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Abstract9

When a person listens to sound, the brain time-locks to specific aspects of the sound. This is called neural tracking

and it can be investigated by analysing neural responses (e.g., measured by electroencephalography) to continuous

natural speech. Measures of neural tracking allow for an objective investigation of a range of auditory and linguistic

processes in the brain during natural speech perception. This approach is more ecologically valid than traditional

auditory evoked responses and has great potential for research and clinical applications. This article reviews the neu-

ral tracking framework and highlights three prominent examples of neural tracking analyses: neural tracking of the

fundamental frequency of the voice (f0), the speech envelope and linguistic features. Each of these analyses provides

a unique point of view into the human brain’s hierarchical stages of speech processing. F0-tracking assesses the

encoding of fine temporal information in the early stages of the auditory pathway, i.e., from the auditory periphery

up to early processing in the primary auditory cortex. Envelope tracking reflects bottom-up and top-down speech-

related processes in the auditory cortex and is likely necessary but not sufficient for speech intelligibility. Linguistic

feature tracking (e.g. word or phoneme surprisal) relates to neural processes more directly related to speech intelli-

gibility. Together these analyses form a multi-faceted objective assessment of an individual’s auditory and linguistic

processing.
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1. Introduction12

Understanding speech is a complex process that relies on activation and cooperation between various brain regions.13

Different characteristics of incoming speech are processed in different brain regions. Roughly, purely acoustic pro-14

cessing of the speech occurs in subcortical areas and the primary auditory cortex. In contrast, segmentation of words15

and phonemes occurs in temporal regions of the brain, and integration of words into their context occurs in language-16

related brain regions, such as superior temporal gyrus and inferior frontal gyrus (Brodbeck et al., 2018c,a). However,17

only if all stages in this neural pathway are successful speech understanding can be achieved.18

Audiologists rely on an extensive test battery to assess a person’s speech understanding. A commonly performed test19

is to let a subject recall a list of sentences. The outcome of this test expresses speech understanding as a percentage20

of correctly recalled words. However, such behavioural tests have some disadvantages. First, the subject must listen21

actively to the stimulus and recall the words. Although this seems like an easy task, it can be challenging or impossible22

for many populations: persons with locked-in syndrome, young children, persons with aphasia, etc. Although they23

might understand the speech, they might not be able to recall the heard words. Second, the outcomes of these tests do24
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not pinpoint the origin of the deficit. Is the deficit situated cortically, indicating an issue with the higher-order language25

processing, or peripherally, suggesting a hearing loss? Third, these behavioural tests rely on highly controlled stand-26

alone sentences or words spoken by a professional speaker. Such speech material has limited contextual information.27

Therefore, it does not resemble a typical day-to-day listening environment.28

One can use a more objective approach, such as neurophysiological measures, i.e., metrics derived from brain signals29

to overcome these issues. Traditional neurophysiological measures, like the auditory brainstem response (ABR),30

the auditory steady-state response (ASSR) or the frequency following response (FFR), require EEG measurement.31

During such a measurement, a participant listens to repetitive presentations of a short sound stimulus (for a review,32

see Picton (2010)). Typical stimuli include clicks, tones, chirps and vowels. The repetitive stimulation is necessary as33

response instances need to be averaged to reduce measurement noise, but it is highly unnatural and demotivating for34

the listener (Theunissen et al., 2000; Hamilton and Huth, 2018). In recent years, technical advances in data analysis35

have made it possible to analyse neural responses measured while a participant listens to continuous natural speech36

without repetition (for a review, see Brodbeck and Simon, 2020). These neural responses time-lock to the presented37

speech and this phenomenon is called neural tracking. Measuring neural responses to continuous natural speech was38

originally proposed by Lalor et al. (Lalor et al., 2009; Lalor and Foxe, 2010) and the methods were further developed39

by, amongst others, Ding and Simon (2012a,b), O’Sullivan et al. (2015) and Crosse et al. (2016a).40

The possibility of investigating continuous speech processing by measuring neural tracking is an important innovation.41

Humans do not communicate with the stimuli of traditional objective measures: repetitive tones or clicks. Context-42

rich continuous speech better approximates natural language use, and as a result, research findings with these stimuli43

are more relevant for auditory processing in day-to-day communication (Kei et al., 1999; Pichora-Fuller et al., 2016;44

Hamilton and Huth, 2018; Keidser et al., 2020). Moreover, continuous speech is more comfortable and enjoyable for45

the listener. The stimulus can even be targeted towards the population of interest: e.g. a fairy tale for young children46

or a podcast for adults. When participants are interested in the content of the stimulus, they maintain attention for47

longer, and as a result, the neural response measurement may be of higher quality. Finally, natural speech stimuli are48

better suited for research with hearing aids. Hearing aid signal processing is designed specifically for natural speech49

and may behave unpredictably with artificial sounds, corrupting the experiment.50

In this article, we will give an overview of neural tracking of continuous speech with primary emphasis on neural51

tracking of single-talker speech. However, a promising and emerging related field is the use of neural tracking to52

determine the focus of attention, called auditory attention decoding (AAD). When listening to a target speaker in a53

mixture of multiple speakers, higher neural tracking is observed for the attended speaker than ignored speakers. Au-54

ditory attention decoding may enable smart hearing devices that can reinforce the attended speaker while attenuating55

the unattended speakers (Geirnaert et al., 2021).56

In this article, we evaluated neural tracking as a diagnostic tool to assess multiple levels of the auditory pathway. Such57
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a tool would be based on one EEG recording of a person listening to natural speech, which is analysed in various ways58

to assess whether there is a speech understanding deficit and if so, where it is situated in the auditory pathway (e.g.,59

peripherally or cortically).60

2. Methods to measure neural tracking61

The most common approach for measuring neural tracking are linear, decoding or encoding models. These models62

measure the amount of neural tracking, i.e., how strongly the neural responses time-lock to a stimulus feature and are63

discussed in more detail in the following subsections.64

Measuring neural tracking requires two inputs: neural responses in the form of single-channel or multi-channel EEG65

(or MEG) and one or more features representing the stimulus (see section 3). A linear relation between the EEG and66

the stimulus feature is modelled to investigate how well the stimulus information is encoded in the neural activity.67

Linear modelling is possible in two ways: reconstructing the feature from the EEG (decoding, section 2.1) and,68

conversely, predicting the EEG from the feature (encoding, section 2.2) or a combined approach (CCA (de Cheveigné69

et al., 2018) as discussed in section 2.5). As discussed below, the decoding and encoding analyses provide different70

but complementary information about neural tracking.71

2.1. Decoding modelling72

In decoding modelling, one reconstructs the stimulus feature from a weighted sum of the EEG signals of the different73

channels and their time-shifted versions. The time-shifted versions are included to account for the time difference74

between the sound and the associated neural response.75

The decoding modelling procedure is visualised in panel A of Figure 1. First, the weights that provide the optimal76

reconstruction are determined based on the time-shifted EEG and its corresponding stimulus feature. Then those77

weights are applied to the EEG, resulting in a reconstructed stimulus feature. The reconstructed feature is correlated78

with the actual stimulus feature of the test data to determine the reconstruction accuracy. This reconstruction accuracy79

is a measure of neural tracking as it indicates how well the stimulus information is time-locked with the EEG. A80

higher reconstruction accuracy will therefore reflect higher neural tracking of the speech.81

The decoding modelling approach is a powerful analysis tool since the information of multiple EEG channels (often 3282

or more) can be combined to reconstruct a stimulus feature with often only one dimension (although multi-dimensional83

features are possible).84

A disadvantage of decoding modelling is that the weights of the model are extraction filters which cannot and should85

not be interpreted to investigate the spatial pattern of the response (Haufe et al., 2014). Extraction filters do not86

always have large weights when the corresponding EEG channels contain a lot of response information. When an87

