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Abstract

Scene geometry estimation and semantic segmentation

using image/video data are two active machine learn-

ing/computer vision research topics. Given monocular or

stereoscopic 3D images, depicted scene/object geometry in

the form of depth maps can be successfully estimated, while

modern Deep Neural Network (DNN) architectures can ac-

curately predict semantic masks on an image. In several

scenarios, both tasks are required at once, leading to a

need for combined semantic 3D world mapping methods.

In the wake of modern autonomous systems, DNNs that si-

multaneously handle both tasks have arisen, exploiting ma-

chine/deep learning to save up considerably on computa-

tional resources and enhance performance, as these tasks

can mutually benefit from each other. A great application

area is 3D road scene modeling and semantic segmenta-

tion, e.g., for an autonomous car to identify and localize in

3D space visible pavement regions (marked as “road”) that

are essential for autonomous car driving. Due to the sig-

nificance of this field, this paper surveys the state-of-the-art

DNN-based methods for scene geometry estimation, image

semantic segmentation and joint inference of both.

1. Introduction

Autonomous/robotic systems (e.g., autonomous cars

[16], drones [38, 53, 39], etc.) are characterized by their

ability to navigate an area on their own, by exploiting sen-

sor data acquired on-the-fly and AI algorithms. Knowing

the geometry of a depicted scene/object is a prerequisite

for understanding its surroundings and, thus, safely navi-

gate in its vicinity. Additionally, an autonomous system has

to know the semantics of its environment as well, e.g., in or-

der to differentiate between what part of the visible scene is

“road” and what is “pedestrian” (in the case of a car). Visual

sensors (monocular/stereoscopic 3D RGB cameras, RGB-D

sensors or LiDARs) are the most important data sources for

both semantics and geometry estimation.

In recent years, it has been shown that concurrent exe-

cution of these AI tasks provides important synergy ben-

efits [37, 6]. For instance, in cases where there is no ev-

ident stereoscopic disparity [51, 11] between a homoge-

neous segment of the same object appearing in the images

of an RGB stereo pair, semantic segmentation can possibly

inform us about this object’s shape. Similarly, geometric in-

formation may guide semantic segmentation in problematic

scenarios. Examples of inference on both tasks can be seen

in Figure 1.

Geometry has been long known to provide insightful in-

formation on several computer vision tasks. Geometry can

be described by various formats such as 3D polygon mesh

representations [76], 3D voxel representations [36], point

clouds [15], surface normal maps [12] and depth maps [13].

Depth maps, in particular, are widely utilized as priors in

computer vision applications such as pose estimation [5],

object detection [41, 59], instance segmentation [31] and

image semantic segmentation [26] in the form of RGB-D

input data, as they can provide cues about shape, texture and

distance from the image plane. Traditional geometric com-

puter vision were typically used up until recently for scene

geometry estimation, such as stereo estimation algorithms

[19], Structure-from-Motion (SfM) [79], etc. However,

modern machine learning approaches, typically relying on

feed-forward Deep Neural Networks (DNNs), have proven

to be more robust as scene geometry estimation methods, if

enough training data are available.

Image semantic segmentation is the task of processing

an input image in order to extract a spatially aligned 2D

map (in pixel coordinates) marking all semantic classes of

interest. Each one expresses how likely it is for every image

pixel to belong to a specific class; in effect it is per-pixel

classification. Point cloud segmentation may be needed in

certain variants, a scenario where classification occurs at 3D

point level, instead of pixel-level. Modern semantic seg-

mentation approaches typically rely on Convolutional Neu-

ral Networks (CNNs), which have shown excellent perfor-

mance on most computer vision tasks.
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Since geometry and semantics estimation are two tasks

frequently needed together, it is plausible to unify them un-

der a common framework. This framework should be able

to extract both outputs from image data, as well as provide

a fertile breeding ground for task collaboration. This can

be achieved with the use of multitask DNNs [57, 73, 6],

specifically designed for simultaneously predicting seman-

tic segmentation and depth estimation from single monoc-

ular images. A successful estimation of the depth map cor-

responding to a given image, can be used to project every

image pixel back to its 3D coordinates, provided that the

camera intrinsic parameters are known. Then, the problem

of classifying every 3D point becomes trivial, given that the

semantic map is already estimated.

This paper is a survey of learning-based geometry es-

timation, image semantic segmentation and joint inference

of both, focusing only on DNN methods. Special emphasis

is given on unsupervised monocular depth map estimation,

where scene geometry is derived from typical RGB camera

data.

