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Abstract: Fusion and analysis of thematic information layers using machine learning algorithms
provide an important step toward achieving accurate mineral potential maps in the reconnaissance
stage of mineral exploration. This study developed the Neuro-Fuzzy-AHP (NFAHP) technique
for fusing remote sensing (i.e., ASTER alteration mineral image-maps) and geological datasets
(i.e., lithological map, geochronological map, structural map, and geochemical map) to identify high
potential zones of volcanic massive sulfide (VMS) copper mineralization in the Sahlabad mining
area, east Iran. Argillic, phyllic, propylitic and gossan alteration zones were identified in the study
area using band ratio and Selective Principal Components Analysis (SPCA) methods implemented
to ASTER VNIR and SWIR bands. For each of the copper deposits, old mines and mineralization
indices in the study area, information related to exploration factors such as ore mineralization,
host-rock lithology, alterations, geochronological, geochemistry, and distance from high intensity
lineament factor communities were investigated. Subsequently, the predictive power of these factors
in identifying copper occurrences was evaluated using Back Propagation Neural Network (BPNN)
technique. The BPNN results demonstrated that using the exploration factors, copper mineralizations
in Sahlabad mining area could be identified with high accuracy. Lastly, using the Fuzzy-Analytic
Hierarchy Process (Fuzzy-AHP) method, information layers were weighted and fused. As a result,
a potential map of copper mineralization was generated, which pinpointed several high potential
zones in the study area. For verification of the results, the documented copper deposits, old mines,
and mineralization indices in the study area were plotted on the potential map, which is particularly
appearing in high favorability parts of the potential map. In conclusion, the Neuro-Fuzzy-AHP
(NFAHP) technique shows great reliability for copper exploration in the Sahlabad mining area, and it
can be extrapolated to other metallogenic provinces in Iran and other regions for the reconnaissance
stage of mineral exploration.

Keywords: copper exploration; machine learning; BPNN; NFAHP; ASTER; geological data; mineral
potential map

1. Introduction

Machine learning approaches are steadfast tools of mineral exploration due to their
capability for precise processing of remote sensing data and fusing various and high di-
mensional data to detect features with problematic attributes [1–4]. The utilization of
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machine learning algorithms is an inexpensive and automatic approach for accurate min-
eral potential mapping, fusing the data derived from remote sensing, geology, geophysics,
and geochemistry [1,3–6]. Machine learning algorithms are typified to (i) dimensionality
reduction methods such as Principal Component Analysis, Independent Component Anal-
ysis and Minimum Noise Fraction; (ii) classification methods such as Minimum Distance,
Support Vector Machine, Artificial Neural Networks and Random Forest; (iii) regression
methods such as Multi-Linear Regression, Multivariate Regression, Logistic Regression;
and (iv) clustering methods such as K-means and ISODATA [7].

The application of machine learning methods, particularly Artificial Neural Networks
(ANN), has great potential in processing of various data for accurate mineral potential
mapping [8]. Appropriate training of a Neural Network (NN) is a significant characteristic
of producing a consistent model. This training is generally named “Back-propagation”,
which is the principle of neural net training. Back-propagation is the exercise of fine-tuning
the weights of a neural net built on the error rate acquired in the preceding epoch. Appro-
priate tuning of the weights guarantees lower error rates, generating the more steadfast
model by improving its generalization [9–11]. The Back Propagation Neural Network
(BPNN) algorithm is a practical approach for improving the accuracy of predictions in
data mining [12,13]. For mineral exploration, one of the most significant concerns is the
identification of potential zones based on the characteristics of ore deposits, mining area,
and mineral occurrences (indices) in a study area [14]. One of the most important benefits
of BPNN is the ability to estimate the predictive power and accuracy of factors related to
mineralization, which is accomplished through training and testing. In fact, the power of
network estimation is evaluated using available data.

In this study, the BPNN was used to evaluate the accuracy of exploration factors
related to volcanic massive sulfide (VMS) copper mineralization in the Sahlabad mining
area, South Khorasan province, east Iran (Figure 1A,B). Consequently, the predictive
power and accuracy of information layers such as host-rock lithology, alteration minerals,
geological age of the host-rock, ore mineralization and distance from the community of
important fault systems were evaluated to determine the location of copper occurrences in
the study area. As a result, the predictive power of the data was accomplished with a lower
percentage of error. In fact, implementation of the BPNN algorithm to the exploration
factors of copper mineralization has verified the accuracy of inputs layers/information
for the next stage [15,16]. Subsequently, the information layers were weighted and fused
according to the rules of the Fuzzy Analytic Hierarchy Process (AHP) [17–19]. In this study,
the combination of BPNN and Fuzzy-AHP methods in the field of mineral exploration is
executed and introduced as Neuro-Fuzzy-AHP (NFAHP).

