
30 CONTRIBUTED RESEARCH ARTICLES

neuralnet: Training of Neural Networks
by Frauke Günther and Stefan Fritsch

Abstract Artificial neural networks are applied
in many situations. neuralnet is built to train
multi-layer perceptrons in the context of regres-
sion analyses, i.e. to approximate functional rela-
tionships between covariates and response vari-
ables. Thus, neural networks are used as exten-
sions of generalized linear models.
neuralnet is a very flexible package. The back-
propagation algorithm and three versions of re-
silient backpropagation are implemented and it
provides a custom-choice of activation and er-
ror function. An arbitrary number of covariates
and response variables as well as of hidden lay-
ers can theoretically be included.
The paper gives a brief introduction to multi-
layer perceptrons and resilient backpropagation
and demonstrates the application of neuralnet
using the data set infert, which is contained in
the R distribution.

Introduction

In many situations, the functional relationship be-
tween covariates (also known as input variables) and
response variables (also known as output variables)
is of great interest. For instance when modeling com-
plex diseases, potential risk factors and their effects
on the disease are investigated to identify risk fac-
tors that can be used to develop prevention or inter-
vention strategies. Artificial neural networks can be
applied to approximate any complex functional re-
lationship. Unlike generalized linear models (GLM,
McCullagh and Nelder, 1983), it is not necessary to
prespecify the type of relationship between covari-
ates and response variables as for instance as linear
combination. This makes artificial neural networks a
valuable statistical tool. They are in particular direct
extensions of GLMs and can be applied in a similar
manner. Observed data are used to train the neural
network and the neural network learns an approxi-
mation of the relationship by iteratively adapting its
parameters.

The package neuralnet (Fritsch and Günther,
2008) contains a very flexible function to train feed-
forward neural networks, i.e. to approximate a func-
tional relationship in the above situation. It can the-
oretically handle an arbitrary number of covariates
and response variables as well as of hidden layers
and hidden neurons even though the computational
costs can increase exponentially with higher order of
complexity. This can cause an early stop of the iter-
ation process since the maximum of iteration steps,
which can be defined by the user, is reached before
the algorithm converges. In addition, the package

provides functions to visualize the results or in gen-
eral to facilitate the usage of neural networks. For
instance, the function compute can be applied to cal-
culate predictions for new covariate combinations.

There are two other packages that deal with artifi-
cial neural networks at the moment: nnet (Venables
and Ripley, 2002) and AMORE (Limas et al., 2007).
nnet provides the opportunity to train feed-forward
neural networks with traditional backpropagation
and in AMORE, the TAO robust neural network al-
gorithm is implemented. neuralnet was built to train
neural networks in the context of regression analy-
ses. Thus, resilient backpropagation is used since
this algorithm is still one of the fastest algorithms
for this purpose (e.g. Schiffmann et al., 1994; Rocha
et al., 2003; Kumar and Zhang, 2006; Almeida et al.,
2010). Three different versions are implemented and
the traditional backpropagation is included for com-
parison purposes. Due to a custom-choice of acti-
vation and error function, the package is very flex-
ible. The user is able to use several hidden layers,
which can reduce the computational costs by includ-
ing an extra hidden layer and hence reducing the
neurons per layer. We successfully used this package
to model complex diseases, i.e. different structures
of biological gene-gene interactions (Günther et al.,
2009). Summarizing, neuralnet closes a gap concern-
ing the provided algorithms for training neural net-
works in R.

To facilitate the usage of this package for new
users of artificial neural networks, a brief introduc-
tion to neural networks and the learning algorithms
implemented in neuralnet is given before describing
its application.

Multi-layer perceptrons

The package neuralnet focuses on multi-layer per-
ceptrons (MLP, Bishop, 1995), which are well appli-
cable when modeling functional relationships. The
underlying structure of an MLP is a directed graph,
i.e. it consists of vertices and directed edges, in this
context called neurons and synapses. The neurons
are organized in layers, which are usually fully con-
nected by synapses. In neuralnet, a synapse can only
connect to subsequent layers. The input layer con-
sists of all covariates in separate neurons and the out-
put layer consists of the response variables. The lay-
ers in between are referred to as hidden layers, as
they are not directly observable. Input layer and hid-
den layers include a constant neuron relating to in-
tercept synapses, i.e. synapses that are not directly
influenced by any covariate. Figure 1 gives an exam-
ple of a neural network with one hidden layer that
consists of three hidden neurons. This neural net-
work models the relationship between the two co-

The R Journal Vol. 2/1, June 2010 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 31

variates A and B and the response variable Y. neural-
net theoretically allows inclusion of arbitrary num-
bers of covariates and response variables. However,
there can occur convergence difficulties using a huge
number of both covariates and response variables.