EEG channel captures information about a noise component, it can be used in the modelling process to remove the88
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Encoding modelDecoding model

Figure 1: A. Schematic representation of decoding modelling. The stimulus feature is reconstructed in decoding modelling based on a linear

combination of time-shifted EEG data. In the training phase, the model is estimated by optimising the decoder weights to minimise the MSE

(mean squared error) between the reconstructed stimulus feature and the actual stimulus feature for a training data set. Then, the weights are

applied in the testing phase to reconstruct the stimulus feature for the testing dataset. The final output is the correlation between the reconstructed

and actual stimulus features for the testing dataset. The division in training and testing dataset is done according to the cross-validation technique

(described in 2.4) B. Schematic representation of encoding modelling. In encoding modelling, the EEG data in each EEG channel is predicted

based on a linear combination of time-shifted stimulus features. Again, the encoder weights or TRFs (temporal response functions) are estimated

by minimising the reconstruction MSE for a training data set. Then the TRFs can be studied as is or used to predict the EEG for a testing data set.

The output of the testing phase is the correlation between the predicted EEG and the actual EEG. The division in training and testing dataset is

done according to the cross-validation technique (described in 2.4)

noise component from other EEG channels. As a result, some channels may receive large weights because they are89

helpful for noise reduction purposes and not because they contain response information (Montoya-Martı́nez et al.,90

2021). Haufe et al. (2014) defines an inversion method to make the topography of the decoding model interpretable,91

or one can use a encoding model.92

Another disadvantage of decoding modelling is that the evaluation of the model, i.e., the loss function, should be93

adapted when investigating the reconstruction accuracy of sparse, impulsive features. These sparse, impulsive features94

can, for example, code the onset of a phoneme or word. They consist of an array of zeroes with a given value at the95

onset of a word or phoneme. Such features cannot be reconstructed from the continuous EEG signals with a linear96

model. Therefore, if sparse, impulsive features are used, a correlation between the actual and reconstructed features97

is sub-optimal. The evaluation of a decoding model, i.e., taking a correlation, should be adapted when using sparse,98

impulsive features. Another option is to equalise the feature spectrum to the EEG spectrum by convolving the sparse,99

impulsive feature with an appropriately smooth kernel. However, these approaches remain to be investigated in detail,100

and typically encoding models are used with impulsive features.101

2.2. Encoding modelling102

Encoding modelling can be used to study the spatio-temporal properties of the response: the EEG signal in each103

channel is predicted from the speech features via a weighted sum of the different speech features and their time-104
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shifted versions. These weights form a temporal response function (TRF) for each speech feature and each EEG105

channel. A TRF consists of the estimated weights at the different time-shifts of the speech feature, reflecting how the106

EEG response is modulated by the stimulus at different time-shifts. The encoding model can deal to some extent with107

autocorrelation of the speech stimulus. Autocorrelation denotes that speech is correlated with itself at different time108

lags. Because the computation of the encoding model uses this autocorrelation, it can prevents the smearing over time109

of the TRF (for more details, see Crosse et al., 2016b).110

Panel B of figure 1 schematically presents the encoding modelling process. Note that for the encoding modelling,111

the time-shifting occurs in the opposite direction than for decoding modelling. Each EEG channel is considered112

separately, so encoding models cannot reduce noise in the EEG signal by combining information across channels.113

The advantage of this approach is that the TRF weights are activation patterns and not extraction filters. Activation114

patterns have large weights for the EEG channels containing a lot of response information and can therefore be115

interpreted. The temporal aspects of these TRF weights are particularly interesting to investigate the neural response116

latency. Depending on the considered brain area, different bottom-up neural response latencies can be expected:117

about 5-10 ms for auditory processing in the upper brainstem and at least 12-30 ms for processes in the primary118

auditory cortex (Tichko and Skoe, 2017; Brugge et al., 2009). Higher-order cortical processes that modulate the neural119

response, like attention and interpretation of the speech, occur with delays of 200 ms or more (for a review, see Martin120

et al., 2008). Similarly to decoding modelling, a measure of neural tracking can be extracted by correlating the actual121

measured EEG responses with the predicted EEG responses. This correlation is called the prediction accuracy and is122

a measure of neural tracking, i.e., the better the brain tracks the speech, the higher the prediction accuracy.123

Compared to decoding modelling, encoding modelling results in a lower magnitude of neural tracking. The reasons124

are twofold. Firstly, in encoding modelling, the actual EEG is correlated with the EEG predicted from the speech125

features. However, the predicted EEG is a gross simplification of the content of the actual EEG signals, which contain126

responses to the speech together with a plethora of non-speech-related EEG activity and noise. Secondly, encoding127

modelling cannot use across-channel information to reduce noise in the EEG signals (Das et al., 2019). However,128

a lower magnitude of neural tracking does not necessarily mean that the encoding model is less valid or reliable129

than the decoding model. The only issue is that the metric to assess the quality of the model is noisy and has lower130

values.131

For each channel, the TRF can be interpreted as the impulse response of the measured auditory system: the information132

in the input stimulus, i.e., the speech feature, is transformed with this impulse response to produce the output response,133

i.e., the preprocessed EEG. Please note that the impulse response depends on the preprocessing (further described in134

section 2.4). The channel-specific TRFs are noisy and therefore often averaged over a selection of EEG channels and135

subjects. Based on the time-shifts that receive large weights for many of the EEG channels/subjects, the dominant136

latencies of the response can be derived. These latencies (or delays) can then be used to estimate which stages of137

neural processing along the auditory pathway contribute to the response. The spatial properties of the response can be138
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further investigated from the distribution of the magnitude of TRF weights over the scalp. This information is usually139

visualised on a topographic map. Examples of TRFs and topographic maps are shown in figure 4, which is discussed140

below. The TRFs and the corresponding topographic maps are similar to ERPs with the advantage that they can be141

computed using a continuous signal. Moreover, the prediction accuracies of the encoding model can also be visualised142

on a topographic map. Note that such topographic maps only divulge spatial information on scalp level, where the143

electrodes were located. To study the actual sources of the neural responses within the head, the information form144

electrode space should be transformed to neural source space (e.g. Brodbeck et al., 2018c).145

Although the encoding modelling approach can deal to some extent with the autocorrelation of the stimulus, it can146

still be problematic for certain features, like the fundamental frequency (further discussed in section 4).147

2.3. Algorithms to calculate decoding models and encoding models148

Different algorithms exist to acquire decoding and encoding models. In essence, the algorithms have the same goal:149

minimizing the error between the reconstructed or predicted signal with the actual signal. However, due to the noisy150

nature of EEG signals and the fact that only a small fraction of the EEG signal is auditory stimulus related, this151

question is ill-posed meaning that multiple solutions are possible. Therefore, these algorithms may yield slightly152

different outcomes as they might rely on different priors. In this overview, we will focus on two algorithms: ridge153

regression (Machens et al., 2004) and boosting (David et al., 2007). Both algorithms are supported by a dedicated154

toolbox, respectively the mTRF toolbox (Crosse et al., 2016b) and Eelbrain (Brodbeck et al., 2021b).155

The ridge regression algorithm minimises the mean-squared error between the predicted or reconstructed signal and156

the actual signal. It relies on the inverse of the autocorrelation matrix of the time-shifted input. The input depends on157

the considered model, i.e. EEG for a decoding model and speech features for the encoding model. Taking the inverse158

of this autocorrelation matrix is ill-posed as the rows of the matrix are mutually dependent, because the time-shifted159

inputs are dependent. To solve this, a ridge parameter is added to each diagonal element of the autocorrelation matrix.160