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
remote sensing sensor has great capabilities to map hydrothermal alteration zones associ-
ated with a variety of ore mineralization particularly massive sulfide copper mineraliza-
tion [20–22]. The hydrothermal alteration zones (e.g., gossan, argillic, phyllic and propylitic)
associated with volcanic massive sulfide (VMS) copper mineralization in the Sahlabad
mining area have been reported and documented [23]. Consequently, remote sensing
and geological information layers, including ASTER alteration maps, host-rock lithology,
geochronological, structural data and geochemistry of copper mineralization in the study
area were evaluated and verified by the BPNN, then appraised and appropriate layers were
subsequently fused by the Fuzzy-AHP method for generating a mineral potential map. In
view of that, the main objectives of this study are: (1) to map hydrothermal alteration zones
(e.g., gossan, argillic, phyllic and propylitic) associated with copper mineralization using
the visible and near infrared (VNIR) and shortwave infrared (SWIR) bands of ASTER data;
(2) to estimate the predictive power and accuracy of information layers (remote sensing and
geological data) for copper mineralization using the BPNN algorithm; (3) to fuse remote
sensing layers (i.e., hydrothermal alteration zones) with geological information layers
(i.e., lithology, structural geology, geochemistry and geochronology) using Fuzzy-AHP
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method; (4) to generate an accurate potential mineral map of VMS copper mineralization
for the Sahlabad mining area.

2. Geological Setting

The Sistan Suture Zone (SSZ) is situated in the eastern part of Iran, 800 km in length
(N-S) and 200 km in width (E-W) (Figure 1A); it was formed during the Paleogene collision
of the Central Iran Block (CIB) with the Afghan Block (AB) [24–26]. It splits the continental
Lut sub-block of CIB to the west from the AB to the east [27]. This belt consisting of
peridotites, serpentinites, gabbros, and leucogabbros, dolerites, basalts, and radiolarites
represents remnants of the lithosphere of the Sistan oceanic basin and its pelagic sedimen-
tary cover [28–30]. The Sahlabad mining area is situated in the SSZ and is bounded between
longitudes 59◦30′ to 60◦ and 32◦ to 32◦30′ (Figure 1A,B). It is located in the flysch and
colored mélange belt of the SSZ and consists of igneous, metamorphic and sedimentary
lithological units that are shown in Figure 1B, comprehensively. In the Sahlabad mining
area, there are three main VMS copper deposits, namely (1) Mesgaran, (2) Chah-Rasteh, and
(3) Zahri [23]. Moreover, there are also some copper indices and two abandoned old copper
mines in this area. Information about the geographical location, alterations, host lithology
and Cu minerals for the deposits, old mines, and indices are represented in Table 1.
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Table 1. Copper mineralization, host-rock lithologies and alteration zones in Sahlabad mining
area [31]. Abbreviations: Cpy = Chalcopyrite, Py = Pyrite, Mch = Malachite, Ch = Chalcocite,
Az = Azorite, Ba = Basalt, Phy = Phyllic, An = Andesite, Sch = Schist, Mtd = Metadiabase,
Chl = Chlorite Alteration, Db = Diabase, Anb = Andesite-Basalt, Qtz = Quartz Alteration,
Cab = Carbonate Alteration, Pp = Propylitic Alteration, Arg = Argillic Alteration, Ub = Ultraba-
sic, Alteration, Sep = Serpentine Alteration, Hem = Hematite Alteration, Lm = Limonite Alteration,
Goe = Goethite Alteration.

Copper Occurrences
Center Coordinates Anomaly Area

(Km2) Mineralization Alterations
Host-Rock
LithologiesLongitude (E) Latitude (N)

Mesgaran Deposit 59◦52′49′′ 32◦18′58′′ 8 Cpy + Mch Phy + Arg + Pp +
Chl + Qtz Ba + Anb

Chah-Rasteh Deposit 59◦46′15′′ 32◦21′19′′ 4 Ch + Mch Phy + Arg + Pp +
Chl + Cab An + Anb

Zahri Deposit 59◦32′52′′ 32◦00′50′′ 2 Cpy + Ch + Mch Phy + Arg + Pp +
Hem Ub + Sch