Figure 1: Example of a neural network with two in-
put neurons (A and B), one output neuron (Y) and
one hidden layer consisting of three hidden neurons.

To each of the synapses, a weight is attached in-
dicating the effect of the corresponding neuron, and
all data pass the neural network as signals. The sig-
nals are processed first by the so-called integration
function combining all incoming signals and second
by the so-called activation function transforming the
output of the neuron.

The simplest multi-layer perceptron (also known
as perceptron) consists of an input layer with n co-
variates and an output layer with one output neuron.
It calculates the function

o(x) = f

(

w0 +
n

∑
i=1

wixi

)

= f
(

w0 + wTx
)

,

where w0 denotes the intercept, w = (w1, . . . ,wn) the
vector consisting of all synaptic weights without the
intercept, and x = (x1, . . . , xn) the vector of all covari-
ates. The function is mathematically equivalent to
that of GLM with link function f−1. Therefore, all
calculated weights are in this case equivalent to the
regression parameters of the GLM.

To increase the modeling flexibility, hidden lay-
ers can be included. However, Hornik et al. (1989)
showed that one hidden layer is sufficient to model
any piecewise continuous function. Such an MLP
with a hidden layer consisting of J hidden neurons
calculates the following function:

o(x) = f

(

w0 +
J

∑
j=1

wj · f

(

w0j +
n

∑
i=1

wijxi

))

= f

(

w0 +
J

∑
j=1

wj · f
(

w0j + wj
Tx
)

)

,

where w0 denotes the intercept of the output neuron
and w0j the intercept of the jth hidden neuron. Addi-
tionally, wj denotes the synaptic weight correspond-
ing to the synapse starting at the jth hidden neuron

and leading to the output neuron, wj = (w1j, . . . ,wnj)
the vector of all synaptic weights corresponding to
the synapses leading to the jth hidden neuron, and
x = (x1, . . . , xn) the vector of all covariates. This
shows that neural networks are direct extensions of
GLMs. However, the parameters, i.e. the weights,
cannot be interpreted in the same way anymore.

Formally stated, all hidden neurons and out-
put neurons calculate an output f (g(z0,z1, . . . ,zk)) =
f (g(z)) from the outputs of all preceding neurons
z0,z1, . . . ,zk, where g : Rk+1 → R denotes the integra-
tion function and f : R → R the activation function.
The neuron z0 ≡ 1 is the constant one belonging to
the intercept. The integration function is often de-

fined as g(z) = w0z0 + ∑
k
i=1 wizi = w0 + wTz. The ac-

tivation function f is usually a bounded nondecreas-
ing nonlinear and differentiable function such as the

logistic function (f (u) = 1
1+e−u) or the hyperbolic tan-

gent. It should be chosen in relation to the response
variable as it is the case in GLMs. The logistic func-
tion is, for instance, appropriate for binary response
variables since it maps the output of each neuron to
the interval [0,1]. At the moment, neuralnet uses the
same integration as well as activation function for all
neurons.

Supervised learning

Neural networks are fitted to the data by learn-
ing algorithms during a training process. neuralnet
focuses on supervised learning algorithms. These
learning algorithms are characterized by the usage
of a given output that is compared to the predicted
output and by the adaptation of all parameters ac-
cording to this comparison. The parameters of a neu-
ral network are its weights. All weights are usually
initialized with random values drawn from a stan-
dard normal distribution. During an iterative train-
ing process, the following steps are repeated:

❼ The neural network calculates an output o(x)
for given inputs x and current weights. If the
training process is not yet completed, the pre-
dicted output o will differ from the observed
output y.

