
Neurexins and Neuroligins: Recent Insights
from Invertebrates

David Knight & Wei Xie & Gabrielle L. Boulianne

Received: 12 August 2011 /Accepted: 17 October 2011 /Published online: 30 October 2011
# The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract During brain development, each neuron must
find and synapse with the correct pre- and postsynaptic
partners. The complexity of these connections and the
relatively large distances some neurons must send their
axons to find the correct partners makes studying brain
development one of the most challenging, and yet fascinating
disciplines in biology. Furthermore, once the initial connec-
tions have been made, the neurons constantly remodel their
dendritic and axonal arbours in response to changing
demands. Neurexin and neuroligin are two cell adhesion
molecules identified as important regulators of this process.
The importance of these genes in the development and
modulation of synaptic connectivity is emphasised by
the observation that mutations in these genes in humans
have been associated with cognitive disorders such as
Autism spectrum disorders, Tourette syndrome and

Schizophrenia. The present review will discuss recent
advances in our understanding of the role of these
genes in synaptic development and modulation, and in
particular, we will focus on recent work in invertebrate
models, and how these results relate to studies in
mammals.

Keywords Drosophila . Neuromuscular junction . Cell
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Introduction

Proper brain function depends on the precise arrangement
of trillions of individual synaptic connections. While
neurobiologists have been fascinated by the stereotyped
complexity of neuronal networks for over a century, it is
only in the last few decades that we have begun to
understand some of the molecular mechanisms that govern
the formation and function of these networks. The
development of specific patterns of connectivity requires
axons and dendrites of synaptic partners to be targeted to
defined regions of the CNS, correctly identify their synaptic
targets within that region, and then form specialised
synapses with their targets. Each of these steps is mediated
by a host of interactions between individual neurons and
their targets. A defect at any stage of this process leads to
incorrect patterns of connectivity and impaired nervous
system function.

One of the first tasks a newly differentiated neuron must
complete is to extend an axon towards its synaptic target(s).
Axon guidance is thought to be mediated by extracellular
cues which are expressed in concentration gradients that
may exert either attractive or repulsive effects on incoming
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axons. Axons are able to navigate to their correct position
by means of receptors expressed in the growth cone capable
of responding to the various guidance cues. Once the axons
have reached the appropriate regions, they need to correctly
identify their targets amongst a heterogeneous population of
cells. Combined expression of both synaptogenic (attrac-
tive) molecules and antisynaptogenic (repulsive) molecules
in both presynaptic and postsynaptic cells is necessary to
form the correct pattern of innervation. The final step in the
formation of functional synaptic networks is the formation
and specialisation of synapses. Two key molecules that
have been implicated in this process are Neurexin and
Neuroligin.

Neurexin and neuroligin are trans-synaptic binding
partners expressed in the presynaptic and postsynaptic
compartments respectively. As detailed below, both
neuroligin and neurexin exhibit synaptogenic activity
in cell culture assays [1–4]. Knockout studies in mice
however, show that synaptogenesis is not significantly
affected by loss of either and suggest that neuroligin may
be more important for activity dependent maturation of
synapses [5–7]. Given the apparent discrepancy between
cell culture and knockout studies, it is important to first
clearly define what is meant by synapse formation and
maturation. For the purpose of this review, we will define
a synapse as the sum of all connections between a
presynaptic neuron and a postsynaptic target. As such,
each synapse may consist of multiple morphologically
distinct connections (e.g., synaptic boutons in a neuro-
muscular junction (NMJ)). Based on this definition of a
synapse, synapse formation can be defined as the transient
establishment of the first functional contact between the
presynaptic neuron and its postsynaptic partner. The
stabilisation of that contact through pre- and postsynaptic
signalling cascades, or the creation of additional contacts
between the pre- and postsynaptic cell then falls under the
broader definition of synapse maturation.

Since early studies of neuroligin and neurexin function
in cell culture used changes in the total number of synaptic
specialisations as a readout of synaptogenesis, the results
reflect a combination of both synaptogenesis and synaptic
maturation. Furthermore, the two processes may be difficult
to separate under such experimental conditions. Upon
closer inspection, it was noted that the “synaptogenic”
activity of neuroligins 1 and 2 is suppressed when synaptic
activity is blocked [5]. Based on these results, it was
proposed that rather than mediating synaptogenesis,
trans-synaptic interactions between neurexin and neuro-
ligin may be more important for synapse maturation and
specifically, activity dependent modification of synaptic
strength [8]. In the present review, we will discuss some
recent observations made in invertebrates that lend support
to this hypothesis.

Neurexin

Neurexins were originally identified as presynaptic
receptors for the black widow spider toxin α-latrotoxin
[9]. Three neurexin homologues have been identified in
mammals, each of which gives rise to an α-neurexin and a
β-neurexin via independent promoters [10]. Homologues
of α-neurexin have also been identified in several
invertebrate species including Drosophila, Caenorhabditis
elegans, honeybees and Aplysia [10–12]. Until recently,
there was no evidence of β-neurexin isoforms in inverte-
brates suggesting that this may be a relatively recent
evolution of the gene [10, 12]. However, a recent analysis
of the neurexin superfamily of genes in C. elegans
identified a β-neurexin splice form of the nrx-1 gene
[13] suggesting that a closer analysis of other invertebrate
neurexins may be required.