Kasrab Abandoned Mine 59◦59′45′′ 32◦21′05′′ 3.8 Mch Phy + Arg + Pp +
Sep Ub

Cheshme-Zangi
Abandoned Mine 59◦59′08′′ 32◦25′02′′ 2.5 Cpy + Mch Phy + Arg + Pp +

Silicification
Limestone shale +

Listwanite

Shir-Shotor Indice 59◦53′50′′ 32◦14′28′′ 1 Mch + Az Arg + Pp + Sep An + Serpentinite
(Ub)

Dastgerd Indice 59◦43′39′′ 32◦21′03′′ 2 Mch Arg + Pp + Sep +
Hem Harzburgite

Torshaab Indice 59◦59′56′′ 32◦28′48′′ 5 Mch + Az Phy + Arg + Pp +
Hem + Lm Sch

Chah-Anjir Indice 59◦53′37′′ 32◦15′44′′ 2 Mch + Az Pp + Sep Serpentinite (Ub)

Zargaran Indice 59◦47′09′′ 32◦21′14′′ 1 Mch + Az Phy + Arg + Pp +
Lm + Goe + Hem An + Db

West Mesgaran Indice 59◦52′26′′ 32◦19′36′′ 1.5 Cpy + Mch + Az Arg + Pp + Hem +
Lm Mtd

Mirsimin Indice 59◦54′58′′ 32◦17′53′′ 9 Cpy + Mch + Az Arg + Pp + Hem Db

Kuharod Indice 59◦50′31′′ 32◦18′01′′ 1 Mch Phy + Arg + Pp +
Hem Db

Barghan Indice 59◦39′38′′ 32◦09′05′′ 2 Mch Arg + Pp + Lm +
Geo + Hem Db + Limestone

3. Materials and Methods
3.1. Information Layers

Several information layers were considered and analyzed to map high potential
zones of VMS copper mineralization in the Sahlabad mining area. The information layers
containing significant information for VMS copper mineralization in the study area were
mainly selected from remote sensing and geological datasets. ASTER remote sensing data
were processed using band ratio and Selective Principal Components Analysis (SPCA)
techniques [20–22] to map hydrothermal alteration zones such as the gossan, argillic, phyllic
and propylitic associated with massive sulfide copper mineralization in the study area. The
geological information is typically derived from lithological, geochronological, geochemical
and structural information that is documented (as digital maps) for the study area [32].
Subsequently, information layers were evaluated using the BPNN algorithm and fused
using the Fuzzy-AHP method to generate a potential map of VMS copper mineralization
for the Sahlabad mining area. Figure 2 shows the methodological flowchart implemented
in this study.
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3.2. Remote sensing Data Characteristics and Processing

Three ASTER scenes covering the study area acquired on 15 July 2002 were used in this
study. They are level 1B product and cloud-free and were obtained from the USGS Earth
Explorer (http://earthexplorer.usgs.gov, accessed on 1 June 2021) website. The data were
pre-georeferenced to UTM zone 40 North projection using WGS-84 datum. ASTER level 1B
data were mosaic and preprocessed using the Cross-Talk correction [33]. Also, atmospheric
correction was executed by Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes
(FLAASH) algorithm to VNIR and SWIR subsystems [34]. Band ratio [35] and Selective
Principal Components Analysis (SPCA) [36] were applied to VNIR+SWIR bands (1 to 9) for
mapping gossan, argillic, phyllic and propylitic alteration zones. The ENVI (Environment
for Visualizing Images, http://www.exelisvis.com, accessed on 1 June 2021) version 5.2
and ArcGIS version 10.3 software (Esri, Redlands, CA, USA) packages were used to process
the remote sensing datasets.

3.3. Geological Data

The main host-rocks of copper mineralization are typically andesite, andesite-basalt
and basalt rocks [23,32,37]. However, other geological units such as ultrabasic unit, ophiolite
mélange and schist could host the copper mineralization in the study area due to structural
controls of ore mineralization [23,31]. These lithological units were used as sub-criteria for
the geology information layer and decision-making process. Furthermore, the geological
ages were considered sub-criteria of the geochronological information layer. The geological
ages of the lithological units are shown in Table 2.

