}

;

max
{

ψZ−(fj , p
−
i ), ∀(fj , p

+
i , p

−
i ) ∈ zwt

}

]

(15)

A special no-field embedding is assigned to wt when

the word is not associated to any fields. An embed-

ding ψZ(zct) for encoding the local conditioning of

the input ct is obtained by concatenation.

For global conditioning, we define Fq ⊂ F as the

set of all the fields in a given table q, and Q as the set

of all words in q. We also perform max aggregation.

This yields the vectors

ψGf (gf ) = max
{

ψGf (fj), ∀fj ∈ Fq
}

, (16)

and

ψGw(gw) = max
{

ψGw(wt), ∀wt ∈ Q
}

. (17)

The final embedding which encodes the context in-

put with conditioning is then the concatenation of

these vectors:

ψα1
(ct, zct , gf , gw) =

[

ψE(ct); ψZ(zct);

ψGf (gf ); ψGw(gw)
]

∈ R
d1 , (18)

with α1 = {E,Z+,Z−,Gf ,Gw} and d1 = (n −
1)× (3× d) + (2× g). For simplification purpose,

we define the context input x = {ct, zct , gf , gw} in

the following equations. This context embedding is

mapped to a latent context representation using a lin-

ear operation followed by a hyperbolic tangent:

h(x) = tanh
(

γα2

(

ψα1
(x)

)

)

∈ R
nhu , (19)

where α2 = {W2,b2}, with W2 ∈ R
nhu×d1 and

b2 ∈ R
nhu.

4.3 In-vocabulary outputs

The hidden representation of the context then goes

to another linear layer to produce a real value score

for each word in the vocabulary:

φW
α (x) = γα3

(

h(x)
)

∈ R
|W| , (20)
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where α3 = {W3,b3}, with W3 ∈ R
|W|×nhu and

b3 ∈ R
|W|, and α = {α1, α2, α3}.

4.4 Mixing outputs for better copying

Section 3.3 explains that each word w from the table

is also associated with zw, the set of fields in which

it occurs, along with the position in that field. Simi-

lar to local conditioning, we represent each field and

position pair (fj , pi) with an embeddingψF(fj , pi),

where F ∈ R
|F|×l×d. These embeddings are then

projected into the same space as the latent represen-

tation of context input h(x) ∈ R
nhu. Using the max

operation over the embedding dimension, each word

is finally embedded into a unique vector:

q(w) = max
{

tanh
(

γβ

(

ψF(fj , pi)
)

)

, ∀(fj , pi) ∈ zw
}

, (21)

where β = {W4,b4} with W4 ∈ R
nhu×d, and

b4 ∈ R
nhu. A dot product with the context vector

produces a score for each word w in the table,

φQ
β (x,w) = h(x) · q(w) . (22)

Each word w ∈ W ∪ Q receives a final score by

summing the vocabulary score and the field score:

φθ(x,w) = φW
α (x,w) + φQ

β (x,w) , (23)

with θ = {α, β}, and where φQ
β (x,w) = 0 when

w /∈ Q. The softmax function then maps the scores

to a distribution over W ∪Q,

logP (w|x) = φθ(x,w)−log
∑

w′∈W∪Q

expφθ(x,w
′) .

4.5 Training

The neural language model is trained to minimize

the negative log-likelihood of a training sentence s
with stochastic gradient descent (SGD; LeCun et al.

2012) :

Lθ(s) = −

T
∑

t=1

logP (wt|ct, zct , gf , gw) . (24)

5 Experiments

Our neural network model (Section 4) is designed to

generate sentences from tables for large-scale prob-

lems, where a diverse set of sentence types need

to be generated. Biographies are therefore a good

framework to evaluate our model, with Wikipedia

offering a large and diverse dataset.

5.1 Biography dataset

We introduce a new dataset for text generation,

WIKIBIO, a corpus of 728,321 articles from En-

glish Wikipedia (Sep 2015). It comprises all biogra-

phy articles listed by WikiProject Biography1 which

also have a table (infobox). We extract and tok-

enize the first sentence of each article with Stanford

CoreNLP (Manning et al., 2014). All numbers are

mapped to a special token, except for years which

are mapped to different special token. Field values

from tables are similarly tokenized. All tokens are

lower-cased. Table 2 summarizes the dataset statis-

tics: on average, the first sentence is twice as short as

the table (26.1 vs 53.1 tokens), about a third of the

sentence tokens (9.5) also occur in the table. The

final corpus has been divided into three sub-parts

to provide training (80%), validation (10%) and test

sets (10%). The dataset is available for download2.

5.2 Baseline

Our baseline is an interpolated Kneser-Ney (KN)

language model and we use the KenLM toolkit

to train 5-gram models without pruning (Heafield

et al., 2013). We also learn a KN language

model over templates. For that purpose, we re-

place the words occurring in both the table and

the training sentences with a special token reflect-

ing its table descriptor zw (Equation 3). The in-

troduction section of the table in Figure 1 looks

as follows under this scheme: “name 1 name 2

( birthdate 1 birthdate 2 birthdate 3 –

deathdate 1 deathdate 2 deathdate 3 ) was

an english linguist , fields 3 pathologist ,

fields 10 scientist , mathematician , mystic and

mycologist .” During inference, the decoder is con-

strained to emit words from the regular vocabulary

or special tokens occurring in the input table. When

picking a special token we copy the corresponding

word from the table.