α-Neurexins and β-neurexins encode type I transmem-
brane proteins with identical intracellular domains but
different extracellular domains [9]. The short intracel-
lular domain of neurexins binds to a number of
presynaptic proteins such as synaptotagmin [14], CASK
[15] and Mint [16] via a postsynaptic density (PSD)-95/
discs large/zona-occludens-1 (PDZ) binding motif at the
C terminus. The extracellular domain of α-neurexin has
a signal peptide at the N terminus, three epidermal
growth factor like domains, each surrounded by two
laminin/neurexin/sex hormone-binding globulin domains
(LNS) and an O-linked carbohydrate-rich region proxi-
mal to the transmembrane domain [9]. The extracellular
domain of β-neurexin has a single LNS domain in
addition to the O-linked carbohydrate-rich stalk [9, 17].
All three mammalian neurexins are capable of generating
both an α-neurexin and a β-neurexin isoform. Further-
more, each α-neurexin has five canonical splice sites,
two of which are also present in the β-neurexin isoforms.
Alternative splicing at these sites allows for the gener-
ation of hundreds of alternative neurexin isoforms, each
of which has unique binding affinities for different
substrates [18–22].

All neurexins show broad, yet heterogeneous ex-
pression throughout the nervous system by in situ
hybridization [23, 24]. Based on immunoflourescence
analysis and known interactions between the intracellular
domain of neurexin and several presynaptic proteins,
neurexins are thought to exist primarily at presynaptic
membranes [12, 13, 25–27]. However, neurexins have
also been observed at the postsynaptic membrane in
some synapses and have been shown to exert cell
autonomous effects on postsynaptic receptor function
[12, 26, 28, 29] suggesting that both the expression
pattern and function of neurexins may be broader than
originally hypothesised.
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Neuroligins

Neuroligins were first identified as synaptic binding
partners for neurexins [30]. Four neuroligin homologues
have been identified in mammals plus an additional neuro-
ligin homologue on the Y chromosome in humans [30–33].
Homologues of neuroligin have also been identified in the
nervous systems of many invertebrates including Drosoph-
ila (four homologues [34, 35]), Aplysia (single homologue
[12]), honeybees (five homologues [11, 36]) and C. elegans
(single homologue [37]). So far, only two of the four
homologues in Drosophila have been functionally charac-
terised [34, 35]. Neuroligins have been implicated in
sensory modulation in both honeybees and C. elegans
[36, 37], and in long-term synaptic modulation in Aplysia

(discussed in more detail below [12]). Phylogenetic
analysis of neuroligin sequences from multiple species
suggests that neuroligins diversified independently during
evolution in both vertebrates and insects. By contrast,
neurexins have diversified in vertebrates, but not in insects
(Fig. 1). In addition to gene duplications giving rise to three
neurexin genes in vertebrates, vertebrate neurexins have
also acquired an alternative promoter and multiple splice
sites that significantly increase the potential diversity of
neurexin transcripts in vertebrates. The diversity of neuro-
ligin genes across a wider range of species suggests that
neuroligin may be under stronger evolutionary selection
than neurexin.

Neuroligins encode type I transmembrane proteins
composed of a long extracellular domain and a relatively

Fig. 1 Neurexin and neuroligin structure, function and evolution. A
Domain structure of Drosophila neuroligins and neurexin compared to
human neuroligin 1 and neurexin 1-α. The conservation of individual
protein domains between Drosophila homologues and the human gene
are given as a % identity. The global conservation is listed to the right
side of each homologue. B Phylogenetic tree of neuroligin sequences
from multiple species. Red branches indicate neuroligin sequences in
vertebrates, blue branches indicate neuroligin sequences in insects and
green branches indicate neuroligin sequences in worms. This tree was
adapted from tree TF326187 (available at http://www.treefam.org). As
seen from this tree, neuroligin sequences diversified independently in

insects and vertebrates from a common ancestral neuroligin sequence.
Branches corresponding to the four neuroligin genes in vertebrates and
the two characterised neuroligin genes in Drosophila are indicated. C
Phylogenetic tree of neurexin sequences from multiple species. Red
branches indicate neurexin sequences in vertebrates, blue branches
indicate neurexin sequences in insects and green branches indicate
neurexin sequences in worms. This tree was adapted from tree
TF32103 (available at http://www.treefam.org). Neurexin sequences
have shown less diversification in insects than vertebrates. Branches
corresponding to the three neurexin genes in vertebrates and the
Drosophila dnrx gene are indicated
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short intracellular domain. The extracellular portion of
neuroligin contains an O-linked carbohydrate-rich region
near the transmembrane domain and a single globular
domain with a high degree of sequence homology to
acetylcholinesterases that lacks catalytic activity [30]. The
intracellular portion of neuroligin contains a PDZ binding
motif at the extreme C-terminal end of the protein that has
been show to interact with the PDZ domain scaffolding
proteins PSD-95, Shank and Gephryn [38–40]. Like
neurexin, neuroligin also contains alternative splice variants
and the binding affinity of neuroligin for either α-neurexin
or β-neurexin is greatly affected by alternative splicing [20,
30, 33, 41, 42] suggesting that variable splicing of both
neuroligin and neurexin may constitute a code governing
the specificity of synaptic interactions.

While all neuroligins localise to postsynaptic densities, in
mammals, different neuroligin homologues localise to differ-
ent synapse classes. Neuroligins 1 and 2 localise exclusively to
excitatory and inhibitory synapses respectively, while neuro-
ligin 3 localises to both [43–45]. Neuroligin 4 has also
recently been shown to localise to inhibitory synapses,
preferentially with glycinergic synapses [46]. The synapse
specific localization of different neuroligin homologues may
be regulated by interactions with postsynaptic scaffolding
proteins such as PSD-95 and gephyrin [47–49]. These results
suggest that recruitment of specific neuroligin homologues
may direct the development of individual synapses towards
either an excitatory or inhibitory fate.