❼ An error function E, like the sum of squared er-
rors (SSE)

E =
1

2

L

∑
l=1

H

∑
h=1

(olh − ylh)
2

or the cross-entropy

E = −
L

∑
l=1

H

∑
h=1

(ylh log(olh)

+ (1 − ylh) log(1 − olh)) ,

measures the difference between predicted and
observed output, where l = 1, . . . , L indexes the

The R Journal Vol. 2/1, June 2010 ISSN 2073-4859

32 CONTRIBUTED RESEARCH ARTICLES

observations, i.e. given input-output pairs, and
h = 1, . . . , H the output nodes.

❼ All weights are adapted according to the rule
of a learning algorithm.

The process stops if a pre-specified criterion is ful-
filled, e.g. if all absolute partial derivatives of the er-
ror function with respect to the weights (∂E/∂w) are
smaller than a given threshold. A widely used learn-
ing algorithm is the resilient backpropagation algo-
rithm.

Backpropagation and resilient backpropagation

The resilient backpropagation algorithm is based on
the traditional backpropagation algorithm that mod-
ifies the weights of a neural network in order to find
a local minimum of the error function. Therefore, the
gradient of the error function (dE/dw) is calculated
with respect to the weights in order to find a root. In
particular, the weights are modified going in the op-
posite direction of the partial derivatives until a local
minimum is reached. This basic idea is roughly illus-
trated in Figure 2 for a univariate error-function.

Figure 2: Basic idea of the backpropagation algo-
rithm illustrated for a univariate error function E(w).

If the partial derivative is negative, the weight is
increased (left part of the figure); if the partial deriva-
tive is positive, the weight is decreased (right part
of the figure). This ensures that a local minimum is
reached. All partial derivatives are calculated using
the chain rule since the calculated function of a neu-
ral network is basically a composition of integration
and activation functions. A detailed explanation is
given in Rojas (1996).

neuralnet provides the opportunity to switch be-
tween backpropagation, resilient backpropagation
with (Riedmiller, 1994) or without weight backtrack-
ing (Riedmiller and Braun, 1993) and the modified
globally convergent version by Anastasiadis et al.
(2005). All algorithms try to minimize the error func-
tion by adding a learning rate to the weights going
into the opposite direction of the gradient. Unlike
the traditional backpropagation algorithm, a sepa-
rate learning rate ηk, which can be changed during
the training process, is used for each weight in re-
silient backpropagation. This solves the problem of

defining an over-all learning rate that is appropri-
ate for the whole training process and the entire net-
work. Additionally, instead of the magnitude of the
partial derivatives only their sign is used to update
the weights. This guarantees an equal influence of
the learning rate over the entire network (Riedmiller
and Braun, 1993). The weights are adjusted by the
following rule

w
(t+1)
k = w

(t)
k − η

(t)
k · sign

(

∂E(t)

∂w
(t)
k

)

,

as opposed to

w
(t+1)
k = w

(t)
k − η ·

∂E(t)

∂w
(t)
k

,

in traditional backpropagation, where t indexes the
iteration steps and k the weights.

In order to speed up convergence in shallow ar-
eas, the learning rate ηk will be increased if the cor-
responding partial derivative keeps its sign. On the
contrary, it will be decreased if the partial derivative
of the error function changes its sign since a chang-
ing sign indicates that the minimum is missed due
to a too large learning rate. Weight backtracking is
a technique of undoing the last iteration and adding
a smaller value to the weight in the next step. With-
out the usage of weight backtracking, the algorithm
can jump over the minimum several times. For ex-
ample, the pseudocode of resilient backpropagation
with weight backtracking is given by (Riedmiller and
Braun, 1993)

for all weights{

if (grad.old*grad>0){

delta := min(delta*eta.plus, delta.max)

weights := weights - sign(grad)*delta

grad.old := grad

}

else if (grad.old*grad<0){

weights := weights + sign(grad.old)*delta

delta := max(delta*eta.minus, delta.min)

grad.old := 0

}

else if (grad.old*grad=0){

weights := weights - sign(grad)*delta

grad.old := grad

}

}

while that of the regular backpropagation is given by

for all weights{

weights := weights - grad*delta

}

The globally convergent version introduced by
Anastasiadis et al. (2005) performs a resilient back-
propagation with an additional modification of one
learning rate in relation to all other learning rates. It

The R Journal Vol. 2/1, June 2010 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 33

is either the learning rate associated with the small-
est absolute partial derivative or the smallest learn-
ing rate (indexed with i), that is changed according
to

η
(t)
i = −

∑k;k 6=i η
(t)
k · ∂E(t)

∂w
(t)
k

+ δ

∂E(t)

∂w
(t)
i

,

if ∂E(t)

∂w
(t)
i

6= 0 and 0 < δ ≪ ∞. For further details see

Anastasiadis et al. (2005).