The relationship between the fault systems and copper mineralization in the study
area is documented [31]. Lithological trends as well as spatial distribution of copper
occurrences are related to structural features and the fault systems acted as a controller

http://earthexplorer.usgs.gov
http://www.exelisvis.com
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of the host lithology trend. As a result, the Lineament Factor (LF) map of the study area
can be considered as one of the most important keys for identifying the potential zones of
copper mineralization. The LF map shows three important factors, including (i) frequency
of faults, (ii) frequency of fault intersection and (iii) fault length. The LF map scores the
factors related to the faults based on the grade of significance and ultimately shows the
areas that are important for fault activity. Initially, the network of the Sahlabad area was
divided into 100-square-meter cells to study the faults and generate an LF map using
the RockWorks software package (Version 17, RockWare, Golden City, CO, USA). The
scores of these factors were considered from top to bottom, 1, 2 and 3, respectively [31]. In
this analysis, high intensity areas (LF more than 30) in the LF map were also considered
as one of the sub-criteria in identifying copper mineralization. The results of applying
factor analysis method on the geochemical data of stream sediments (706 samples) showed
that copper is among the first principal factors with 27% variance justification [38]. The
elements associated with Cu among the first principal components are Pb, Zn, Sn, Ag
and Mo. For this analysis, the geochemical map of the study area is produced based on
the scores of Cu, Pb, Zn, Sn, Ag and Mo and the kriging interpolation. These anomalies
were also considered as sub-criteria in the geochemical information layer and consequence
decision-making process.

Table 2. Geological ages of host lithological units related to copper occurrences in the study area.

Lithological Unit Geological Age

Andesite (An) Paleogene
Schist (Sch)

Basalt (Ba)
Upper CretaceousOphiolite Mélange (Ml)

Ultrabasic (Ub)

3.4. Data Fusion
3.4.1. Back Propagation Neural Network (BPNN)

Back Propagation Neural Network (BPNN) is an algorithm for neural network su-
pervised learning using a reduction gradient. In this method, for an Artificial Neural
Network (ANN) and a specific error function, the gradient of the error function relative
to the weights of the neural network is calculated [9–13]. The purpose of applying the
BPNN algorithm is estimation and validation of the results of the analysis of information
layers related to copper mineralization based on copper deposits, old mines, and mineral
indices in the Sahlabad mining area. In other words: provide the answer to the question of
whether the exploration factors studied so far have sufficient credibility to continue the
decision-making process and identify copper mineralization in the area or not. At this
stage, if the input factors can be estimated with high accuracy based on each other, the
information layers are used as input for AHP-Fuzzy method.

In the BPNN algorithm, parameters such as the type of training, the choice of the
number of neurons in different layers and the type of neurons are important [11]. In the
obtained results, the type of training is based on binary rules and the network efficiency
was estimated using the mean squared error. The type and number of neurons as well as
the type of activation functions are shown in Figure 3.

The general structure of the artificial neural network presented in Figure 3 contains
two hidden layers, the input layer and the output layer. The first and second hidden layers
have two neurons and one neuron, respectively. The activation functions used in the first
and second layers are the linear function and the sigmoid logistic function, respectively.
This choice was made due to the appropriate results in the mineral exploration data [39,40].
There are 14 copper occurrences in the Sahlabad mining area, including copper deposits,
old mines and mineral indices. Therefore, the economic mineralization certainty of the
points in the area was defined as the BPNN input algorithm with probability percentages
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of 100% for the deposits, 70% for the old mines, and 50% for the mineral indices. Then,
information about each copper mineralization point in the area was used as a BPNN input.
Table 3 lists the inputs for the BPNN algorithm, which are the exploration factors used to
generate information layers.
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Table 3. Factors of the copper occurrences in the Sahlabad mining area used as the input for the
BPNN algorithm.

Lithology Geochronology Alterations Dominant Mineralization Structural Geology

An Upper Cretaceous Argillic Malachite

Distance from high intensity LF community
Ba Phyllic Azurite
Ub

Paleogene
Propylitic Chalcopyrite

Ml
Iron Oxides ChalcociteSch

3.4.2. Hybrid Fuzzy-Analytic Hierarchy Process (Fuzzy-AHP) Method

Fuzzy-AHP method was used as a knowledge-based method. In fact, the process
used is a decision-making method based on priorities [41–43]. Each of the information
layers, including maps of geology, geochronology, geochemistry, structural geology, and
hydrothermal alterations were weighted. Subsequently, all the fuzzified information layers
were fused based on the assigned weights, and the map of the copper mineralization
potential was produced. To validate the model obtained from the Fuzzy-AHP method,
copper deposits, old mines and indices in the area were positioned on the map. Gener-
ally, the processing is comprised of four main steps [44,45]: (i) criteria and sub-criteria
determination to use in modeling; (ii) criteria and sub-criteria weight calculation; (iii) infor-
mation layers fuzzification; and (iv) final integration of information layers based on the
calculated weights.