Neurexin/Neuroligin Function and Synaptic Maturation

Neurexin and neuroligin are primarily expressed on
presynaptic and postsynaptic membranes respectively, and
are thought to form a trans-synaptic complex. It should be
noted however, that both neurexins and neuroligins have
been shown to interact with other cell adhesion molecules
[50–54], which may contribute to the functional and
morphological defects observed in loss of function mutants.
The first hints of the functional significance of complexes
between neurexin and neuroligin came from a study
showing that expression of neuroligin in non-neuronal cells
was sufficient to induce presynaptic specialisations in co-
cultured neurons [4]. The neuroligin induced clustering of
vesicles could be blocked if cultures were incubated with a
soluble β-neurexin suggesting that trans-synaptic interac-
tions between neuroligin and β-neurexin were necessary for
presynaptic specialisation [4]. In similar experiments,
expression of neurexin in non-neuronal cells induced
postsynaptic specialisations in co-cultured neurons [2, 3].

It should be noted that the synaptic specialisations
observed in these studies consisted of clustering of synaptic
vesicles or postsynaptic receptors. If we define a synapse as

the sum of all synaptic connections between a pre- and
postsynaptic cell, then this increase in the number of
synaptic specialisations may not reflect an increase in the
number of synapses, but rather an increase in the strength of
pre-existing synapses, or perhaps an increase both in the
number and strength of synapses. To address this issue,
Chubykin et al. [5] asked whether neuroligins 1 and 2
functioned as synapse-inducing agents, independent of
synaptic activity, or whether they acted downstream of
synaptic signalling to modify the strength of existing
synapses. They found that blocking synaptic activity
reduced the “synaptogenic” activity of neuroligins 1 and
2, suggesting that they stabilise and/or strengthen existing
synapses in an activity dependent manner.

Consistent with this, studies in knockout mice show that
neurexins and neuroligins are important for synaptic
function, but do not significantly affect the number of
synapses. Deletion of all three α-neurexins in mice did not
appreciably alter synaptic structure [6], however, synaptic
function was significantly impaired. Moreover, both
excitatory and inhibitory transmitter release in the CNS
and acetylcholine release at the neuromuscular junction
were reduced in α-neurexin knockout mice [6, 55–57].
These defects were attributed, in large part, to impaired
function of N-type and P/Q-type voltage gated calcium
channels in the neurexin knockout mice [6, 57]. A cell
autonomous reduction in postsynaptic N-methyl-D-aspartate
(NMDA) receptor but not α-amino-3-hydroxy-5-methyl-4-
isoxyzolepropionic acid receptor function was also observed
in α-neurexin knockout mice [28]. Homeostatic regulation of
transmitter release at neuromuscular junctions was also
impaired in α-neurexin knockout mice [56], consistent with
a role for α-neurexins in activity dependent growth of
synapses. Interestingly, the consequences associated with a
loss of β-neurexin have yet to be determined. Furthermore, it
is unclear from these neurexin knockout studies what
percentage of α-neurexin function is mediated via a trans-
synaptic interaction with neuroligin.

Similar phenotypes were observed in neuroligin knock-
out mice. Loss of neuroligins 1–3 had no effect on brain
architecture or synapse formation but significantly impaired
both excitatory and inhibitory transmitter release [7].
Whereas individual α-neurexins appear to be partially
redundant [6, 55–57], deletion of either neuroligins 1 and
2 specifically impaired excitatory or inhibitory transmitter
release respectively [58–60]. For a list of synaptic,
behavioural and morphological phenotypes observed in
mice lacking either neurexin or neuroligin, see Table 1.
Taken together, the studies in knockout mice showed that while
neurexin and neuroligin are not essential for synapse formation
they are required for proper synaptic function. Furthermore,
these studies are consistent with a role for neurexin and
neuroligin in synapse maturation or development.
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Neurexin and Neuroligin Mediate Maturation
of the NMJ in Drosophila

The highly stereotyped pattern of musculature and inner-
vation in Drosophila embryos and larvae has made
neuromuscular junction development in Drosophila an
excellent model for studying all aspects of synapse
formation. First, newly differentiated motorneurons send
their axons into the periphery toward the target muscle
fibres [65]. Once at the body wall, each axon then selects
the correct muscle(s) with which to synapse [66, 67].
Finally, as the embryos hatch and progress through larval
development, the muscles increase significantly in size
requiring substantial remodelling of the synapse in order to
maintain the necessary strength of synaptic input [68, 69].
By studying the role of neurexin and neuroligin in this
process, it should be possible to more accurately dissect at
exactly which stages of synapse formation/maturation they
are required. An additional advantage of this system is that
it is possible to analyse the role of specific genes in synapse
formation/maturation with single cell resolution in an in
vivo context, something that is difficult to achieve in the
mammalian CNS.

Several studies have examined the role of both neurexin
and neuroligin in NMJ development in Drosophila [26, 27,
34, 35, 70]. Drosophila has a single neurexin homologue
and four neuroligin homologues. Recent studies have
examined the role of Drosophila neurexin (dnrx) and two
of the four Drosophila homologues of neuroligin (dnl1 and
dnl2) in NMJ formation and maturation [26, 27, 34, 35,
70]. Interestingly, while there is some overlap in the mutant
phenotypes of dnrx, dnl1 and dnl2, there are also
phenotypic traits unique to each gene suggesting indepen-
dent roles for each at the same synapse [26, 27, 34, 35, 70].
All three genes show strong expression at the NMJ,
however, dnl1 appears to be a muscle specific homologue
[34] while dnl2 and drnx show strong nervous system
expression in addition to muscle expression [26, 27, 35,
70]. Deletion of dnl1, dnl2 or dnrx leads to a number of
both presynaptic and postsynaptic defects.