Using a cross-validation approach (described in 2.4), the ridge parameter can be determined. To do so, the measure of161

neural tracking is calculated for multiple values of the ridge parameter (for example ranging from 10−2 to 103 in steps162

of the powers of 10). The ridge parameter with the highest accuracy is selected and used for the analysis.163

Like ridge regression, the boosting algorithm minimises the error between the predicted or reconstructed signal and164

the actual signal, and aims for a maximally sparse solution. In contrast to ridge regression, which has a closed-form165

solution, boosting relies on an iterative approach to determine the model’s weights. Initially, all weights are set to166

zero. Subsequently, each weight is changed by a specific value. The error between the predicted or reconstructed167

signal and the actual signal is calculated for every change. The weight which resulted in the smallest error is selected.168

Then, these weights are used to start the next iteration. These iterations are performed until a stopping criterion is169

met, e.g. the error stops decreasing, or the number of iterations exceeds the limit.170
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Although both algorithms lead to a similar results, the outcome has some apparent differences (Kulasingham and171

Simon, 2022). Ridge regression results in smooth solutions which are more spread across time and channels while172

boosting results in a more sparse solution which is better defined in time and space. On the other hand, as boosting173

relies on this iterative approach, it is more computationally expensive than ridge regression.174

2.4. Preprocessing and model evaluation175

Preprocessing of the EEG and the speech features affects the results and interpretation of the model. Especially176

the interpretation of the patterns in the TRF should be made carefully with respect to the preprocessing characteris-177

tics.178

The filtering method is a crucial aspect to consider when preprocessing the EEG data. Every filter has specific179

characteristics which affect the impulse response of the system. Two important filter characteristics should always be180

considered: the causality and the filter’s phase response. The causality relates to which data points the filter uses. For181

causal filters, only past data points can affect the output of a specific data point, while for acausal filters, the output can182

be affected by past and future data points. The phase of the filter is also important as it denotes the delay introduced183

by the filter.184

Especially when interpreting the TRF, the filter characteristics should be considered. Firstly, we want to emphasise185

that using a causal filter makes more sense: the stimulus evokes a response in the brain, so only past data points can186

influence the output. However, a causal filter cannot be zero-phase, and therefore, introduces a delay which should be187

accounted for. An exception is when the EEG and stimulus features are filtered the same way; the delay will affect188

both in the same way, and thus the time delay and time-locking between EEG and stimulus is preserved. It should189

be emphasised that all filter characteristics should reported for a study, as pointed out by de Cheveigné and Nelken190

(2019). The best practice is to filter the stimulus and the EEG similarly. Additionally, the EEG and stimulus spectrum191

will become similar, leading to higher prediction or reconstruction accuracies. Regarding decoding modelling, the192

filter causality and phase are less critical as the weights of the decoding model are not interpreted.193

Another critical preprocessing step is the referencing of the EEG signals. Different choices can be made: the central194

electrode Cz, mastoids or a common average. The reference choice does not affect the overall magnitude of the195

reconstruction or prediction accuracy, but it does affect the weights of the model. This aspect is not essential for196

decoding models as the weights cannot be interpreted. For encoding models, the TRF and the distribution of prediction197

accuracies across the EEG channels are affected by the reference choice. If the EEG signals are referenced to one or198

a combination of couple of electrodes such as the two mastoids, the obtained referenced EEG favours specific brain199

regions. If this is not wanted, the common average referencing is a good choice which allows a broader picture of the200

neural activity. However, when making claims about neural activity in dedicated regions in the brain, using source201

localisation techniques is a better solution than deriving conclusions based on the TRF.202
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Preprocessing of EEG also incorporates artefact removal. The above-discussed linear models investigate the time-203

locked relationship between stimulus features and the EEG responses. As artefacts due to eye blinks or movement204

are not strictly time-locked to the speech, the models can cope with these artefacts if sufficient data is provided.205

Nevertheless, artefact suppression should always be considered. Multiple options are possible: multi-channel Wiener206

filtering (Somers et al., 2018), independent component analysis, denoising source separation (Särelä et al., 2005),207

multiway canonical correlation analysis (de Cheveigné et al., 2019), etc. These techniques are useful to suppress208

various artefacts in the EEG signal.209

After preprocessing the data, the linear models can be estimated. We want to emphasise the necessity of cross-210

validation to estimate and evaluate the models. If the model is estimated and evaluated on the same data, the results211

are likely to be biased: inflated reconstruction or prediction accuracies and distorted TRF patterns. For example, more212

peaks might be seen in the pattern because the model learnt the noise in the data. Altogether, estimation and evaluation213

of the model on the same data leads to unreliable results specific to the used data and may not generalise well to new,214

unseen data. This can be avoided by using the cross-validation technique (Crosse et al., 2021). This technique relies215

on a training set, i.e., part of the data used for model estimation and a testing set, i.e., another part of the data, unseen216

during the model estimation, to evaluate the model on (visualised in Figure 1). The cross-validation technique divides217

the data into n folds of equal length. Subsequently, the model is estimated on n − 1 folds and evaluated on the left-out218

fold. This is repeated until all folds have been used to evaluate the model. The TRFs and prediction or reconstruction219

accuracies obtained by respectively model estimation and evaluation are then averaged across the different folds. This220

technique allows identifying a robust model that generalises to new, unseen data.221

2.5. Other methods to extract neural tracking222

Decoding and encoding models imply a directionality: either the stimulus feature is reconstructed or the EEG re-223

sponses are predicted. Another linear approach is canonical component analysis (CCA), which operates bidirection-224

ally. CCA transforms both EEG and stimulus, so they are maximally correlated, thereby combining the advantages225

of the decoding and encoding models. Stimulus dimensions irrelevant for measurable responses are removed, as are226

EEG dimensions irrelevant for auditory perception. Although CCA is a flexible tool that can discover more complex227

relations than a simple encoding or decoding model, it has more parameters and with this a higher risk of overfit-228

ting. Therefore, an appropriate cross-validation strategy is needed, or one has to use dimensionality reduction or229

regularisation. Furthermore, as with all techniques based on least-squared minimisation, it is prone to outliers. CCA230

decomposes the signals into multiple components. Although this can ease the interpretation of the results, it should231

be done with care. CCA orders the components based on their correlation, however a high correlation does not guar-232

antee a physiological interpretation. For example, components that have lowpass or narrowband filtering can have233

very high correlations. Finally, there is no exact match between the components and the actual neural sources which234

can complicate the interpretation of the underlying neural basis of the component. This technique has been used in235

de Cheveigné et al. (2018) and O’Sullivan et al. (2021)236
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Another linear analysis method is a cross-correlation (Kong et al., 2014; Aiken and Picton, 2008; Petersen et al., 2016;237

Aljarboa et al., 2022). Here, the cross-correlation is computed between the EEG channels and the speech features.238

The cross-correlation is computationally inexpensive and can give some insight into the neural responses. Similar239

to the encoding model, it cannot integrate multiple channels. An disadvantage compared to encoding and decoding240

modelling, is that the cross-correlation is more sensitive to the autocorrelation of the stimulus, leading to patterns that241

are smeared out over time. Another disadvantage is that cross-correlation cannot be applied on an unseen test dataset.242

A comparison of the TRF to the cross-correlation is nicely shown in Crosse et al. (2016b).243