2. Scene geometry estimation

Scene geometry estimation is a traditional computer vi-

sion problem, originating from photogrammetry [69]. Older

methods, relying on image processing and direct multi-view

geometry, tend nowadays to be replaced by machine learn-

ing approaches (mostly DNN-based) exploiting geometric

insights. Several subtasks can be identified within the larger

scene geometry estimation problem, which are presented

below.

2.1. Depth map estimation

Traditionally, DNN-based depth map estimation con-

sisted in extracting a disparity map from an input stereo

image pair and then converting it to an approximate depth

map by exploiting camera parameters. Disparity estimation

proceeded by matching features across the left/right image,

either by employing DNNs to learn a good match between

image patches [89], or implicitly match learned image fea-

tures [56]. Lately, relevant research has moved towards in-

ferring depth maps from monocular input. Although ini-

tial attempts [64, 45, 47, 13] treated depth map estimation

as a strictly supervised task, requiring large datasets anno-

tated with ground-truth (obtainable only by expensive sen-

sors), more convenient unsupervised methods have recently

emerged.

In one of the first unsupervised DNN approaches [18],

the depth map is estimated from the right image of an in-

put stereo pair, but no ground-truth is required for training.

The employed loss function converts each pixel’s predicted

depth value into a disparity value (using known camera pa-

rameters) and uses it to warp the input right image into a

reconstruction of the known left image. Aggregate photo-

metric difference between the original left image and its re-

construction (synthesized using the predicted depth map)

serves as the training loss. The method exploits the fact that

a pixel’s disparity value on the left image Il directly indi-

cates its apparent position on the right image. In this case,

assuming rectified stereo pairs, pixel p ∈ R
2 of Il should

appear displaced in Ir, in position p′ ∈ R
2:

p′ = p+
fT

D(p)
, (1)

where f is the focal length, T the stereo baseline and D

the depth map corresponding to Il. In this way, Il can be

recreated by warping Ir to form I′l, such that:

Il(p) ≈ I′l(p) = Ir(p
′). (2)

The DNN input during training is monocular, since the com-

plementary view of the image pair is only exploited for

computing the loss at each training iteration. As a result, the

trained model only requires single-view input during infer-

ence. The network architecture follows the CNN encoder-

decoder paradigm, with skip connections between the two

subnetworks used for retaining high-resolution fine spatial

details. The network output is a depth map that is gradually

optimized during training by a variant of gradient descent

on the following photometric loss:

Lphoto =
∑

p∈Ω

‖Ir(p
′)− Il(p)‖

2. (3)

Going a step further, [21] directly infers both left-to-right

and right-to-left disparity maps during training, using only

the left image as CNN input, and the loss function enforces

them to be consistent with each other. During inference on

the trained model, each predicted left disparity map is con-

verted to a depth map by trivial post-processing, using the

known camera parameters, while the right disparity map is

ignored.

Depth estimation from monocular videos in an unsuper-

vised manner has been actively explored in recent years,

using a neural SfM approach [93, 74, 83, 2, 23, 73, 50, 25],

where, instead of stereo image pairs, the desired multiview

nature of the data is derived from consecutive video frames

of a sequence I = {I0, ..., It, It+1, ...} coming from a mov-

ing camera. These methods exploit the ability to estimate

the relative camera pose Tt→t+1 between It and It+1 and

knowledge of the intrinsic camera parameters K. Thus, cor-

respondences between pixels pt ∈ It and pt+1 ∈ It+1 can

be easily found:

pt+1 ≈ KTt→t+1D(pt)K
−1pt, (4)

where D is a depth map predicted by a CNN. Based on this,

an approximation I′t of It can be found by warping It+1 via
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Figure 1: Examples of DNN-predicted segmentation maps (center column, using method [85]) and depth maps (right column,

using method [2], on the Apolloscape dataset [32]. The left column contains the respective RGB image inputs fed to the

trained DNNs.

differentiable bilinear interpolation proposed in [35], and

then, the photometric loss between I′t and It is minimized.

The basic loss can be enriched with additional loss terms

meant to handle problematic cases, namely occlusions[62,

2], complex illumination changes[2], differences between

the estimations of each view [2, 50], homogeneous regions

[62, 2], among others. Thus, depth map estimation per

video frame can be learnt, using a monocular video frame

sequence and known (or estimated [23, 9, 73]) camera in-

trinsic parameters as input.

Due to depth estimation being an ill-posed problem in

the case of SfM, mostly due to the appearance of multiple

independently moving objects in the scene, rigid and non-

rigid, some methods handle moving objects via estimating

optical flow or semantic segmentation [62, 95, 83] or via

observing inconsistencies between estimated depth maps of

neighboring video frames [2].