Deletion of either dnl1 or dnl2 or deletion of dnrx leads
to a reduction in the number of synaptic boutons at larval
NMJs [26, 27, 34, 35, 70]. In the case of the dnl1 mutants,
this reduction in bouton number results from a failure of the
NMJ to expand during development since embryonic NMJs
were not significantly different [34]. In wild-type animals,
the number of synaptic boutons in larval NMJs increases in
an activity dependent manner throughout larval develop-
ment [71–73]. The reduced NMJ expansion in dnl1 mutants
is consistent with a role for neuroligin in synapse
maturation. In contrast however, embryonic and larval
NMJs are smaller than the control in dnrx mutants [26,
27] suggesting that dnrx may be involved in NMJ

development at a much earlier stage than dnl1. Both
Drosophila neuroligin mutants and the dnrx mutant also
showed a defect in the number of active zones. In dnl1
mutants, the total number of active zones was reduced,
consistent with the decrease in synaptic boutons [34]. By
contrast, both the number and density of active zones per
synaptic bouton were increased in dnl2 and dnrx mutants
([27, 35], see Table 2 for a list of phenotypes observed in
Drosophila neurexin and neuroligin mutants).

In addition to the morphological defects, dnl1, dnl2 and
dnrx mutants also show defects in synaptic transmission at
the NMJ [27, 34, 35]. As with the defects in morphology
however, the defects in synaptic function also differed
between the various mutants. Both dnl1 and dnrx mutants
showed a reduction in evoked transmitter release [27, 34].
In the case of the dnl1 mutants, this reduction in transmitter
release is consistent with the reduction in the number of
synaptic boutons and active zones. As such, the functional
defects are likely a consequence of changes in synaptic
morphology at dnl1 mutant NMJs. By contrast, dnl2
mutants showed an increase in transmitter release relative
to controls [35]. While dnl2 mutants showed fewer synaptic
boutons than controls, the number of active zones per
bouton was increased [35]. As such, changes in transmitter
release in both dnl1 and dnl2 mutants are likely a reflection
of changes in the number of active zones. In dnl1 mutants,
fewer active zones leads to a reduction in transmitter
release, while in dnl2 mutants, increased active zones
translates to an increase in transmitter release.

The situation in dnrx mutants, however, is somewhat
more complicated. dnrx mutants showed a reduction in the
number of synaptic boutons, but an increase in the number
of active zones per bouton, similar to that seen in dnl2
mutants [27, 35]. However, unlike dnl2 mutants, dnrx
mutants showed a reduction in transmitter release. This
discrepancy may be explained by an interaction between
neurexin and voltage gated calcium channels. Neurexin
knockout mice showed defects in synaptic transmission that
were attributed, in large part, to impaired function of N-
type and P/Q-type voltage gated calcium channels in the
neurexin knockout mice [6, 57]. Given that dnrx mutant
NMJs also showed defects in calcium sensitivity, which
were not observed in dnl2 mutants [27, 35], it seems likely
that the functional differences between dnl2 and dnrx
mutant NMJs can be attributed to changes in calcium
channel function.

The increase in the density of active zones observed in
dnl2 and dnrx mutants is particularly interesting since it has
been suggested that each active zone requires a fixed
perisynaptic area for proper function such that the density
of active zones within synaptic boutons is homeostatically
maintained at a constant level [74]. However, an interesting
exception to this rule was noted in animals that lack the
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Drosophila glutamate receptor (GluR) subunit GluR IIA
[75, 76]. GluRs at the NMJ in Drosophila are formed by a
heteromeric tetramer of five possible subunits. All GluRs
contain the GluR IIE, GluR IID and GluR IIC (or GluR III)
subunits [77–79]. In addition, each GluR also contains
either a GluR IIA or GluR IIB subunit, and receptors
containing these subunits are referred to as A-type or B-
type, respectively [78, 80, 81]. Immature PSDs are
composed primarily of A-type receptors, then during
maturation, the ratio of A-type to B-type receptors becomes
more balanced [82]. Interestingly, in both dnl2 mutants and
embryonic dnrx mutants, PSDs show an increased abun-
dance of A-type receptors indicating that the PSDs in these
mutants are immature [26, 35]. It is unclear at present
whether a similar shift in the ratio of A-type to B-type
receptors also exists in dnl1 mutants.

Changes in the expression of the GluR IIA subunit
(independently of changes in the other subunits) induce a
retrograde signal that mediates changes in the number of
presynaptic active zones [75, 76]. Over-expression of the

GluR IIA subunit leads to an increase in the number of
active zones but does not change the density of active zones
within single synaptic boutons [76]. Reductions in the
expression of the GluR IIA subunit leads to a reduction in
the number of synaptic boutons, with a compensatory
increase in the density of active zones within the boutons
[75, 76]. In contrast to these observations, dnl2 and dnrx
mutants show an increase in GluR IIA expression, yet the
density of active zones is increased in these mutants [26,
35]. The mechanisms that link postsynaptic GluR IIA
expression levels to presynaptic active zone numbers and/or
density are unclear. The observations in dnl2 and dnrx
mutant NMJs however [26, 35], suggest that an interaction
between neurexin and neuroligin may be involved in the
link between GluR IIA expression and presynaptic active
zone regulation (see below for further discussion).

Further evidence that neuroligin and neurexin regulate the
coordination of presynaptic and postsynaptic architecture can
be seen in the ‘orphan’ boutons observed in dnl1 mutants [34].
In dnl1 mutants, a small percentage of synaptic boutons that

Table 2 Summary of phenotypes observed in Drosophila Neurexin and Neuroligin mutants

Gene Nature of
mutation

Animal Behaviour Synaptic Physiology Other Reference

Neuroligin dnl1 deletion Not tested Decreased stimulus evoked
transmitter release, no
change in quantal size

Decrease in number of synaptic
boutons, immature
postsynaptic apparatus,
misalignment of pre- and
postsynaptic specialisation

[34]

dnl2 deletion Reduced larval
locomotion

Increased stimulus evoked
transmitter release,
decreased paired pulse
plasticity, no change in
quantal size