Non-linear techniques have been explored to overcome the inherent limitations of linear models. Mutual information244

is a metric that uses information theory, which captures the shared information between the EEG responses and the245

stimulus expressed in the unit ‘bits’. Therefore, higher mutual information indicates higher neural tracking. Because246

it does not make explicit assumptions about the relationship between the stimulus and EEG, it can capture non-247

linear aspects. Moreover, mutual information can be calculated between the EEG and the time-lagged stimulus to248

understand how the mutual information metric behaves for multiple time lags. This results in a pattern similar to the249

TRF. However, an important consideration is that autocorrelation of the stimulus is not taken into account. Note that250

the mutual information method does not need to be applied between stimulus and EEG necessarily, but can also be251

applied between different EEG signals to get additional insights. This technique has been used by Gross et al. (2014),252

Zan et al. (2020), and Kaufeld et al. (2020).253

Another measure of neural tracking can be obtained with a match-mismatch paradigm. In this case, a model is trained254

to classify whether a given EEG segment is matched or not with a given stimulus segment. This can be done for a255

single stimulus segment or N segments, in which case the model classifies which of the N segments is matched with256

the EEG. In the case of decoding or encoding linear models, the stream with the highest prediction or reconstruction257

accuracy can be identified as the matched stream. The accuracy, i.e., the percentage of correctly identified matched258

speech streams, is a metric of neural tracking. Please note that auditory attention decoding (AAD) relies on the same259

principle. Instead of presenting a match and mismatch speech stream, the attended and unattended speech streams are260

given as input to the model (e.g. Fuglsang et al., 2020; Das et al., 2018; Deckers et al., 2018; O’Sullivan et al., 2015;261

De Cheveigné et al., 2021).262

This paradigm can also be solved in a non-linear fashion with neural networks (e.g. Accou et al., 2021; Monesi263

et al., 2021; Bollens et al., 2022). Accou et al. (2021) showed that the accuracy of a neural network solving a264

match-mismatch task could be used to estimate the speech reception threshold. Therefore, this neural network allows265

for an evaluation of speech understanding based on the EEG responses. Although neural networks can model non-266

linear relationships between the EEG and stimulus, they give limited insight into how the network handles the EEG267

responses. Therefore, evaluating different levels of the auditory system becomes more challenging as it is difficult to268

tell which information and how the neural network uses it.269
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Although other methods can quantify neural tracking, in the continuation of this overview, we focus on decoding and270

encoding models.271

3. The stimulus feature272

The stimulus feature is derived from the presented speech and reflects how a particular speech characteristic varies over273

time. Many stimulus features can be used, ranging from low-level acoustic characteristics (e.g. the acoustic envelope)274

to high-level linguistic information (e.g. word surprisal). This flexibility makes the neural tracking framework highly275

versatile and allows for evaluating multiple levels of the auditory system. It also underlies one of the most prominent276

advantages of the framework: a single EEG measurement can be analysed with various features of the stimulus and277

provides information on a range of auditory/language processes. Note that the feature choice is arbitrary, and thus278

different features will reflect the different stages of the auditory pathway. In this manuscript, we focus on f0 tracking,279

envelope tracking and linguistic tracking to target different stages in the auditory pathway. Other features are possible280

and have been investigated in other studies, e.g. word category (Brennan and Hale, 2019), acoustic onsets (Brodbeck281

et al., 2018a), the spectrogram (Di Liberto et al., 2015), phonetic features (Di Liberto et al., 2015), etc.282

In the following sections, we will illustrate the use of neural tracking measures using three prominent (groups of)283

stimulus features corresponding to three types of neural tracking analyses. We discuss these following the hierarchical284

organisation of the auditory pathway: starting with auditory processing of the fundamental frequency (f0, section 4),285

which happens mainly in the subcortical stages of the auditory pathway, then moving on to envelope processing286

(section 5) which happens in the auditory cortex and ending with linguistic processing (section 6) which happens287

in the language network of the brain. We focus on how these stimulus features can be used to investigate different288

aspects of speech processing and different parts of the auditory pathway. Moreover, we provide example results and289

review findings from relevant studies, including how the responses relate to important clinical measures like hearing290

thresholds and speech perception. Please note that it is out of the scope of this paper to comprehensively review all291

stimulus features and related analyses that have been published.292

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 11, 2022. ; https://doi.org/10.1101/2021.11.26.470129doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.26.470129


Figure 2: Example of stimulus and derived features for an example sentence by a male speaker. The f0 (panel A) and envelope feature (panel B)

are derived from the stimulus waveform, whereas linguistic features (panel C) are derived from the stimulus transcription. The f0 and envelope

features concern different spectral ranges, with the envelope focusing on low frequencies (< 50 Hz) and the f0 focusing on higher frequencies

(∼ 85 − 300 Hz). Linguistic features can focus on different segmentation levels, including phoneme level and word level. Panel C visualises an

example onset and surprisal feature for each level.
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3.1. Inter-feature correlation and feature evaluation293

All the speech features are derived from the same speech stimulus. This leads to a high inter-feature correlation.294

For example, at every impulse of a linguistic speech feature, there is a word or phoneme onset, which tends to be295

associated with a high burst of acoustic energy. In Figure 3, we visualised the inter-feature correlation (panel A).296

Moreover, we created a TRF to predict the envelope based on the remaining stimulus features (using the boosting297

algorithm; panel B). Not surprisingly, the envelope feature can be predicted from the other speech features. Even298

some aspects of linguistic features (such as word surprisal) explain some variance in the envelope feature. This299

inter-feature correlation can affect the model performance and complicate the interpretation of the results.300

Figure 3: Illustrative example of the inter-feature correlation for the stimulus used in Figure 2. Panel A shows the correlation between the different

features. Panel B shows the TRF for phoneme onsets, word onsets and word surprisal when trying to predict the envelope of the stimulus.

This inter-feature correlation can bias the interpretation of results, which is important to consider when investigating301

the tracking of a linguistic feature using a model with only the linguistic feature of interest. When significant neural302

tracking is observed, it cannot be attributed to solely the brain tracking linguistic aspects of speech due to this inter-303

feature correlation (Daube et al., 2019).304

To overcome this issue, a good approach is to assess the feature’s contribution to the model performance. To do305

so, the features of interest must be defined together with control features, i.e., features that are not of interest in the306

study’s goal but are correlated with the feature of interest. Here, we discuss three approaches: subtracting correlations,307

residual fitting and feature shuffling. For the first method, two models are created, one with and one without the feature308

of interest. If the reconstruction or prediction accuracies significantly increase when the feature of interest is included,309

the feature of interest contributes unique information to the model. This method has been applied in previous studies310

(e.g. Di Liberto et al., 2015; Brodbeck et al., 2018a; Gillis et al., 2021b). The disadvantage of this method is that it is311

too convervative. Only the unique contribution of the feature of interest compared to the control features is captured.312

As shown on Figure 3, some control features, like the envelope, can contain information which is also captured by313

word surprisal. Therefore, the linguistic information common to both features will be attributed to the envelope.314

Another disadvantage is that the degrees of freedom change between the two models. This is especially important315
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to consider when the cross-validation technique is not applied. If this approach is used with ridge regression, Crosse316

et al. (2021) suggests using banded-ridge regression as different features might require different regularisation.317

Another approach is to look at the model’s residuals with the control features. In this case, first, a model is created318

using the control features. Subsequently, the predicted EEG or reconstructed envelope is subtracted from the actual319

signal, creating the models’ residuals. Then a new model is created using the features of interest and these residuals.320

If a significant prediction or reconstruction accuracy is achieved, the feature of interest explains variance in the EEG321

responses, which is not explained by the control features. Similar to the subtracting correlation approach, this method322

is very conservative as it only considers the unique contribution of the model.323