Using neuralnet

neuralnet depends on two other packages: grid and
MASS (Venables and Ripley, 2002). Its usage is
leaned towards that of functions dealing with regres-
sion analyses like lm and glm. As essential argu-
ments, a formula in terms of response variables ˜ sum of
covariates and a data set containing covariates and re-
sponse variables have to be specified. Default values
are defined for all other parameters (see next subsec-
tion). We use the data set infert that is provided by
the package datasets to illustrate its application. This
data set contains data of a case-control study that in-
vestigated infertility after spontaneous and induced
abortion (Trichopoulos et al., 1976). The data set con-
sists of 248 observations, 83 women, who were infer-
tile (cases), and 165 women, who were not infertile
(controls). It includes amongst others the variables
age, parity, induced, and spontaneous. The vari-
ables induced and spontaneous denote the number
of prior induced and spontaneous abortions, respec-
tively. Both variables take possible values 0, 1, and
2 relating to 0, 1, and 2 or more prior abortions. The
age in years is given by the variable age and the num-
ber of births by parity.

Training of neural networks

The function neuralnet used for training a neural
network provides the opportunity to define the re-
quired number of hidden layers and hidden neurons
according to the needed complexity. The complex-
ity of the calculated function increases with the addi-
tion of hidden layers or hidden neurons. The default
value is one hidden layer with one hidden neuron.
The most important arguments of the function are
the following:

❼ formula, a symbolic description of the model to
be fitted (see above). No default.

❼ data, a data frame containing the variables
specified in formula. No default.

❼ hidden, a vector specifying the number of hid-
den layers and hidden neurons in each layer.
For example the vector (3,2,1) induces a neu-
ral network with three hidden layers, the first

one with three, the second one with two and
the third one with one hidden neuron. Default:
1.

❼ threshold, an integer specifying the threshold
for the partial derivatives of the error function
as stopping criteria. Default: 0.01.

❼ rep, number of repetitions for the training pro-
cess. Default: 1.

❼ startweights, a vector containing prespecified
starting values for the weights. Default: ran-
dom numbers drawn from the standard normal
distribution

❼ algorithm, a string containing the algo-
rithm type. Possible values are "backprop",
"rprop+", "rprop-", "sag", or "slr".
"backprop" refers to traditional backpropaga-
tion, "rprop+" and "rprop-" refer to resilient
backpropagation with and without weight
backtracking and "sag" and "slr" refer to the
modified globally convergent algorithm (gr-
prop). "sag" and "slr" define the learning rate
that is changed according to all others. "sag"

refers to the smallest absolute derivative, "slr"
to the smallest learning rate. Default: "rprop+"

❼ err.fct, a differentiable error function. The
strings "sse" and "ce" can be used, which refer
to ’sum of squared errors’ and ’cross entropy’.
Default: "sse"

❼ act.fct, a differentiable activation function.
The strings "logistic" and "tanh" are possible
for the logistic function and tangent hyperboli-
cus. Default: "logistic"

❼ linear.output, logical. If act.fct should
not be applied to the output neurons,
linear.output has to be TRUE. Default: TRUE

❼ likelihood, logical. If the error function is
equal to the negative log-likelihood function,
likelihood has to be TRUE. Akaike’s Informa-
tion Criterion (AIC, Akaike, 1973) and Bayes
Information Criterion (BIC, Schwarz, 1978) will
then be calculated. Default: FALSE

❼ exclude, a vector or matrix specifying weights
that should be excluded from training. A ma-
trix with n rows and three columns will exclude
n weights, where the first column indicates the
layer, the second column the input neuron of
the weight, and the third neuron the output
neuron of the weight. If given as vector, the
exact numbering has to be known. The num-
bering can be checked using the provided plot
or the saved starting weights. Default: NULL

❼ constant.weights, a vector specifying the val-
ues of weights that are excluded from training
and treated as fixed. Default: NULL