Decrease in number of synaptic
boutons, increased density of
active zones per bouton,
immature postsynaptic apparatus,
decrease in GluR density,
increase in ratio of A-type to
B-type GluRs, increased
length of PSD

[35]

Neurexin dnrx deletion Reduced larval locomotion,
defect in associative
learning in larvae,
shortened life span

Decreased stimulus evoked
transmitter release, decreased
synaptic vesicle recycling,
defective calcium
sensitivity of evoked
transmitter release

Reduced synapse number in
CNS and at NMJ, increased
density of active zones per
bouton at NMJ, increased
size of PSD, increase ratio
of A-type to B-type GluR
receptors in embryonic
NMJs

[26, 27, 70, 91]

Neurexin–neuroligin
double mutants

dnrx/dnl1 Not tested Not tested Defects in synaptic boutons
no worse than in dnl1 mutants,
dnl1D356R rescued phenotype
in dnl1 mutant background
but does not show dominant
negative phenotype like wild
type when overexpressed

[34]

dnrx/dnl2 More severe defect in
locomotion than either
dnl2 or dnrx

Not tested Lethal at late 2nd instar larval
stage. More severe defect in
NMJ morphology in both double
homozygous early 2nd instar
larvae, and hemizygous 3rd
instar larvae. Dnl2 shown to
exist in complex with Dnrx
in vivo

[35]
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contain the presynaptic release machinery, as visualised by
the presence of synaptic vesicles, were observed to lack all
postsynaptic markers, including GluR clusters [34]. Similarly,
long stretches of axon, devoid of any synaptic boutons were
often observed in dnrx mutants, although it is unclear whether
postsynaptic densities still existed under these axon branches
[27]. These misalignments between presynaptic and postsyn-
aptic structures were also apparent at the ultrastructural level
where the presynaptic membrane was sometimes observed to
pull away from the postsynaptic membrane in both dnl1
and dnrx mutants [27, 34]. In dnl2 mutants however, no
such misalignment between presynaptic and postsynaptic
structures was observed.

Another interesting ultrastructural observation in these
mutants was the change in the architecture of the
postsynaptic membrane in dnl1 and dnl2 mutants. In the
postsynaptic muscle cells, both dnl1 and dnl2 mutants
showed a reduction in the complexity of the subsynaptic
reticulum (SSR) [34, 35]. The SSR is composed of several
layers of convoluted folds in the postsynaptic membrane
surrounding type I boutons. Embryonic NMJs lack a SSR,
and instead, synaptic boutons are closely apposed to the
muscle membrane. As the muscles grow, simple folds start
to appear in the muscle membrane beneath synaptic
boutons, which become both more extensive and convoluted
throughout larval development [83]. The reduced complexity
of the SSR in dnl1 and dnl2 mutants is indicative of an
underdeveloped postsynaptic apparatus. Interestingly, muta-
tions in discs large (dlg), the Drosophila homologue of PSD-
95, also impairs the development of the SSR, similar to that
seen in dnl1 and dnl2 mutants [83, 84]. Neuroligins are
known to interact with PSD-95 in mammals through the C-
terminal PDZ binding motif [39]. While a direct interaction
between Drosophila neuroligins and dlg has yet to be
demonstrated, over-expression of dnl1 in muscles leads to
accumulation of dlg and a SSR under type II boutons, which
normally lack these postsynaptic structures [34]. This
accumulation was not observed when dnl1 constructs lacking
the cytoplasmic domain (dnl1Δcyto) or the extracellular
domain (dnl1Δextra) were expressed in muscles. Interestingly,
the Dnl1Δcyto construct was localised at type II terminals but
still failed to recruit Dlg or a SSR. The Dnl1Δextra construct
did not localise to type II terminals, but rather, accumulated
in granules that contained Dlg and GluRs [34]. These
observations suggest that Dnl1 may interact directly with
Dlg and contribute to the formation of the SSR (Fig. 2).

Invertebrate Neurexin and Neuroligin Interactions

The observation of fewer synaptic boutons and immature
postsynaptic architectures in dnrx and dnl mutants supports
a role for neuroligin and neurexin in synaptic maturation.

But can analysis of the Drosophila NMJ also offer insight
into how these cell adhesion molecules might accomplish
that? The presynaptic and postsynaptic enrichment of
neurexin and neuroligin respectively, combined with cell
culture assays that indicate a functional co-dependence
suggests that these proteins form a trans-synaptic complex
[1–4, 40]. Indeed, structural analysis of neurexin–neuroligin
interactions indicates that the extracellular domains of
these proteins bind to each other in the presence of
calcium [20, 22, 85–88]. Furthermore, the intracellular
domains of both neurexin and neuroligin include PDZ
binding motifs capable of binding to multiple PDZ domain
proteins [14–16, 38–40]. Several interactions have been
identified for both neurexin and neuroligin in mammals
including synaptotagmin [14], CASK [15] and Mint [16]
for neurexin and PSD-95, S-SCAM, Shank and Gephryn
[38–40] for neuroligin.

At the Drosophila NMJ, neurexin has been shown to
directly interact with Caki, the Drosophila homologue of
CASK [70]. This interaction is mediated by the PDZ
binding motif at the C-terminal end of neurexin. caki
mutants show several defects in NMJ structure and
function, similar to those observed in dnrx mutants.
However, only some of the dnrx mutant phenotypes appear
to be mediated via an interaction between caki and dnrx.
For example, as discussed above, dnrx mutants have a
reduced number of synaptic boutons [26, 27, 70]. caki
mutants, on the other hand show a small increase in the
number of boutons [70] suggesting that caki negatively
regulates bouton numbers at the NMJ. Similar to dnrx
mutants however, caki mutants show reduced transmitter
release and vesicle recycling [70]. Interestingly, animals
that are trans-heterozygous for caki and dnrx show much
more severe defects in synaptic function than animals that
are heterozygous for either caki or dnrx alone [70]. These
results suggest that caki and dnrx act synergistically at the
Drosophila NMJ to regulate synaptic function. In contrast,
synaptic morphology was not affected in animals trans-
heterozygous for caki and dnrx. This suggests that while
synaptic function is regulated by an interaction between
caki and dnrx, synaptic morphology is regulated indepen-
dently by both genes. It is important to note that the
enhancement of synaptic phenotypes observed in double
heterozygous caki/dnrx mutants was not due to a change in
the localization of either gene [70]. In fact, contradictory to
work performed in cultured hippocampal neurons [89],
synaptic localization of Dnrx does not require the PDZ
binding motif at the C-terminal end [70].