The last approach is shuffling of the features. This approach is used in studies by Broderick et al. (2018, 2021). Now324

two models include the control features combined with either the feature of interest or a shuffled version of the feature325

of interest. If the model with the feature of interest performs significantly better than the model with its shuffled326

version, the feature contributes significantly to the model. Note that shuffling of the feature should be done with care.327

For impulsive features, shuffling the feature can be done by preserving the timing of the pulses, but changing the328

amplitudes. For continuous features, the shuffled feature can be created by filtering noise with the same spectrum329

as the feature of interest. In this method, the number of features is kept constant to investigate the feature’s added330

value. However, a disadvantage is that the inter-feature correlation is not preserved. For example, returning to Figure331

3, if the feature of interest is word surprisal, the correlation between word surprisal and envelope gets lost, i.e., the332

envelope captures no effect of the shuffled word surprisal. The loss of the inter-feature correlation might affect the333

model performance, mainly if the cross-validation technique is not applied.334

Although each approach has disadvantages, they are all valid and used in different studies. However, good control335

conditions should always be considered to evaluate whether or not a feature captures the desired effect. For example,336

for a linguistic feature, this might be a foreign language, vocoded speech or time reversed speech. However, each337

of these control conditions also has its drawbacks. Depending on the choice of a foreign language, the speaker338

and language structure can vary, which affects neural tracking. Although vocoded speech can preserve the speech339

envelope, other speech cues are lost. Time reversed speech has a limitation that the onsets become unnatural, i.e.340

acoustic boundaries occur at the end of the sound instead of the beginning. An overarching disadvantage is that the341

listener’s attention may drift over the course of the control stimulus. As the stimulus is not understandable, it is more342

challenging to listen attentively to the stimulus.343

4. Neural tracking of the f0344

Neural tracking of the fundamental frequency of the voice, or f0-tracking, is used to investigate how the f0 is rep-345

resented in the brain activity (Forte et al., 2017; Etard et al., 2019; Van Canneyt et al., 2021c). The f0 is a periodic346

modulation in the speech signal generated by vocal fold vibration during speech production. It is related to the per-347
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ception of pitch. The f0 of adult speakers typically ranges from 85 to 300 Hz, with male and female voices situated348

respectively at the lower and higher ends of the range. The f0 is an essential characteristic of the human voice, and it is349

vital to convey intonation and emotion. However, proper perception of the f0 is not required for speech intelligibility350

(e.g. cochlear implant listeners). Nevertheless, f0-tracking can provide information on the quality of fine temporal351

processing in the early stages of the auditory pathway, which is the foundation for proper speech processing in the352

brain.353

Temporal processing of the f0 in the human auditory system happens through the synchronisation of the activity of354

the neurons to the f0 modulations, i.e. phase-locking. Due to the relatively high frequency of the f0 modulations, this355

phase-locking occurs mainly in peripheral and subcortical stages of the auditory pathway, up to the upper brainstem.356

Neurons at cortical stages have poor phase-locking above 100 Hz and are therefore less likely to contribute to f0-357

tracking (Joris et al., 2004). However, it has been shown that early cortical contributions to f0-tracking responses (and358

FFRs) can occur for low-frequency stimuli (85-100 Hz, e.g. low male voices) (Coffey et al., 2016, 2017; Van Canneyt359

et al., 2021c).360

F0 tracking analysis requires an f0 feature that represents the f0 modulations in the presented speech. The f0 feature361

can be extracted from the speech stimulus in various ways. A simple yet effective way is to band-pass filter the362

stimulus in the range of the f0 (Etard et al., 2019; Van Canneyt et al., 2021c). An example of this type of feature is363

provided in panel A of figure 2. More complicated and computationally expensive techniques have also been explored,364

including empirical mode decomposition (Etard et al., 2019; Forte et al., 2017) and auditory modelling (Van Canneyt365

et al., 2021b). Constructing an f0 feature that approximates the expected neural response using auditory modelling has366

proven particularly effective, nearly doubling the reconstruction accuracies obtained with the neural tracking analysis367

(Van Canneyt et al., 2021b). This is likely explained by the fact that the auditory model is more physiologically368

valid. Moreover, the auditory model simulates the contribution of the higher harmonics to the f0 response. Because369

the neural response is also driven by the harmonics and not just by the f0, the level of measured f0 tracking will370

increase.371

Section 1 of figure 4 shows the results of a typical encoding modelling analysis for f0-tracking. These results were372

obtained by filtering the EEG responses between 75 and 175 Hz and referencing to the average EEG response (32373

participants; Van Canneyt et al. (more details regarding the preprocessing are described in 2021c)). The data set374

used for this visualisation (and all others in figure 4) contained 64-channel EEG data from 32 young normal-hearing375

subjects measured in response to male-narrated speech (Accou et al. (dataset from 2021)). Panel A shows the mean376

TRF across subjects for the channel selection indicated in pink on panel B. The TRF for each subject is plotted as377

well to indicate the variance. The TRFs in this example are absolute value of the TRFs of the stimulus and the Hilbert378

transformed EEG. This technique aids with interpretation as the brainstem response may occur at a phase that is379

different from that of the f0 (for more information, see Van Canneyt et al. (2021c); Forte et al. (2017)). The TRF380

pattern indicates that the activity in the auditory system (∼ EEG) best reflects the f0 information (∼ the feature) at381
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a latency of about 10-25 ms. Panel B of figure 4 presents an example f0 tracking topographic map with common-382

average rereferencing at 15 ms latency. The topographic map indicates strong response activity in the centre of the383

scalp and across the back of the head. The temporal and spatial response patterns are consistent with dominant f0-384

related activity in the upper brainstem and early cortical regions. Saiz-Alı́a and Reichenbach (2020) has performed385

detailed computational modelling of the subcortical sources of the f0 tracking response, demonstrating important386

contributions from the cochlear nuclei and the inferior colliculus. Van Canneyt et al. (2021c) argues for additional387

contributions from the right primary auditory cortex for f0 tracking of low-frequency voices.388

Although f0-tracking was only recently developed, the technique has led to several interesting findings. Forte et al.389

(2017) and Etard et al. (2019) have demonstrated that the f0 tracking response holds information on selective attention,390

possibly indicating that neural mechanisms for attention influence the brainstem. Kulasingham et al. (2020) and391

Van Canneyt et al. (2021a) have investigated how the age of the listener impacts f0 tracking. Kulasingham et al.392

(2020) found no age effects using MEG, which is most sensitive to cortical sources. In contrast, Van Canneyt et al.393

(2021a) found a significant reduction in response strength with advancing age using EEG (which is more sensitive394

to subcortical sources than MEG and will capture both cortical and subcortical sources). This observation is in line395

with an age-related decrease in the phase-locking ability of the subcortical (and early cortical) auditory system. Van396

Canneyt et al. (2021a) also studied the effect of hearing loss and found increased f0-tracking responses in participants397

with hearing impairment compared to age-matched controls. The response enhancement was due to additional cortical398

activity phase-locked to the f0 (with a latency of ∼40 ms), likely compensating for the reduced quality of bottom-up399

auditory input due to diminished peripheral auditory sensitivity. Moreover, the amount of additional compensatory400

cortical activity was significantly related to the pure tone average (PTA) hearing loss of the participant. As such, a401

significant relationship exists between the degree of hearing loss of an individual and the strength of their f0 tracking402

response.403

At the moment, f0-tracking also has some limitations, which future advances may mitigate. One of the main issues404

is auto-correlative smearing in TRFs and topographic maps because the f0 stays relatively steady over multiple f0405

periods. This periodic smearing over latencies can be somewhat mitigated with Hilbert-transformed TRFs, which406

disregard phase information. However, TRF and topographic map interpretation are still limited to the most dominant407

peaks (see Van Canneyt et al. (2021c) for more details). A second limitation is that the f0 is only present in speech408

during voiced sounds (∼ 50-60 % of the time) and not during unvoiced sounds (∼ 40 % of the time), including409

silences. During analysis, these unvoiced sections in the speech stimulus (and corresponding sections in the EEG)410

are disregarded. As a result, only about half of the measured data can be used to analyse f0-tracking, increasing411

the required measurement time. Another limitation is that the f0 tracking response is reduced for voices with higher412

and more variable f0, leading to weak and often non-significant responses for typical female voices. This occurs413

because neural phase-locking ability is decreased for higher and more variable f0s, especially for cortical sources.414