Exploiting stereo video sequences has been investigated

as well. For instance, [90] uses an encoder-decoder CNN

architecture (ResNet50 with with half filters in the encoder

part) and employs both spatial (through stereo) and tem-

poral (forward-backward) photometric warp error as loss

terms during training, thus constraining the scene depth and

camera motion to be in a common, real world scale. Come

inference time, the network is able to estimate depth using

single-view input.

2.2. Point cloud generation

There have been numerous works on 3D point cloud es-

timation [78, 87]. For instance, [15] uses a CNN that gen-

erates 3D point cloud coordinates given a single image as

input. The proposed network has an encoder stage and a

predictor stage with skip connections between them. The

encoder predicts embeddings from images paired with a

random vector. The predictor outputs a matrix, each row

containing the coordinates of a point. An improved ver-

sion of the predictor employs two parallel branches, one that

predicts points as before, and another one that predicts a 3-

channel image, of which the three values at each pixel are

the coordinates of a point, giving a new set of points. Their

predictions are later merged together to form the whole set

of points in the matrix. To optimize the network, two novel

supervised loss functions for point cloud data are proposed.

[80] generates new views of a scene from a single image.

The model reasons about the 3D structure without 3D su-

pervision, trained end-to-end on image pairs. The input

image is projected to a point cloud of learned feature vec-

tors, which are rendered from the target view using a novel

differentiable point cloud renderer and passed to a CNN to

generate the final image.

2.3. Mesh representation estimation

[76] predicts triangular meshes from single images. It

progressively deforms an ellipsoid using a Graph CNN.

Similarly, [20] builds on a popular instance segmentation

network [30] and extends it to infer triangular meshes.

Given an input image, all objects’ 2D instance boxes, masks

and their 3D object shapes are inferred in an end-to-end

manner. [24] deforms a set of squares to cover the surface

of a 3D shape, taking images and point cloud data as inputs.

All these works rely on the presence of ground truth 3D data

for training.

2.4. Voxel and octree representation estimation

[81] predicts a voxel representation of an object, given a

single-view depth map as input. In [36] a 3D CNN is used

to generate a 3D model in voxel format, with a set of mul-

tiview images plus the corresponding camera parameters as

inputs. [10] employs a 3D Recurrent Reconstruction Neu-

ral Network to map an image to a voxel representation. The
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learned representation is incrementally refined as the net-

work sees more views of the object. Ground truth 3D data is

again necessary for training all of the aforementioned meth-

ods. For higher resolution, without further memory needs,

octree representations have been explored [28, 63, 70].

2.5. Other geometry­related problems

Since it is feasible to infer 3D scene structure from a

single image, matching 3D models extracted from multiple

images of the same scene in order to reconstruct the latter

would be desirable. [22] proposes a new 3D data repre-

sentation called smoothed density value (SDV) voxelization

that can be handled with regular CNNs. It also proposes a

Siamese network able to learn 3D local feature descriptors

that are rotation invariant and compact to search for corre-

spondences. Point cloud ground truth is required for train-

ing. In [14], a large-scale point cloud and a close-proximity

scanned point cloud are matched, providing a localization

solution, with no need of supervision during training.

Long before the advent of modern CNNs, SfM had been

extended in robotics towards Visual Simultaneous Local-

ization and Mapping (vSLAM) [52]. In effect, vSLAM sys-

tems integrate real-time, on-the-fly SfM methods with addi-

tional modules, such as ones for place recognition (which is

a semantics problem) and loop closure detection (which can

be considered a geometry-related task) [44, 72]. Thus, [17]

uses a modified stacked denoising autoencoder to extract

meaningful features from image patches, which are then

compared to extracted features from other images using a

similarity score. A loop closure is detected when two im-

ages resemble sufficiently.

[75] uses a Siamese encoder-decoder structured network

trained with a novel Gauss-Newton loss to perform relocal-

ization. The features extracted from the network are shown

to be invariant of different weather conditions. [82] is a vS-

LAM system based on ORB-SLAM2 [58] that handles dy-

namic objects in dynamic environments by training an SSD

visual object detector [48] to identify them. Since dynamic

objects such as moving cars and pedestrians can negatively

affect the SLAM procedure, [82] treats them as outliers.