The R Journal Vol. 2/1, June 2010 ISSN 2073-4859

34 CONTRIBUTED RESEARCH ARTICLES

The usage of neuralnet is described by model-
ing the relationship between the case-control status
(case) as response variable and the four covariates
age, parity, induced and spontaneous. Since the
response variable is binary, the activation function
could be chosen as logistic function (default) and the
error function as cross-entropy (err.fct="ce"). Ad-
ditionally, the item linear.output should be stated
as FALSE to ensure that the output is mapped by the
activation function to the interval [0,1]. The number
of hidden neurons should be determined in relation
to the needed complexity. A neural network with for
example two hidden neurons is trained by the fol-
lowing statements:

> library(neuralnet)

Loading required package: grid

Loading required package: MASS

>

> nn <- neuralnet(

+ case~age+parity+induced+spontaneous,

+ data=infert, hidden=2, err.fct="ce",

+ linear.output=FALSE)

> nn

Call:

neuralnet(

formula = case~age+parity+induced+spontaneous,

data = infert, hidden = 2, err.fct = "ce",

linear.output = FALSE)

1 repetition was calculated.

Error Reached Threshold Steps

1 125.2126851 0.008779243419 5254

Basic information about the training process and
the trained neural network is saved in nn. This in-
cludes all information that has to be known to repro-
duce the results as for instance the starting weights.
Important values are the following:

❼ net.result, a list containing the overall result,
i.e. the output, of the neural network for each
replication.

❼ weights, a list containing the fitted weights of
the neural network for each replication.

❼ generalized.weights, a list containing the
generalized weights of the neural network for
each replication.

❼ result.matrix, a matrix containing the error,
reached threshold, needed steps, AIC and BIC
(computed if likelihood=TRUE) and estimated
weights for each replication. Each column rep-
resents one replication.

❼ startweights, a list containing the starting
weights for each replication.

A summary of the main results is provided by
nn$result.matrix:

> nn$result.matrix

1

error 125.212685099732

reached.threshold 0.008779243419

steps 5254.000000000000

Intercept.to.1layhid1 5.593787533788

age.to.1layhid1 -0.117576380283

parity.to.1layhid1 1.765945780047

induced.to.1layhid1 -2.200113693672

spontaneous.to.1layhid1 -3.369491912508

Intercept.to.1layhid2 1.060701883258

age.to.1layhid2 2.925601414213

parity.to.1layhid2 0.259809664488

induced.to.1layhid2 -0.120043540527

spontaneous.to.1layhid2 -0.033475146593

Intercept.to.case 0.722297491596

1layhid.1.to.case -5.141324077052

1layhid.2.to.case 2.623245311046

The training process needed 5254 steps until all
absolute partial derivatives of the error function
were smaller than 0.01 (the default threshold). The
estimated weights range from −5.14 to 5.59. For in-
stance, the intercepts of the first hidden layer are 5.59
and 1.06 and the four weights leading to the first
hidden neuron are estimated as −0.12, 1.77, −2.20,
and −3.37 for the covariates age, parity, induced
and spontaneous, respectively. If the error function
is equal to the negative log-likelihood function, the
error refers to the likelihood as is used for example
to calculate Akaike’s Information Criterion (AIC).

The given data is saved in nn$covariate and
nn$response as well as in nn$data for the whole data
set inclusive non-used variables. The output of the
neural network, i.e. the fitted values o(x), is provided
by nn$net.result:

> out <- cbind(nn$covariate,

+ nn$net.result[[1]])

> dimnames(out) <- list(NULL,

+ c("age","parity","induced",

+ "spontaneous","nn-output"))

> head(out)

age parity induced spontaneous nn-output

[1,] 26 6 1 2 0.1519579877

[2,] 42 1 1 0 0.6204480608

[3,] 39 6 2 0 0.1428325816

[4,] 34 4 2 0 0.1513351888

[5,] 35 3 1 1 0.3516163154

[6,] 36 4 2 1 0.4904344475

In this case, the object nn$net.result is a list con-
sisting of only one element relating to one calculated
replication. If more than one replication were calcu-
lated, the outputs would be saved each in a separate
list element. This approach is the same for all values
that change with replication apart from net.result

that is saved as matrix with one column for each
replication.

To compare the results, neural networks are
trained with the same parameter setting as above us-
ing neuralnet with algorithm="backprop" and the
package nnet.