As such, the stimulus choice has a large impact on the f0 tracking response. A final limitation is that f0-tracking415
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requires careful interpretation: f0-tracking reflects the capability of the auditory system to phase-lock to the f0, but416

it does not reflect the ability of a person to perceive pitch or speech in general. Neural tracking analyses with other417

features help complete the picture. Lastly, the use of the f0 feature is still in its infancy with only a limited number of418

published studies. Nevertheless, it seems to be a promising approach to evaluate neural responses at the level of the419

brainstem.420
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Figure 4: Example of encoding modelling results: TRFs and topographic maps. The figure is divided into three sections on f0-tracking, envelope

tracking and linguistic tracking, respectively. For each type of tracking, an example mean TRF (+ individual TRFs) is presented (panel A, C, E

and G), together with a corresponding topographic map at an important latency (panel B, D, F and H). These TRFs are estimated for the same

participants and the same speech material of around 15 minutes long. The channels indicated with pink on the topographic map represent the

channel selection used to obtain the corresponding TRF. Note the drastically different time scales in the TRFs, reflecting the presence of neural

activity at different latencies for each feature. In panel A, the TRFs are visualized of the stimulus and the Hilbert transformed EEG, similarly to

Van Canneyt et al. (2021c) and Forte et al. (2017).
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5. Neural tracking of the speech envelope421

The speech envelope consists of slow-varying modulations (< 50 Hz) in the speech signal. It contains acoustic422

temporal information (Rosen, 1992) but also reflects phonemes, syllables and word transitions (Peelle and Davis,423

2012). Moreover, it also correlates with the area of the mouth opening during articulation (Chandrasekaran et al.,424

2009). Therefore it is not surprising that research indicates that the envelope is an essential acoustic cue for speech425

intelligibility (Shannon et al., 1995; Drullman et al., 1994a,b).426

Measuring envelope tracking can be used to analyse the neural encoding of the speech envelope during speech percep-427

tion (Ding and Simon, 2012a; O’Sullivan et al., 2015; Vanthornhout et al., 2018). From animal studies (Wang et al.,428

2008) and human studies with electrocochleography (ECoG), it is known that the speech envelope is processed in the429

primary auditory cortex, specifically in Heschl’s Gyrus (Nourski et al., 2009). A growing body of evidence demon-430

strates that envelope tracking is a requirement for speech understanding. Multiple studies show that neural tracking of431

the speech envelope is strongly correlated with behaviourally measured speech intelligibility (e.g. Ding et al. (2014);432

Vanthornhout et al. (2018); Lesenfants et al. (2019); Iotzov and Parra (2019); Verschueren et al. (2021)). As a specific433

example, Vanthornhout et al. (2018) found a significant correlation of 0.69 between the speech reception threshold434

(SRT) estimated based on envelope tracking and the SRT measured with behavioural speech audiometry.435

Although the broadband envelope can be used, it is also possible to study the neural tracking of specific frequency436

bands of the envelope. Envelope tracking responses are most commonly investigated in the delta band (0.5-4 Hz),437

theta band (4-8 Hz) and gamma band (> 30 Hz) (Ding and Simon, 2013; Verschueren et al., 2021; Molinaro and438

Lizarazu, 2017). The lower envelope frequencies are often the main interest as they correspond with word onsets439

and the syllabic rate of the speech, which is hypothesised to be crucial for speech intelligibility. Higher envelope440

frequencies are typically related to the onsets of phonemes. Some studies suggest that speech intelligibility, i.e., how441

well a person can understand speech, is specifically related to the theta band (4-8 Hz) and not the delta band (1-4 Hz)442

(Ding and Simon, 2013; Peelle et al., 2013). Other studies indicate the opposite (Verschueren et al., 2021; Molinaro443

and Lizarazu, 2017; Di Liberto et al., 2018). In our opinion, the outcome may depend on the speech material. The444

syllabic rate is often very close to 4 Hz, so envelope tracking to a slow speaker could be more dominant in the delta445

band, while envelope tracking to a fast speaker could be more dominant in the theta band.446

Envelope tracking responses can be analysed using a decoding or encoding model, or using a strategy that combines447

a decoding and encoding approach in one model. In any case, the model requires an envelope feature extracted from448

the stimulus waveform. In essence, the envelope reflects the modulation of the signal and can easily be obtained by449

taking the absolute value of the Hilbert transform. Although this is a prevalent method, it is not the best choice as it450

disregards auditory processing. Two important aspects of auditory processing need to be taken into account to better451

approximate human envelope processing. First, the stimulus should be split into frequency bands before the actual452

envelope extraction process to mimic how the basilar membrane in the cochlea divides a sound stimulus into different453
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auditory filters. Second, the compression and non-linear behaviour of the auditory system should be accounted for. To454

incorporate these factors in the envelope extraction process, complex computational models of the auditory periphery455

can be used (Yang et al., 2015; Bruce et al., 2018). However, Biesmans et al. (2017) evaluated various extraction456

methods in an auditory attention decoding (AAD) paradigm and proposed a simplified approach. They found that a457

combination of a gammatone filterbank, which simulates the auditory filters on the basilar membrane, followed by a458

power law to account for compression and non-linearity in the auditory system, performed equally well as the more459

complex and computationally expensive auditory models. An example envelope feature obtained using this technique460

is provided in panel B of figure 2.461

The results of a typical encoding modelling analysis using ridge regression for envelope tracking are visualised in462

section 2 of figure 4. These results were obtained by highpass filtering the EEG responses above 0.5 Hz and refer-463

encing to the average EEG response (32 participants; Vanthornhout et al. (more details regarding the preprocessing464

are described in 2019)). Panel C presents the mean TRF, averaged over subjects and a channel selection (indicated465

in pink on panel D). The TRFs of the individual subjects are visualised with a thin line to indicate the variance. The466

TRF displays three distinct peaks. The P1 peak (50 ms), the N1 peak (93 ms) and the P2 peak (170 ms). This typical467

P1-N1-P2 complex is also found in AEP studies with impulse-like stimuli and can thus be used to infer the neural468

source of the peaks. The P1 peak originates in Heschl’s Gyrus, and the N1 peak originates in the Superior Temporal469

Gyrus (O’Sullivan et al., 2019b; Steinschneider et al., 2011). The origin of the P2 peak is less clear but is probably470

in the (higher) auditory cortex (Godey et al., 2001). The topographic map shows negative weights for the temporal471

channels and positive weights for the central channels. This distribution is an indication of a dipole located near the472

auditory cortex. Without analyses in source space, the exact location is difficult to pinpoint.473