The cytoplasmic domain of Dnl1 is also important for
the regulation of synapse maturation. Expression of a dnl1
construct lacking the cytoplasmic domain (Dnl1Δcyto) in
wild-type muscles produced NMJs that were even smaller
than those observed in dnl1 null mutants [34]. Furthermore,
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in a dnl1 mutant background, the Dnl1Δcyto not only failed
to rescue the NMJ mutant phenotype, but rather exacerbated
it. In similar experiments, a dnl1 construct lacking the
extracellular domain (Dnl1Δextra) had no effect on NMJ
morphology when expressed in a wild-type background, but
also failed to rescue the defect in NMJ morphology in a dnl1
mutant background [34]. Both the Dnl1Δextra and Dnl1Δcyto

constructs were expressed at type I NMJs, similar to wild-
type Dnl1, however, the Dnl1Δcyto construct was also
apparent at type II terminals, whereas the Dnl1Δextra construct
was absent from these terminals [34]. Rather, the Dnl1Δextra

construct accumulated in vesicles that also stained for Dlg
and GluRs. These observations suggest that Dnl1 can be
targeted to the correct synapses by either the extracellular or
intracellular portions of the protein. However, ectopic
accumulation of Dnl1 at type II terminals specifically
requires the extracellular portion of Dnl1 [34]. The localiza-
tion of the truncated Dnl1 constructs at type I terminals may
be facilitated by interactions with endogenous Dnl1 or Dnrx.
At type II synapses however, where neither Dnl1 nor Dnrx

are endogenously expressed at detectable levels, the extra-
cellular domain Dnl1 appears to be required to facilitate the
ectopic expression. Given that Dnrx has not been detected at
type II terminals, this ectopic expression of Dnl1 may be
mediated by trans-synaptic interactions with a different
presynaptic protein, or alternatively, it may be mediated by
an interaction with the extracellular domain of another
postsynaptic protein (possibly one of the as yet uncharac-
terised Drosophila neuroligin genes).

The observation that expression of the Dnl1Δcyto con-
struct in wild-type muscles can induce a presynaptic defect
in synaptic bouton morphology is particularly interesting.
These results were interpreted as a dominant negative effect
caused by the truncated Dnl1 construct being incorporated
into signalling complexes, which were unable to propagate
that signal to the muscle [34]. Due to the postsynaptic
localization of Dnl1, any effect of Dnl1 on presynaptic
bouton morphology must involve a retrograde signal to the
motorneuron. Assuming that the extracellular domain of the
Dnl1Δcyto construct is capable of the same interactions as

Fig. 2 Model of known and potential interactions involving neurexin
and neuroligin at the Drosophila neuromuscular junction. Dnl1 and
Dnl2 are expressed in the postsynaptic muscle while Dnrx is
expressed in the presynaptic neurons. Dnrx has also been shown to
be present in the muscle during embyrogenisis. Based on their
similarity to mammalian neuroligins, it seems likely that the
Drosophila neuroligins form dimers, although this remains to be
shown directly. Whether Drosophila neuroligins form exclusively as
homodimers or as heterodimers (as shown for Dnl1/Dnl2) remains to
be determined. Dnl2 forms a complex with Dnrx in vivo while the
same has not been shown for Dnl1. Compelling evidence does exist
however to suggest that dnrx complements dnl1 function (see text for
details). In the presynaptic terminal, Dnrx has been shown to interact
with Caki, a Drosophila homologue of mammalian CASK.

Mammalian neuroligins have been shown to interact with PSD-95
at excitatory synapses. Based on their similarity to mammalian
neuroligins, we would predict that the Drosophila neuroligins may
also interact with discs large (Dlg), the Drosophila homologue of
PSD-95, although this remains to be shown experimentally. Dlg is
known to bind to the homophilic cell adhesion molecule Fascicilin II
(FasII) and regulate both presynaptic morphology and postsynaptic
membrane organisation. Dlg also regulates the size of postsynaptic
glutamate receptor (GluR) patches and the subunit composition of
GluRs. As is the case for mammalian neurexins and neuroligins,
both Dnrx and the Drosophila neuroligins are likely involved in
many other interactions at the NMJ, but further work will be
required to elucidate these interactions
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wild-type Dnl1, the results indicate that binding between
the extracellular domains of Dnl1 and Dnrx is not sufficient
to induce a retrograde signal. However, postsynaptic
signalling mediated through the cytosolic domain of Dnl1
does appear to be required for the retrograde signal. It is
possible that the interaction between the extracellular
domains of neurexin and neuroligin merely serves to align
pre- and postsynaptic specialisations mediated by the
intracellular domains of these proteins. It should be noted
however that over-expression of the dnl1Δcyto construct at
NMJs may interfere with endogenous interactions between
members of the cell adhesion machinery, thus preventing
functional interactions. A recent study in cultured hippocam-
pal neurons showed that the cytoplasmic region of neuroligin
3 is important in synapse maturation and that this effect is
masked in the presence of endogenous neuroligin, presumably
due to heterodimers formed between the truncated and
endogenous proteins [90]. It will be interesting to see how
loss of both dnl1 and dnl2 affects NMJ formation and
maturation in Drosophila.