The R Journal Vol. 2/1, June 2010 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 35

> nn.bp <- neuralnet(

+ case~age+parity+induced+spontaneous,

+ data=infert, hidden=2, err.fct="ce",

+ linear.output=FALSE,

+ algorithm="backprop",

+ learningrate=0.01)

> nn.bp

Call:

neuralnet(

formula = case~age+parity+induced+spontaneous,

data = infert, hidden = 2, learningrate = 0.01,

algorithm = "backprop", err.fct = "ce",

linear.output = FALSE)

1 repetition was calculated.

Error Reached Threshold Steps

1 158.085556 0.008087314995 4

>

>

> nn.nnet <- nnet(

+ case~age+parity+induced+spontaneous,

+ data=infert, size=2, entropy=T,

+ abstol=0.01)

weights: 13

initial value 158.121035

final value 158.085463

converged

nn.bp and nn.nnet show equal results. Both
training processes last only a very few iteration steps
and the error is approximately 158. Thus in this little
comparison, the model fit is less satisfying than that
achieved by resilient backpropagation.

neuralnet includes the calculation of generalized
weights as introduced by Intrator and Intrator (2001).
The generalized weight w̃i is defined as the contribu-
tion of the ith covariate to the log-odds:

w̃i =
∂ log

(

o(x)
1−o(x)

)

∂xi
.

The generalized weight expresses the effect of each
covariate xi and thus has an analogous interpretation
as the ith regression parameter in regression mod-
els. However, the generalized weight depends on all
other covariates. Its distribution indicates whether
the effect of the covariate is linear since a small vari-
ance suggests a linear effect (Intrator and Intrator,
2001). They are saved in nn$generalized.weights

and are given in the following format (rounded val-
ues)

> head(nn$generalized.weights[[1]])

[,1] [,2] [,3] [,4]

1 0.0088556 -0.1330079 0.1657087 0.2537842

2 0.1492874 -2.2422321 2.7934978 4.2782645

3 0.0004489 -0.0067430 0.0084008 0.0128660

4 0.0083028 -0.1247051 0.1553646 0.2379421

5 0.1071413 -1.6092161 2.0048511 3.0704457

6 0.1360035 -2.0427123 2.5449249 3.8975730

The columns refer to the four covariates age (j =
1), parity (j = 2), induced (j = 3), and spontaneous

(j = 4) and a generalized weight is given for each ob-
servation even though they are equal for each covari-
ate combination.

Visualizing the results

The results of the training process can be visualized
by two different plots. First, the trained neural net-
work can simply be plotted by

> plot(nn)

The resulting plot is given in Figure 3.

Figure 3: Plot of a trained neural network includ-
ing trained synaptic weights and basic information
about the training process.

It reflects the structure of the trained neural net-
work, i.e. the network topology. The plot includes
by default the trained synaptic weights, all intercepts
as well as basic information about the training pro-
cess like the overall error and the number of steps
needed to converge. Especially for larger neural net-
works, the size of the plot and that of each neuron
can be determined using the parameters dimension
and radius, respectively.

The second possibility to visualize the results
is to plot generalized weights. gwplot uses
the calculated generalized weights provided by
nn$generalized.weights and can be used by the fol-
lowing statements:

> par(mfrow=c(2,2))

> gwplot(nn,selected.covariate="age",

+ min=-2.5, max=5)

> gwplot(nn,selected.covariate="parity",

+ min=-2.5, max=5)

> gwplot(nn,selected.covariate="induced",

The R Journal Vol. 2/1, June 2010 ISSN 2073-4859

36 CONTRIBUTED RESEARCH ARTICLES

+ min=-2.5, max=5)

> gwplot(nn,selected.covariate="spontaneous",

+ min=-2.5, max=5)

The corresponding plot is shown in Figure 4.

Figure 4: Plots of generalized weights with respect
to each covariate.

The generalized weights are given for all covari-
ates within the same range. The distribution of the
generalized weights suggests that the covariate age

has no effect on the case-control status since all gen-
eralized weights are nearly zero and that at least the
two covariates induced and spontaneous have a non-
linear effect since the variance of their generalized
weights is overall greater than one.