Based on the available data and parameters and the exploration target (identification of
copper mineralization), the main criteria and sub-criteria were determined. The hierarchical
structure of the criteria and sub-criteria determined based on the exploratory layers is presented
in Figure 4. A total of five main criteria and eleven sub-criteria were determined for Fuzzy-AHP
modeling in this study. It should be noted that all coding and analysis related to data fusion
was done in the MATLAB software (R2020b, Portola Valley, CA, USA) environment.
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4. Results
4.1. Alteration Mapping Using ASTER Data

An overview of the lithological units and alteration zones in the Sahlabad mining
area was shown using false color composites (FCC) of bands 4 (red), 6 (green), and
(blue) 8 of ASTER (Figure 5). The selected bands of ASTER have corresponded to the
reflection (1.60–1.70 µm: band 4) and absorption properties (2.185–2.225 µm: band 6 and
2.295–2365 µm: band 8) related to Al-OH and Mg-Fe-OH mineral assemblages [20,46]. The
FCC helps to distinguish some of the main lithological units such as ultrabasic rocks and
ophiolite mélange (black ton), andesite (grey to brown hue), shale and sandstone (gray
to brown shade), tuff (dark grey color) and limestone (whitish pink shade). Moreover,
the altered zones might be depicted in pink to magenta color due to high reflectance of
OH-bearing minerals in band 4 of ASTER [20,46].

The phyllic and argillic alteration zones have strong Al-OH adsorption properties (il-
lite, montmorillonite, kaolinite, alunite, and muscovite) and can be represented as yellowish-
pink shade (Figure 5). The propylitic alteration regions might be mostly manifested in green
tone (Figure 5) due to the absorption properties of Fe-Mg-OH (chlorite and epidote) in
band 8 [47]. In the southeastern part of the study area, Quaternary alluvium appeared in a
red to dark color (Figure 5) attributed to high abundance of clay minerals [47]. Considering
the geological map of the study area, the rocks that have been subjected to phyllic and
argillic alteration are generally associated with felsic to moderate igneous units (i.e., gran-
odiorite and andesite) and sedimentary rocks such as sandstone and conglomerate. Altered
propylitic rocks in the study area are generally associated with mafic igneous units such as
basalt, ultrabasic units, andesite-basalt and andesitic lavas.

For detailed mapping of hydrothermal alteration minerals, band ratios of 4/2 (to
detect iron oxide/hydroxides: gossan), 5/6 (kaolinite and alunite: argillic alteration), 7/6
(muscovite and jarosite: phyllic alteration) and 9/8 (chlorite, epidote and calcite: propy-
litic alteration) [19,42,43] were assigned and implemented (Figure 6A–D). Subsequently,
the alteration zones were mapped in the study area. The results show that moderate
to high surface distribution of gossan is typically detected in ophiolite mélange, basalt,
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shale and sandstone, limestone, schist, and conglomerate (Figure 6A). Argillic alteration
is widespread in the study area, which is mainly associated with shale and sandstone,
ophiolite mélange, andesitic, ultrabasic rocks and conglomerate (Figure 6B). The phyllic
alteration zones show moderate to high surface distribution in many parts of the conglom-
erate, dacitic dyke, limestone and Quaternary sediments (Figure 6C). Moderate to high
surface distribution of propylitic alteration was mapped associated with ultrabasic rocks,
basalt, andesite, ophiolite mélange shale and sandstone (Figure 6D). Moderate to high
abundance of the alteration zones, especially propylitic, gossan and argillic zones were
found with copper deposits, old mines, and indices (Figure 6A–D).
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Additionally, the selective principal components analysis (SPCA) method was used to
detect the spatial distribution of gossan, argillic, phyllic and propylitic alteration regions
in this study. Bands 1, 2, 3 and 4 were selected to map gossan. Analyzing the eigenvector
matrix of the selected bands shows the PC2 contains strong loading in band 2 (0.586388) and
band 4 (−0.908873) with opposite signs (Table 4). The positive loadings of the eigenvectors
in the reflective bands (band 4) show the alterations in the form of bright pixels, while the
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negative loadings display the alterations in the dark pixels [36]. Therefore, iron oxides
(gossan) can be mapped as dark pixels in the PC2 image. This image is negated by
multiplication to −1 to show iron oxides (gossan) in bright pixels. Figure 7A shows
pseudo-color ramp of PC2 image. Moderate to high spatial distribution of iron oxides
(gossan) is mapped in andesite, ophiolite mélange, basalt, shale and sandstone, schist,
limestone and conglomerate. Results are almost similar to band ratio of 4/2, although some
parts of conglomerate and limestone show high surface distribution of iron oxides in the
southwestern and northeastern of the study area (Figure 7A).
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the surface distribution of propylitic alteration.