[3] tries to minimize the size complexity of dense geo-

metric representations (compared to sparse ones) and em-

ploys an autoencoder architecture in order to compress the

information. Thus, it uses a U-Net [93] to decompose an

intensity image into convolutional features. These features

are then fed into the depth autoencoder (variational autoen-

coder) in its intermediate levels. A variational component

in the bottleneck of the depth autoencoder is composed of

two fully connected layers followed by the computation of

the mean and variance, from which the latent space is then

sampled. The network, instead of predicting just raw depth

values, it predicts a mean µ and an uncertainty b for every

depth pixel.

3. Semantic image segmentation

As in most computer vision subfields, CNNs turned out

to be a revolution regarding semantic segmentation accu-

racy. Semantic segmentation CNNs are typically composed

of an encoding and a decoding subnetwork, arranged in a

consecutive fashion. The encoder extracts semantic fea-

tures from the input lowering spatial resolution progres-

sively, while the decoder receives the final encoder output

and upsamples it. The final output of the decoder is a se-

mantic map, having the same spatial resolution as the input

and as many channels as the supported number of discrete

classes, thus performing per-pixel classification. Training is

performed in a typical supervised manner.

Fully convolutional networks [49] and dilated convolu-

tions [86] are typically used, for upsampling the computed

abstract feature maps and for enlarging neuronal receptive

fields, respectively. Large receptive fields significantly aid

semantic segmentation by enriching local-scale image rep-

resentation with task-relevant wider region semantic con-

text, for more accurate per-pixel classification. Grasping

global image context while retaining spatial detail is an

important consideration in relevant research, with current

CNNs attempting to explicitly capture it and properly en-

hance local image representation, using multi-scale [92],

attention-based relational [88], or network branching ap-

proaches [85].

PSPNet [92] offers a good balance between speed and

accuracy, forming also the backbone of more recent real-

time segmentation networks such as ICNet [91]. Its main

novelty is a PPM (Pyramid Pooling Module) decoder,

able to enrich local image representation with more global

context information from larger image regions of various

scales. Semantic information from each image region is

aggregated using global average pooling within the region,

separately for each tensor channel. DeepLabV3+ [7] has

a structure similar to PSPNet, but relies on the so-called

ASPP module instead of the PPM; the former employs mul-

tiple dilated convolutions with different dilation factors, for

achieving the same purpose as the latter. The advantage

compared to PPM is that fine spatial information is not lost,

as is the case with global average pooling. Aiming to-

wards accurate real-time semantic segmentation, [85] em-

ploys two separate network branches, one shallow branch

(Spatial path) that extracts low level image features to pre-

serve spatial details, and a deep lightweight feature ex-

tractor (Context path) to obtain a large receptive field for

high level context. The two branches are later concate-

nated and fed to a shallow CNN module for the final pre-

diction. [88] presents an object-contextual representation

(OCR) approach. Instead of naively using dilated convo-

lutions to model the context of a pixel, OCR learns object

region representations; the context of a pixel is the object

that it belongs to.
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[68] observes that texture and shape should not be pro-

cessed together in the same network stream. Thus, two

separate streams are proposed, namely “Regular” stream

for producing dense pixel features, and a parallel “Shape”

stream that processes image gradients (image edges) and

Regular steam features in order to produce semantic bound-

aries. The two predictions are later fused together using an

ASPP module to come up with the final predicted semantic

map. During training, the Shape stream is trained on se-

mantic boundaries extracted from the segmentation ground

truth using binary cross entropy loss. The output semantic

maps are optimized on a regular cross entropy loss. The two

tasks constrain each other as well, using a dual task regu-

larizer that penalizes differences between predicted seman-

tic map boundaries with boundaries predicted by the Shape

stream. [55] proposes an end-to-end trainable model for se-

mantic segmentation with a built-in awareness of semantic

boundaries. [4] introduces a loss function that encourages

the DNN to predict segments with correct boundaries, but

the method is limited to binary semantic segmentation prob-

lems (class of interest and “background”).

[43] achieves real-time semantic segmentation on high

resolution images by proposing a novel deep feature aggre-

gation strategy. [33] introduces the “criss-cross” attention

mechanism, which adaptively captures contextual informa-

tion for each pixel on the vertical and horizontal axes. [94]

uses video prediction models to both get new image frames

and their respective semantic labels (label propagation). A

new boundary label relaxation technique is presented, to

alleviate errors along the object’s borders on the semantic

maps during label propagation.

A different approach [54] aiming towards faster infer-

ence (e.g., for real-time execution on embedded comput-

ing boards that are typically found in autonomous systems),

employs non-uniform content-aware input image downsam-

pling, instead of typical uniform input downsampling. The

transformation parameters are predicted by an additional

CNN that learns from a non-uniform sample geometric

model driven by semantic boundaries.