Over the past decade, envelope tracking has been used to study, among others, how cortical speech processing is474

affected by individual factors like age and hearing status. Decruy et al. (2019) and Brodbeck et al. (2018b) found475

stronger envelope tracking for older participants compared to younger participants, even though older adults typically476

have more difficulty understanding speech. Similarly, Decruy et al. (2020b) and Fuglsang et al. (2020) found increased477

envelope tracking for hearing-impaired listeners compared to age-matched normal-hearing listeners. The enhanced478

tracking in older listeners or listeners with a hearing impairment may be explained by a compensatory central gain479

mechanism (Parthasarathy et al., 2019; De Villers-Sidani et al., 2010; Chambers et al., 2016), recruitment of additional480

cortical resources (Brodbeck et al., 2018b; Gillis et al., 2021a) and increased listening effort and attention (Decruy481

et al., 2020a; Vanthornhout et al., 2019; Lesenfants and Francart, 2020). This shows that it is also important to conduct482

subject-specific analyses and not only at group-level measures. With an innovative artefact removal technique, Somers483

et al. (2019) succeeded to analyse envelope tracking for cochlear implant listeners as well. For both hearing-impaired484

listeners (with simulated amplification) (Decruy et al., 2020b) and cochlear implant listeners (Verschueren et al., 2019)485

the tracking strength was significantly correlated to behaviourally-measured speech intelligibility, indicating a similar486

relation with speech intelligibility as observed for normal hearing listeners (Vanthornhout et al., 2018).487
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One challenge with envelope tracking is that its functional interpretation is unclear. The main complicating factor is488

that the envelope is highly correlated with linguistic cues, like the onsets of words and syllables. As such, the envelope489

represents multiple unique features that all may contribute to the observed neural tracking response and are hard to490

disentangle. In addition, the interpretation of envelope tracking is complicated because it is modulated by top-down491

effects, such as attention and audio-visual integration (O’Sullivan et al., 2019a). A final challenge is that the exact492

relation between envelope tracking and speech intelligibility remains a point of discussion (Ding and Simon, 2014;493

Brodbeck and Simon, 2020). Multiple studies have shown that the level of envelope tracking reflects experimental494

changes in speech intelligibility (Vanthornhout et al., 2018; Lesenfants et al., 2019; Verschueren et al., 2021), even in495

the case of degraded speech with an intact envelope (Ding et al., 2014). However, it is unlikely that envelope tracking496

is a direct reflection of successful speech intelligibility as neural tracking responses have been observed for non-speech497

signals (Zuk et al., 2021) and foreign languages (Etard and Reichenbach, 2019). As such, envelope tracking is likely498

necessary but not sufficient for speech intelligibility. Linguistic features can be used to gain further insight into how499

the brain processes the meaning of speech, i.e. speech intelligibility.500

6. Neural tracking of linguistic features501

Recent studies focus on linguistic speech features in pursuit of an accurate neural marker of speech intelligibility.502

While the f0 and speech envelope are derived from the acoustic waveform of the speech, linguistic features are503

derived from the content of the speech. Proper encoding of these features in the brain requires accurate linguistic and504

not mere acoustic processing.505

Linguistic features can be divided into two categories. Features in the first category denote lexical onsets. They rep-506

resent (aspects of) a sequence of small building blocks that make up spoken language, e.g., sequences of phonemes,507

phonetic features, words, or specific word categories like content and function words (Di Liberto et al., 2015; Lesen-508

fants et al., 2019). These features are sparse arrays consisting of zeros with a fixed, non-zero entry (∼ impulse) at509

the onset of each lexical building block (see features in light green on Panel C of figure 2). The neural responses to510

lexical onset features are not straightforward to interpret. As phonemes, syllables, and words coincide with acoustic511

cues, the associated neural response is neither purely lexical nor acoustic.512

Features in the second category reflect higher-level linguistic aspects of the speech, e.g., how familiar, predictable or513

surprising a word or phoneme is in its context. These features can be applied on three levels, which require different514

amounts of linguistic context: (1) at the level of a phoneme (e.g., phoneme surprisal or cohort entropy (Di Liberto515

et al., 2019; Brodbeck et al., 2018a)), (2) at the level of a word (e.g., word frequency or word surprisal (Weissbart516

et al., 2019; Koskinen et al., 2020)), and (3) at a semantic contextual level (e.g., semantic dissimilarity (Broderick517

et al., 2018)). These features are sparse arrays, similar to lexical onset features. However, in this case, the impulse518

amplitude at each onset is not fixed but modulated by the linguistic information of the specific phoneme or word (see519

features in dark green on Panel C of figure 2).520
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The fact that linguistic features are sparse arrays consisting of mostly zeroes with some non-zero entries (∼ impulses),521

makes them different from the continuous f0 and envelope features and poses challenges for response analysis. In522

decoding modelling, the reconstructed feature is compared to the actual feature. However, sparse features are chal-523

lenging to reconstruct from a continuous signal (the EEG), as we can only reconstruct a continuous signal from the524

continuous input using a linear model. This problem does not occur for encoding modelling, where the non-sparse525

predicted EEG is compared to the actual EEG. Therefore the encoding model is a more common choice for analysis526

with linguistic features.527

Panels E-H of figure 4 present a visualisation of the results of a typical encoding modelling analysis for linguistic528

tracking with phoneme suprisal and word suprisal features. These results were obtained by filtering the EEG responses529

between 0.5 and 25 Hz and referencing to the average EEG response (32 participants; Gillis et al. (more details530

regarding the preprocessing are described in 2021b)). The TRFs at both phoneme (panel E) and word level (panel531

G) show a negative response, situated centrally in the topography (panel F and H), around respectively 250 and 350532

ms. The earlier response peak for phonemes compared to words is consistent with the hierarchy of the language533

processing of these linguistic building blocks, i.e., the phonemes making up a word are processed before the word’s534

surprisal can be estimated. Moreover, the response to word surprisal resembles the N400 response, which is classically535

observed in ERP paradigms (Lau et al., 2008). These congruent topographic responses indicate that this small and536

specific language response can also be observed when listening to natural running speech rather than stand-alone537

sentences.538

Measuring neural tracking of linguistic features is an exciting avenue to test psycho-linguistic theories of speech539

understanding. It is accepted that listeners use linguistic context to continuously adapt expectations of upcoming540

concepts, words and phonemes, However, how these expectations are integrated with what is actually being perceived541

is unclear. Brodbeck et al. (2021a) showed that the neural prediction of an upcoming phoneme or word relies on542

contextual processing in a parallel manner, combining both bottom-up and top-down processing. Additional evidence543

of the presence of top-down processing comes from Heilbron et al. (2020) who observed that higher-level predictions544

influence the predictions at lower levels (i.e., word prediction affects the predictions at the phoneme level).545

Additionally, linguistic features allow investigating to what extent speech is understood given the language proficiency.546

Di Liberto et al. (2021) investigated neural tracking in Mandarin speakers with different levels of English proficiency.547

Interestingly, the magnitude of central negative response to semantic dissimilarity around 400 ms increased with548

proficiency.549

Another exciting research path is the disentanglement of acoustic and linguistic neural processing. Verschueren et al.550

(2022) disentangled acoustic and linguistic neural processing by changing the speech rate, which kept the linguistic551

content the same while varying the acoustic properties and the intelligibility of the speech. As the speech rate in-552

creased, the neural tracking of acoustic properties increased. This means that better time-locking was observed, even553
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though the speech became harder to understand. In contrast, neural tracking of linguistic properties decreased with554

increasing speech rate. This indicates that linguistic tracking provides a more accurate objective measure of speech555

intelligibility.556

The two studies mentioned above indicate that neural tracking of linguistic features encodes aspects of neural language557

processing. These findings open doors to study language development in young children or to objectively determine558

speech understanding.559

Linguistic speech features can also provide insight into age-related speech intelligibility deficits. We are aware of560

two studies investigating speech intelligibility deficits in older adults. Although Mesik et al. (2021) did not report561

differences, Broderick et al. (2021) reported that older adults rely less on semantic features than younger adults.562