Additional features

The compute function

compute calculates and summarizes the output of
each neuron, i.e. all neurons in the input, hidden and
output layer. Thus, it can be used to trace all sig-
nals passing the neural network for given covariate
combinations. This helps to interpret the network
topology of a trained neural network. It can also eas-
ily be used to calculate predictions for new covari-
ate combinations. A neural network is trained with
a training data set consisting of known input-output
pairs. It learns an approximation of the relationship
between inputs and outputs and can then be used
to predict outputs o(xnew) relating to new covariate
combinations xnew. The function compute simplifies
this calculation. It automatically redefines the struc-

ture of the given neural network and calculates the
output for arbitrary covariate combinations.

To stay with the example, predicted outputs
can be calculated for instance for missing com-
binations with age=22, parity=1, induced ≤ 1,
and spontaneous ≤ 1. They are provided by
new.output$net.result

> new.output <- compute(nn,

covariate=matrix(c(22,1,0,0,

22,1,1,0,

22,1,0,1,

22,1,1,1),

byrow=TRUE, ncol=4))

> new.output$net.result

[,1]

[1,] 0.1477097

[2,] 0.1929026

[3,] 0.3139651

[4,] 0.8516760

This means that the predicted probability of being
a case given the mentioned covariate combinations,
i.e. o(x), is increasing in this example with the num-
ber of prior abortions.

The confidence.interval function

The weights of a neural network follow a multivari-
ate normal distribution if the network is identified
(White, 1989). A neural network is identified if it
does not include irrelevant neurons neither in the
input layer nor in the hidden layers. An irrelevant
neuron in the input layer can be for instance a co-
variate that has no effect or that is a linear combi-
nation of other included covariates. If this restric-
tion is fulfilled and if the error function equals the
neagtive log-likelihood, a confidence interval can be
calculated for each weight. The neuralnet package
provides a function to calculate these confidence in-
tervals regardless of whether all restrictions are ful-
filled. Therefore, the user has to be careful interpret-
ing the results.

Since the covariate age has no effect on the out-
come and the related neuron is thus irrelevant, a new
neural network (nn.new), which has only the three
input variables parity, induced, and spontaneous,
has to be trained to demonstrate the usage of
confidence.interval. Let us assume that all restric-
tions are now fulfilled, i.e. neither the three input
variables nor the two hidden neurons are irrelevant.
Confidence intervals can then be calculated with the
function confidence.interval:

> ci <- confidence.interval(nn.new, alpha=0.05)

> ci$lower.ci

[[1]]

[[1]][[1]]

[,1] [,2]

[1,] 1.830803796 -2.680895286

[2,] 1.673863304 -2.839908343

[3,] -8.883004913 -37.232020925

The R Journal Vol. 2/1, June 2010 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 37

[4,] -48.906348154 -18.748849335

[[1]][[2]]

[,1]

[1,] 1.283391149

[2,] -3.724315385

[3,] -2.650545922

For each weight, ci$lower.ci provides the re-
lated lower confidence limit and ci$upper.ci the re-
lated upper confidence limit. The first matrix con-
tains the limits of the weights leading to the hidden
neurons. The columns refer to the two hidden neu-
rons. The other three values are the limits of the
weights leading to the output neuron.

Summary

This paper gave a brief introduction to multi-layer
perceptrons and supervised learning algorithms. It
introduced the package neuralnet that can be ap-
plied when modeling functional relationships be-
tween covariates and response variables. neuralnet
contains a very flexible function that trains multi-
layer perceptrons to a given data set in the context
of regression analyses. It is a very flexible package
since most parameters can be easily adapted. For ex-
ample, the activation function and the error function
can be arbitrarily chosen and can be defined by the
usual definition of functions in R.

Acknowledgements

The authors thank Nina Wawro for reading prelim-
inary versions of the paper and for giving helpful
comments. Additionally, we would like to thank two
anonymous reviewers for their valuable suggestions
and remarks.

We gratefully acknowledge the financial support
of this research by the grant PI 345/3-1 from the Ger-
man Research Foundation (DFG).

Bibliography

H. Akaike. Information theory and an extension
of the maximum likelihood principle. In Petrov
BN and Csaki BF, editors, Second international
symposium on information theory, pages 267–281.
Academiai Kiado, Budapest, 1973.