4. Joint scene geometry estimation and seman-

tic segmentation

A vast amount of research [27, 66, 65] has treated depth

maps as a given input source in computer vision tasks, ei-

ther by making depth an additional channel to RGB images

(RBG-D inputs), or by exploiting geometry in the 3D do-

main. [6] exploits depth by training a multitask network

that jointly learns to infer depth and semantic segmenta-

tion. It also introduces feature concatenation, in which

depth features are concatenated with RGB features, thus in-

corporating depth on feature level. In [46, 57] single-view

depth and semantic segmentation estimated by either a mul-

titask network [57] or two separate ones [46] are fed to

fully connected Conditional Random Fields (CRF) to fur-

ther refine the predicted semantic maps. [29] makes use

of RGB-D data by having two encoders, one for process-

ing the RGB image and one for the depth channel. The

two encoders are later fused together. In the encoder sec-

tion each block of the depth encoder is fed as an input to

the corresponding block of the segmentation encoder. [1]

uses a single encoder-decoder architecture for both tasks.

Predicted depth is treated as an additional output channel

to be estimated along with semantic segmentation. It uses

a Huber regression loss [34] (less sensible to outliers than

mean squared error) to train both tasks, as it proves that it

can successfully handle semantic segmentation as well, al-

though being a classification problem.

While most multitask networks for depth and semantic

maps estimation are trained using a simple weighted aver-

aging of the respective losses, [40] proposes a way to make

loss term coefficients learnable, using homoscedastic uncer-

tainty, leading to easy tuning of the training process.

[60] performed 2D semantic image segmentation using

a 3D Graph Neural Network built on top of 3D points with

both color intensities and depth, extracted from RGB-D

data. [77] introduces depth-wise convolution in semantic

segmentation. It simply adds a similarity term inside the

convolution operation via multiplication, so that pixels that

have similar depth values to the central pixel (pixel that cor-

responds to the center of the kernel) contribute more to the

total convolution summation than those of dissimilar depth

values. In the same sense, depth-aware average pooling

is proposed, in which the same similarity term is used as

well. Both depth-aware convolution and depth-aware aver-

age pooling can enable any segmentation network to incor-

porate depth information without additional parameters.

[73] proposes a multi-stage network architecture that

can predict depth, semantic maps, optical flow, per-pixel

motion probabilities and motion masks from monocular

video. It manages to infer all these tasks in real time,

plus achieve state-of-the art accuracy for self-supervised

monocular depth estimation, optical flow estimation among

monocular multi-task frameworks and motion segmenta-

tion.

In [37] depth information is also learned along with se-

mantic segmentation in a supervised multitask manner. The

learned features of both tasks are later merged in a Geom-

etry Aware propagation block, to further enhance semantic

segmentation performance. [67] uses RGB-D cameras to

model the background of an image before using it for fore-

ground segmentation.

[61] trains a multitask network for both semantic seg-

mentation and supervised depth estimation. For consistency

between the two tasks, a Cross-Domain Discontinuity Term

is proposed based on the observation that depth discon-

tinuities are likely to co-occur with semantic boundaries.
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Figure 2: Example of semantic segmentation performed on drone-captured RGB video data.

This term detects discontinuities between semantic labels

encoded by the sign of the absolute value of the gradients

in the semantic map. The idea behind this loss is that there

should be a gradient peak between adjacent pixels belong-

ing to different classes. [8] formulates a similar smoothness

loss term that regularizes the smoothness of depth values

within each segmentation mask.

CNN-predicted dense depth maps are fused together

with depth measurements obtained from direct monocu-

lar SLAM in [71]. This integrates SLAM with monocu-

lar depth prediction. It is also shown that CNN-predicted

semantic segmentation can be coherently fused with the

global reconstruction model. The depth prediction architec-

ture used here is derived from [42]. It is able to overcome

problems such as good estimation of the absolute scale,

depth prediction in textureless areas, etc.

In [84] RGB sequences are fed to a segmentation net-

work to segment each video frame in real-time. It also uses

non-neural optical flow estimations to detect inconsistently

moving points. Then, using depth maps that correspond to

these input RGB images and the predicted semantic maps,

a semantic octree map is built, with non-static objects re-

moved.

5. Conclusions

The evident progress of autonomous systems technol-

ogy makes semantic 3D world modelling algorithms relying

on simple sensors (such as RGB cameras) a necessity. AI

methods hold the promise of achieving high-accuracy, on-

the-fly 3D scene perception, with Deep Neural Networks

being at the forefront of relevant research. This paper sur-

veyed the current state-of-the-art in this very active area,

with the aim to facilitate further progress in the field.
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