Clues from Neurexin/Neuroligin Double Mutants

As discussed above, both the extracellular and cytoplasmic
domains of neurexin and neuroligin play important roles in
synapse maturation within the presynaptic and postsynaptic
cells, respectively. One of the unique aspects of recent
studies on neurexin and neuroligin function using the
Drosophila NMJ as a model, is the in vivo examination
of neurexin–neuroligin double mutants at the same synapse,
which has not been examined in mammalian knockouts [34,
35]. Interestingly these studies suggest that the interaction
between dnrx and either dnl1 or dnl2 are functionally
different. The expression patterns of dnl2 and dnrx showed
substantial overlap both in the CNS and at synaptic boutons
in the NMJ [35]. By contrast, the expression of Dnl1
showed relatively little overlap with Dnrx, and appeared to
concentrate in patches adjacent to Dnrx clusters [34].
Consistent with the co-localization data, Dnl2 was shown
to form a complex with Dnrx in vivo [35] while the same
could not be shown for Dnl1. It should be noted however,
that Dnl1 may still functionally interact with Dnrx, and as
detailed below, there are several lines of evidence to suggest
a functional interaction between Dnl1 and Dnrx at the NMJ.

First, over-expression of untagged Dnl1 at high levels
reduced the size of the NMJ, similar to that seen in dnl1 or
dnrx single mutants. This dominant negative effect however,
was not observed in a dnrx mutant background or with a
Dnl1 construct that lacks a residue predicted to be necessary
for Dnrx binding [34], suggesting that dnrx may contribute
to the dominant negative effects of dnl1 over-expression.
Furthermore, postsynaptic Dnl1 clusters were reduced in size

in dnrx mutants [34] suggesting that Dnrx may facilitate the
clustering of Dnl1. The morphological defects observed in
dnl1 mutants were considerably worse than those observed
in either dnrx or dnl2 mutants suggesting that dnl1 may
have a more fundamental role in regulating NMJ
development. Loss of dnrx function in the dnl1 mutant
background did not significantly enhance the phenotype
observed in dnl1 mutants suggesting that dnl1 may act
through dnrx to regulate synaptic morphology. Interest-
ingly however, the Dnl1mutant construct, which lacks a
Dnrx binding site, was able to partially rescue synaptic
morphology defects in dnl1 mutants suggesting that dnrx
is not absolutely required for dnl1 function. Together,
these data suggest that dnrx is not strictly necessary for
dnl1 function, but likely promotes dnl1 function, possibly
by concentrating Dnl1 at the NMJ [34].

In contrast to dnl1/dnrx double mutants, which were
completely viable and no worse than dn1 mutants, dnl2/
dnrx double mutants are lethal, (dnrx and dnl2 single
mutants are both viable [35]). Furthermore, when NMJs
from dnrx/dnl2 double mutants were examined at an earlier
developmental stage, prior to lethality, synaptic mor-
phology defects were exacerbated in double mutants,
compared to either single mutant [35]. These results
suggest that dnrx and dnl2 may act in parallel pathways to
regulate NMJ development.

Unlike mammals, Drosophila has only a single neurexin
homologue [27, 91]. As such, it is possible that Dnl1 and
Dnl2 compete with each other for Dnrx binding. Alternatively,
Dnl1 and Dnl2 may co-operatively bind to Dnrx. Analysis of
the structure of neuroligin/neurexin complexes revealed that
neuroligin forms a constitutive dimer via the AChE-like
domain. A single neurexin then binds to each neuroligin
molecule, thus forming a trans-synaptic tetramer or double
dimer [85]. Furthermore, at synapses expressing multiple
neuroligin homologues, neuroligin heterodimers can be
formed between the different homologues [43, 90]. It is
possible that Dnl1 and Dnl2 form a heterodimer, with Dnrx
binding to both Dnl1 and Dnl2 (Fig. 2).

By comparing the synaptic phenotypes of dnrx, dnl1 and
dnl2 mutants, it is apparent that all three genes play a role in
maturation of the NMJ. However, despite the similarities in
phenotypes, each mutant also shows some unique pheno-
types suggesting that these genes may function independent-
ly of each other. So far, only two of the four neuroligin
homologues in Drosophila have been characterised and it
will be interesting to see what role (if any) the other
homologues play at this synapse. Furthermore, it should also
be noted that in mammals, both neurexin and neuroligin can
mediate synaptic development via interactions with other cell
adhesion molecules [50, 52, 54]. Whether similar interac-
tions regulate synaptic development in Drosophila remains
to be determined.
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Neurexins and Neuroligins in Autism Spectrum
Disorder

The studies detailed above demonstrate the importance of
neurexin and neuroligin in activity dependent modulation
of synapses. As such, it is not surprising that mutations in
neurexin and neuroligin have been associated with
developmental cognitive disorders such as autism spectrum
disorders (ASD), Tourette syndrome and Schizophrenia [8,
92]. ASDs are characterised by behavioural abnormalities
such as repetitive behaviours and/or restrictive interests and
deficits in social interactions and communication [93, 94].
Genetic segregation studies in siblings and parents of
children diagnosed with ASD combined with an approxi-
mately four fold higher prevalence in males suggests a strong
genetic contribution to ASD [94–99]. Interestingly, many of
the genes identified as potential risk factors for ASD are cell
adhesion molecules including neurexin and neuroligin [92].