Furthermore, they showed that older adults who relied more on this semantic mechanism showed higher verbal fluency563

than older adults with weaker semantic tracking.564

Linguistic tracking is an up-and-coming research technique but has a few difficulties. Firstly, the inter-feature correla-565

tion should be taken into account. The linguistic features coincide with the boundaries of phonemes and words. These566

boundaries are often associated with high acoustic power; therefore, it is necessary to carefully control for acoustic567

properties of the speech when evaluating linguistic features. If not, the speech tracking analysis might be biased to568

find spurious significant linguistic features due to its correlations with acoustic features (Daube et al., 2019). We569

proposed some approaches to deal with this inter-feature correlation in the section 3.1.570

Secondly, the analyses are often based on encoding modelling due to sparse features. Prediction accuracies, i.e.571

correlations, obtained with encoding models are typically small in magnitude: only around 3 to 7% of the variance572

in the EEG signal can be explained by neural responses time-locked to the presented stimulus. Moreover, most573

of this variance is explained by acoustic characteristics of the speech, as these lower-level acoustic features evoke574

responses over large parts of the auditory system. In contrast, linguistic tracking targets the neural response from575

a precisely localised neural process related to intelligibility. Therefore, the associated magnitudes of these neural576

processes measured at the scalp level are much smaller. As the prediction accuracies of the encoding model are small577

in magnitude, finding a significant improvement of the linguistic feature over and beyond acoustic features requires578

enough observations (e.g. an improvement of ∼1% corresponds to an increase in prediction accuracy of 3.4 × 10−4
579

approach as described above (Gillis et al., 2021b)).580

Thirdly, estimating the TRF to these linguistic features requires a lot of data. In Figure 1, a 15-minute story is used to581

estimate the model, which is substantially shorter than most studies which evaluate linguistic tracking of speech in 45582

to 60 minutes. This difference in the amount of data explains why the TRF pattern is noisier. The more data is used583

to estimate the model, the better the brain response to linguistic tracking is characterised, and the more prominent584

the peaks are. A method to overcome this is to estimate a subject-independent model whereby the data of different585

subjects is combined to ensure enough data.586
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Another difficulty is that current studies investigating the effect of linguistic neural tracking only evaluate population587

differences, such as comparing young to old or comparing a baseline to a complete model. As the effect is small588

and the TRFs show a high between- and intra-subject variability, it is challenging to extract an objective measure at589

a subject-specific level. Future research should focus on making the TRF patterns and prediction accuracies more590

reliable and robust at a subject-specific level.591

7. Caveats592

A first caveat of the studies investigating neural tracking is that most studies focus on models assuming a linear rela-593

tionship between speech and EEG responses. However, whether or not this assumption is valid remains unanswered.594

Additionally, there is no ground truth of which speech features the brain tracks. Therefore, investigating which speech595

features are tracked by the brain remains an explorative search which might lead to suboptimal results.596

A second caveat is the comparison of neural tracking of speech with behavioural measures of speech understanding.597

Behavioural measures can be obtained by, for example, sentence recall tests. However, when using continuous speech,598

these tests are not suitable because longer text fragments cannot be recalled. As a result, the speaker of the behavioural599

measures is often different from the speaker of the stimuli used for the neural measurements. This can be problematic600

as speaker characteristics can affect the neural tracking of speech. As sentence recall tests are unsuitable, the current601

field of research lacks a good evaluation of speech understanding for continuous text. Currently used metrics are602

content questions or subjectively rated speech understanding, i.e., the participant’s answer to the question ‘how much603

did you understand?’. To overcome the intersubject variability of these subjective ratings, the self-assessed Békesy604

procedure can be applied to rescale the subjective ratings towards a more objective alternative (Decruy et al., 2018).605

However, these metrics remain sub-optimal as content questions rely heavily on attention effects and subjectively606

rated speech understanding introduces a bias.607

Another caveat is that neural tracking is sometimes confused with neural entrainment. Both concepts underlie different608

assumptions. Neural tracking assumes that the neural responses time-lock to different sound features. Speech features609

evoke a cascade of different responses, such as responses that are time-locked to the acoustical, lexical, and linguistic610

features. In contrast, neural entrainment assumes that the neural responses phase-lock to the stimulus. This theory611

assumes that oscillations are present in the brain without stimulation. When a rhythmic sound, such as speech, is612

heard, these oscillations reset their phases and become synchronised with the dominant phase of the speech signal613

(Peelle and Davis, 2012). Phase-locking can be measured, for example, using inter-trial correlations (Ding et al.,614

2014). As a result, neural entrainment involves more assumptions than neural tracking. Therefore, it is possible that615

speech understanding can occur when there is no neural entrainment, for example, when the speech signal is very616

arrhythmic (Peelle et al., 2013). On the other hand, having neural tracking does not guarantee that the speech signal617

was understood correctly.618
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8. Clinical applications of measurements of neural tracking responses619

To provide care to people with hearing problems, it is useful to review the merits and limitations of all (objective)620

audiological measures and investigate how the measures may be combined to form a complete assessment of the621

auditory system.622

The current gold standard methods, i.e. tone and speech audiometry, have proven their worth. However, they are623

challenging in crucial populations like young children or people with a cognitive impairment like dementia. Objective624

measures for sound perception like the ABR and the ASSR have been introduced in the clinical toolset to remedy this.625

However, there is no clinically available objective measure of speech intelligibility. Since speech intelligibility is the626

basis for human communication, this is a significant gap to fill. Various populations may benefit from such a measure,627

including young children, stroke patients (especially those with aphasia) and people with dementia.628

Measurement of neural tracking is a versatile tool as the amount of tracking to the different speech features and thus629

in different parts of the auditory system can be measured. Based on a single twenty-minute long EEG recording,630

a wide range of speech processing abilities may be assessed simultaneously (incl. f0 tracking, envelope tracking,631

phonetic processing, phonemic processing, syntactical processing and even linguistic and emotional processing). This632

versatility may lead to an objective assessment of both auditory and language abilities. Moreover, measuring neural633

tracking is easily automated, paving the way to improved automated screening, diagnostics, and automatic fitting of634

auditory prostheses, or even auditory prostheses that continuously adapt themselves to the listener based on their brain635

activity (Geirnaert et al., 2021).636

Future studies preparing for clinical implementation may need to shift focus from group-level analyses towards637

subject-specific analyses. Going towards a subject-specific analysis is key to allow its feasibility as a clinical marker.638

Although the magnitude of neural tracking might be intrinsically different between different subjects, relative differ-639

ences between different conditions can be used as a diagnostic marker. Additionally, future studies may focus on640

which combination of stimulus features provides the most information and how these can be optimally analysed. As641

the features are highly correlated, special care needs to be taken to investigate the effect of each feature (Gillis et al.,642

2021b). Subsequent research efforts are also required to decide on the best speech stimuli (required to work well643

for all types of tracking) and the best EEG measurement set-up, including the number of EEG electrodes and their644

position (Montoya-Martı́nez et al., 2021) to reduce recording time. Furthermore, it is important to set best practices of645

how the measures of neural tracking can be used (Crosse et al., 2021) and to have insight into how the preprocessing646

influences the results (de Cheveigné and Nelken, 2019). It is also essential to validate the measures in a comprehen-647

sive sample of the population, including participants of all ages and with various audiological and non-audiological648

pathologies (for a review, see Palana et al. (2021)). Finally, the neural tracking results need to be transformed into an649

easy-to-interpret set of scores and visualisations to allow for intuitive use by clinicians.650
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