5.3 Training setup

For our neural models, we train 11-gram language

models (n = 11) with a learning rate set to 0.0025.

1https://en.wikipedia.org/wiki/

Wikipedia:WikiProject_Biography
2https://github.com/DavidGrangier/

wikipedia-biography-dataset
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Model Perplexity BLEU ROUGE NIST

KN 10.51 2.21 0.38 0.93

NLM 9.40 +− 0.01 2.41 +− 0.33 0.52 +− 0.08 1.27 +− 0.26
+ Local (field, start, end) 8.61 +− 0.01 4.17 +− 0.54 1.48 +− 0.23 1.41 +− 0.11

Template KN 7.46⋆ 19.8 10.7 5.19
Table NLM w/ Local (field, start) 4.60 +− 0.01† 26.0 +− 0.39 19.2 +− 0.23 6.08 +− 0.08
+ Local (field, start, end) 4.60 +− 0.01† 26.6 +− 0.42 19.7 +− 0.25 6.20 +− 0.09
+ Global (field) 4.30+− 0.01† 33.4 +− 0.18 23.9 +− 0.12 7.52 +− 0.03
+ Global (field & word) 4.40 +− 0.02† 34.7+− 0.36 25.8+− 0.36 7.98+− 0.07

Table 1: BLEU, ROUGE, NIST and perplexity without copy actions (first three rows) and with copy actions (last five rows). For

neural models we report “mean +− standard deviation” for five training runs with different initialization. Decoding beam width is 5.

Perplexities marked with ⋆ and † are not directly comparable as the output vocabularies differ slightly.

Mean Percentile

5% 95%

# tokens per sentence 26.1 13 46

# tokens per table 53.1 20 108

# table tokens per sent. 9.5 3 19

# fields per table 19.7 9 36

Table 2: Dataset statistics

Parameter Value

# word types |W| = 20, 000
# field types |F| = 1, 740
Max. # tokens in a field l = 10
word/field embedding size d = 64
global embedding size g = 128
# hidden units nhu = 256

Table 3: Model Hyperparameters

Table 3 describes the other hyper-parameters. We

include all fields occurring at least 100 times in the

training data in F , the set of fields. We include

the 20, 000 most frequent words in the vocabulary.

The other hyperparameters are set through valida-

tion, maximizing BLEU over a validation subset of

1, 000 sentences. Similarly, early stopping is ap-

plied: training ends when BLEU stops improving

on the same validation subset. One should note that

the maximum number of tokens in a field l = 10
means that we encode only 10 positions: for longer

field values the final tokens are not dropped but their

position is capped to 10. We initialize the word em-

beddings W from Hellinger PCA computed over the

set of training biographies. This representation has

shown to be helpful for various applications (Lebret

and Collobert, 2014).

5.4 Evaluation metrics

We use different metrics to evaluate our models.

Performance is first evaluated in terms of perplex-

ity which is the standard metric for language mod-

eling. Generation quality is assessed automatically

with BLEU-4, ROUGE-4 (F-measure) and NIST-

43 (Belz and Reiter, 2006).

6 Results

This section describes our results and discusses the

impact of the different conditioning variables.

6.1 The more, the better

The results (Table 1) show that more conditioning

information helps to improve the performance of our

models. The generation metrics BLEU, ROUGE

and NIST all gives the same performance ordering

over models. We first discuss models without copy

actions (the first three results) and then discuss mod-

els with copy actions (the remaining results). Note

that the factorization of our models results in three

different output domains which makes perplexity

comparisons less straightforward: models without

copy actions operate over a fixed vocabulary. Tem-

plate KN adds a fixed set of field/position pairs to

this vocabulary while Table NLM models a variable

set Q depending on the input table, see Section 3.3.

Without copy actions. In terms of perplexity the

(i) neural language model (NLM) is slightly better

3We rely on standard software, NIST mteval-v13a.pl (for

NIST, BLEU), and MSR rouge-1.5.5 (for ROUGE).
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than an interpolated KN language model, and (ii)

adding local conditioning on the field start and end

position further improves accuracy. Generation met-

rics are generally very low but there is a clear im-

provement when using local conditioning since it al-

lows to learn transitions between fields by linking

previous predictions to the table unlike KN or plain

NLM.

With copy actions. For experiments with copy

actions we use the full local conditioning (Equa-

tion 4) in the neural language models. BLEU,

ROUGE and NIST all improves when moving from

Template KN to Table NLM and more features suc-

cessively improve accuracy. Global conditioning on

the fields improves the model by over 7 BLEU and

adding words gives an additional 1.3 BLEU. This

is a total improvement of nearly 15 BLEU over the

Template Kneser-Ney baseline. Similar observa-

tions are made for ROUGE +15 and NIST +2.8.
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Figure 3: Comparison between our best model (Table NLM)

and the baseline (Template KN) for different beam sizes. The

x-axis is the average timing (in milliseconds) for generating one

sentence. The y-axis is the BLEU score. All results are mea-

sured on a subset of 1,000 samples of the validation set.