Several studies in mice have attempted to model ASD
symptoms through genetic manipulation of neuroligin or
neurexin expression [5, 6, 55–64, 100]. Consistent with the
wide variation in symptoms and severity observed with
ASD, the phenotypes in mice with different mutations are
also quite varied. For example, mice lacking neuroligin 1
show impaired spatial memory and reduced LTP in the
hippocampus [58]. Furthermore, neuroligin 1 null mice
were observed to spend more time grooming, which might
reflect the increased repetitive behaviours observed in some
autistic children [58]. Interestingly, the abnormal grooming
behaviour could be rescued by treating the mice with a NMDA
receptor co-agonist suggesting that the behavioural defect was
the result of reduced NMDA receptor activation. Mice lacking
neuroligin 2 on the other hand show increased anxiety like
behaviour and decreased pain sensitivity and motor coordina-
tion [59]. Mice bearing a gain-of-function arginine to cysteine
substitution (R451C) in the esterase homology domain show
decreased social interaction and increased spatial learning, but
do not show any change in anxiety like behaviour, such as
those seen in neuroligin 2 knockout mice [63]. Neurexin 1α
knockout mice also show increased grooming behaviour,
similar to that seen in neuroligin 2 knockouts [55]. The
variation in behavioural phenotypes observed in these
different mutants is likely a reflection of differences in the
physiological consequences of these mutations, which in turn
reflects varied spatial and temporal requirements for the
different homologues of each gene (For a list of both
behavioural and physiological consequences of different
neuroligin and neurexin mutations in vivo, see Table 1).

Behavioural defects have also been observed in Dro-
sophila neurexin and neuroligin mutants. Both dnrx and
dnl2 mutants show a reduction in locomotion compared
with controls [35]. While this defect may arise in part from
the defects in NMJ structure and function described above,

it is likely that defects in synaptic signalling within the
CNS also contribute. Indeed, dnrx mutants showed a
reduction in the number of synapses in the CNS [91].
Interestingly dnrx mutant larvae also showed a reduction in
associative learning that cannot be accounted for by the
reduced locomotion [91]. Studies in honey bees and C.
elegans have suggested a link between neuroligin function
and sensory processing [36, 37]. Neuroligin deficient C.
elegans have defects in sensory processing [37]. Further-
more, sensory deprivation in honey bees resulted in reduced
neuroligin 1 expression while associative scent training
resulted in increased expression of neurexin and neuroligins
1 and 3 [36]. Unlike honeybees and worms however, the
defect in olfactory associative learning in dnrx mutants was
not due to changes in the olfactory preferences [91]. The
defect in associative learning in dnrx mutants likely
represents an inability to modulate synaptic strength
following training. Interestingly, the changes in neuroligin
expression in honeybees were also interpreted to be the
result of changes in neuronal wiring triggered by the altered
sensory environment [36].

Neurexin and neuroligin have also been implicated in the
storage of long-term memory in Aplysia [12]. In Aplysia, a
monosynaptic connection between a siphon sensory neuron
and the gill motor neuron is a crucial part of the gill
withdrawal reflex which constitutes a learned fear behaviour.
Repeated application of serotonin increases synaptic strength
at this synapse and leads to a sensitization of the gill
withdrawal behaviour [101, 102]. Long-term increases in
synaptic strength are dependent not only on RNA and
protein synthesis, but also on kinesin heavy chain (KHC)
regulated anterograde transport [103, 104]. Interestingly,
both neurexin and neuroligin were shown to be carried as
cargo by the KHC complex during serotonin induced
synaptic facilitation [104]. It is not surprising then, that
over-expression of both neurexin and neuroligin at this
synapse leads to a long-term facilitation in the absence of
serotonin treatment. Furthermore, depletion of either neuro-
ligin in the motor neuron, or neurexin in the siphon sensory
neuron decreased the long-term strengthening of this synapse
following serotonin application [12]. These observations in
Aplysia are consistent with a trans-synaptic interaction
between neurexin and neuroligin being crucial for activity
dependent modulation of synaptic strength. It will be
interesting to see whether Drosophila neuroligin mutants
have cognitive defects that may be used to model ASD.
Associative learning assays have been well characterised in
Drosophila [105] and learning defects have already been
observed in dnrx mutants [91]. Whether neuroligin mutants
also have defects in learning and/or memory remains to be
determined. In addition to learning assays however, assays
for social behaviours are also possible in Drosophila
[106]. It will be interesting to see whether neuroligin or
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neurexin mutants in Drosophila display any defects in
these social behaviours.

Conclusions

Our understanding of the roles of neurexin and neuro-
ligin has evolved significantly over the last decade. From
early hypotheses predicting a role in synapse formation,
it is now generally accepted that a trans-synaptic
interaction between these cell adhesion molecules is
more important for activity dependent modulation of
synaptic strength. There are however, many questions
left to be answered regarding the roles of these proteins.
For example, what role do β-neurexins play in synapse
formation/maturation? Several studies have examined the
role of α-neurexins [6, 55–57, 64], yet so far, there are no
data on the role of β-neurexins. What are the functional
consequences of the numerous splice forms of both
neurexin and neuroligin? While the binding efficiency of
different splice forms has been studied [18, 19, 41, 107], it
is still unclear how the expression of different splice forms
is regulated in vivo, and further, how interactions between
specific splice forms affects downstream signalling.
Another question that remains to be answered is what
other binding partners are important for neuroligin and
neurexin function? Recent work has indicated that both
proteins can mediate trans-synaptic specialisation inde-
pendently of each other [52, 54, 108, 109] and it has also
been shown that neuroligin works co-operatively with the
cell adhesion molecule N-cadherin [50, 110]. It is possible
that neuroligin/neurexin may also work with or against
other cell adhesion molecules to refine synaptic structure
and function.

These are just some of the questions that remain to be
answered in order to fully understand the complexity of
synapse formation, maturation and modulation. The work
reviewed here shows that the function of neuroligin and
neurexin is evolutionarily conserved from Aplysia and C.
elegans, all the way through to mammals. The ability to
analyse synaptic development and modulation with single
cell resolution in these model organisms will help in
answering these and other questions in the future.
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