C. Almeida, C. Baugh, C. Lacey, C. Frenk, G. Granato,
L. Silva, and A. Bressan. Modelling the dsty uni-
verse i: Introducing the artificial neural network
and first applications to luminosity and colour dis-
tributions. Monthly Notices of the Royal Astronomical
Society, 402:544–564, 2010.

A. Anastasiadis, G. Magoulas, and M. Vrahatis. New
globally convergent training scheme based on the
resilient propagation algorithm. Neurocomputing,
64:253–270, 2005.

C. Bishop. Neural networks for pattern recognition. Ox-
ford University Press, New York, 1995.

S. Fritsch and F. Günther. neuralnet: Training of Neural
Networks. R Foundation for Statistical Computing,
2008. R package version 1.2.

F. Günther, N. Wawro, and K. Bammann. Neural net-
works for modeling gene-gene interactions in as-
sociation studies. BMC Genetics, 10:87, 2009. http:
//www.biomedcentral.com/1471-2156/10/87.

K. Hornik, M. Stichcombe, and H. White. Multi-
layer feedforward networks are universal approx-
imators. Neural Networks, 2:359–366, 1989.

O. Intrator and N. Intrator. Interpreting neural-
network results: a simulation study. Computational
Statistics & Data Analysis, 37:373–393, 2001.

A. Kumar and D. Zhang. Personal recognition using
hand shape and texture. IEEE Transactions on Image
Processing, 15:2454–2461, 2006.

M. C. Limas, E. P. V. G. Joaquín B. Ordieres Meré,
F. J. M. de Pisón Ascacibar, A. V. P. Espinoza, and
F. A. Elías. AMORE: A MORE Flexible Neural Net-
work Package, 2007. URL http://wiki.r-project.

org/rwiki/doku.php?id=packages:cran:amore. R
package version 0.2-11.

P. McCullagh and J. Nelder. Generalized Linear Models.
Chapman and Hall, London, 1983.

M. Riedmiller. Advanced supervised learning in
multi-layer perceptrons - from backpropagation to
adaptive learning algorithms. International Jour-
nal of Computer Standards and Interfaces, 16:265–278,
1994.

M. Riedmiller and H. Braun. A direct method for
faster backpropagation learning: the rprop algo-
rithm. Proceedings of the IEEE International Confer-
ence on Neural Networks (ICNN), 1:586–591, 1993.

M. Rocha, P. Cortez, and J. Neves. Evolutionary neu-
ral network learning. Lecture Notes in Computer Sci-
ence, 2902:24–28, 2003.

R. Rojas. Neural Networks. Springer-Verlag, Berlin,
1996.

W. Schiffmann, M. Joost, and R. Werner. Optimiza-
tion of the backpropagation algorithm for training
multilayer perceptrons. Technical report, Univer-
sity of Koblenz, Insitute of Physics, 1994.

G. Schwarz. Estimating the dimension of a model.
Ann Stat, 6:461–464, 1978.

The R Journal Vol. 2/1, June 2010 ISSN 2073-4859

http://www.biomedcentral.com/1471-2156/10/87
http://www.biomedcentral.com/1471-2156/10/87
http://wiki.r-project.org/rwiki/doku.php?id=packages:cran:amore
http://wiki.r-project.org/rwiki/doku.php?id=packages:cran:amore

38 CONTRIBUTED RESEARCH ARTICLES

D. Trichopoulos, N. Handanos, J. Danezis, A. Kalan-
didi, and V. Kalapothaki. Induced abortion and
secondary infertility. British Journal of Obstetrics and
Gynaecology, 83:645–650, 1976.

W. Venables and B. Ripley. Modern Applied Statis-
tics with S. Springer, New York, fourth edi-
tion, 2002. URL http://www.stats.ox.ac.uk/

pub/MASS4. ISBN 0-387-95457-0.

H. White. Learning in artificial neural networks: a

statistical perspective. Neural Computation, 1:425–
464, 1989.

Frauke Günther
University of Bremen, Bremen Institute for Prevention
Research and Social Medicine
guenther@bips.uni-bremen.de

Stefan Fritsch
University of Bremen, Bremen Institute for Prevention
Research and Social Medicine

The R Journal Vol. 2/1, June 2010 ISSN 2073-4859

http://www.stats.ox.ac.uk/pub/MASS4
http://www.stats.ox.ac.uk/pub/MASS4
mailto:guenther@bips.uni-bremen.de