6.2 Attention mechanism

Our model implements attention over input table

fields. For each word w in the table, Equation (23)

takes the language model score φW
ct

and adds a bias

φQ
ct

. The bias is the dot-product between a represen-

tation of the table field in which w occurs and a rep-

resentation of the context, Equation (22) that sum-

marizes the previously generated fields and words.
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Figure 4: Visualization of attention scores for Nellie Wong’s

Wikipedia infobox. Each row represents the probability distri-

bution over (field, position) pairs given the previous words (i.e.

the words heading the preceding rows as well as the current

row). Darker colors depict higher probabilities.

Figure 4 shows that this mechanism adds a large

bias to continue a field if it has not generated all

tokens from the table, e.g., it emits the word oc-

curring in name 2 after generating name 1. It also

nicely handles transitions between field types, e.g.,

the model adds a large bias to the words occurring

in the occupation field after emitting the birthdate.

6.3 Sentence decoding

We use a standard beam search to explore a larger

set of sentences compared to simple greedy search.

This allows us to explore K times more paths which

comes at a linear increase in the number of forward

computation steps for our language model. We com-

pare various beam settings for the baseline Template

KN and our Table NLM (Figure 3). The best vali-

dation BLEU can be obtained with a beam size of

K = 5. Our model is also several times faster than

the baseline, requiring only about 200 ms per sen-

tence with K = 5. Beam search generates many n-

gram lookups for Kneser-Ney which requires many
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Model Generated Sentence

Reference
frederick parker-rhodes (21 march 1914 – 21 november 1987) was an english linguist, plant
pathologist, computer scientist, mathematician, mystic, and mycologist.

Baseline
(Template KN)

frederick parker-rhodes ( born november 21 , 1914 – march 2 , 1987 ) was an english cricketer
.

Table NLM
+Local (field, start)

frederick parker-rhodes ( 21 november 1914 – 2 march 1987 ) was an australian rules foot-
baller who played with carlton in the victorian football league ( vfl ) during the XXXXs and
XXXXs .

+ Global (field)
frederick parker-rhodes ( 21 november 1914 – 2 march 1987 ) was an english mycology and
plant pathology , mathematics at the university of uk .

+ Global
(field, word)

frederick parker-rhodes ( 21 november 1914 – 2 march 1987 ) was a british computer scientist
, best known for his contributions to computational linguistics .

Table 4: First sentence from the current Wikipedia article about Frederick Parker-Rhodes and the sentences generated from the

three versions of our table-conditioned neural language model (Table NLM) using the Wikipedia infobox seen in Figure 1.

random memory accesses; while neural models per-

form scoring through matrix-matrix products, an op-

eration which is more local and can be performed in

a block parallel manner where modern graphic pro-

cessors shine (Kindratenko, 2014).

6.4 Qualitative analysis

Table 4 shows generations for different variants of

our model based on the Wikipedia table in Figure 1.

First of all, comparing the reference to the fact table

reveals that our training data is not perfect. The birth

month mentioned in the fact table and the first sen-

tence of the Wikipedia article are different; this may

have been introduced by one contributor editing the

article and not keeping the information consistent.

All three versions of our model correctly generate

the beginning of the sentence by copying the name,

the birth date and the death date from the table. The

model correctly uses the past tense since the death

date in the table indicates that the person has passed

away. Frederick Parker-Rhodes was a scientist, but

this occupation is not directly mentioned in the table.

The model without global conditioning can there-

fore not predict the right occupation, and it contin-

ues the generation with the most common occupa-

tion (in Wikipedia) for a person who has died. In

contrast, the global conditioning over the fields helps

the model to understand that this person was indeed

a scientist. However, it is only with the global con-

ditioning on the words that the model can infer the

correct occupation, i.e., computer scientist.

7 Conclusions

We have shown that our model can generate flu-

ent descriptions of arbitrary people based on struc-

tured data. Local and global conditioning improves

our model by a large margin and we outperform a

Kneser-Ney language model by nearly 15 BLEU.

Our task uses an order of magnitude more data than

previous work and has a vocabulary that is three or-

ders of magnitude larger.

In this paper, we have only focused on generating

the first sentence and we will tackle the generation of

longer biographies in future work. Also, the encod-

ing of field values can be improved. Currently, we

only attach the field type and token position to each

word type and perform a max-pooling for local con-

ditioning. One could leverage a richer representation

by learning an encoder conditioned on the field type,

e.g. a recurrent encoder or a convolutional encoder

with different pooling strategies.

Furthermore, the current training loss function

does not explicitly penalize the model for generating

incorrect facts, e.g. predicting an incorrect national-

ity or occupation is currently not considered worse

than choosing an incorrect determiner. A loss func-

tion that could assess factual accuracy would cer-

tainly improve sentence generation by avoiding such

mistakes. Also it will be important to define a strat-

egy for evaluating the factual accuracy of a genera-

tion, beyond BLEU, ROUGE or NIST.
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