Considering the eigenvector matrix of bands 1, 4, 5 and 6 for mapping argillic zone
(Table 5), the PC4 has a strong contribution of band 5 (0.777935) and band 6 (−0.595506)
with reverse signs. Argillic alteration zone (kaolinite and alunite) displays absorption in
band 5 (2.145–2.185 µm) [20,46,47]. Thus, argillic alteration can be mapped as bright pixels
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in the PC4 image. A pseudo-color ramp of image PC4 is shown in Figure 7B. Argillic
alteration (strong to moderate) is mainly mapped in the shale and sandstone, ophiolite
mélange, ultrabasic, some part andesitic units and conglomerate and Quaternary deposits.
The results are almost identical with the band ratio of 5/6 (see Figure 6B).

Table 4. Eigenvector matrix of selected bands for detecting iron oxides (gossan) derived from SPCA.

Eigenvector Band 1 Band 2 Band 3 Band 4

PC 1 0.546195 0.644888 0.406994 0.346621
PC 2 0.372506 0.586388 −0.021196 −0.908873
PC 3 0.642726 −0.232160 −0.692243 0.231958
PC 4 −0.387056 0.703904 −0.595573 −0.000394

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 21 
 

 

identified propylitic zone is almost identical with the band ratio (9/8) results, however, 
SPCA shows strong surface distribution in northwestern and western parts of the study 
area. Propylitic, gossan and argillic zones are typically mapped in the location of copper 
deposits, old mines, and indices in the study area (see Figures 6 and 7). 

Table 7. Eigenvector matrix of selected bands for mapping propylitic zone derived from SPCA. 

Eigenvector Band 1 Band 4 Band 8 Band 9 
PC 1 −0.545145 −0.432945 −0.525490 −0.489117 
PC 2 −0.830444 0.168516 0.355665 0.394294 
PC 3 −0.109009 0.885442 −0.314765 −0.324087 
PC 4 0.036012 0.012378 −0.705894 0.707293 

 
Figure 7. Pseudo-color ramp of SPCA results. (A) PC2 shows the surface distribution of iron ox-
ide/hydroxides; (B) PC4 shows the surface distribution of argillic alteration; (C) PC4 shows the sur-
face distribution of phyllic alteration; (D) PC4 shows the surface distribution of propylitic alteration. 

Figure 7. Pseudo-color ramp of SPCA results. (A) PC2 shows the surface distribution of iron ox-
ide/hydroxides; (B) PC4 shows the surface distribution of argillic alteration; (C) PC4 shows the surface
distribution of phyllic alteration; (D) PC4 shows the surface distribution of propylitic alteration.



Remote Sens. 2022, 14, 5562 12 of 21

Table 5. Eigenvector matrix of selected bands for mapping argillic zone derived from SPCA.

Eigenvector Band 1 Band 4 Band 5 Band 6

PC 1 0.590462 0.465558 0.452265 0.479653
PC 2 0.805201 −0.296067 −0.381717 −0.343930
PC 3 0.034781 −0.810683 0.211106 0.544994
PC 4 0.042383 −0.195941 0.777935 −0.595506

Looking at the eigenvector matrix of bands 1, 4, 6 and 7 for identifying the phyllic
zone (Table 6), it seems that the PC4 contains information for mapping this alteration zone.
Strong loading in band 6 (−0.752127) with a negative sign and strong positive loading in
band 6 (0.652273) is presented for the PC4. Phyllic alteration exhibits absorption in band 7
(2.235–2.285 µm) and reflectance in band 6 (2.185–2.225 µm) [19]. Accordingly, the phyllic
zone will appear as dark pixels in the PC4 image. This image is negated (by multiplication
to −1) for converting the dark to bright pixels. Strong spatial distribution of phyllic zone is
associated with dacitic dyke, conglomerate, limestone, basalt, tuff, andesite and quaternary
sediments (Figure 7C). The SPCA results for mapping phyllic zone are matched to band
ratio of 7/6 (see Figure 6C).

Table 6. Eigenvector matrix of selected bands for mapping phyllic zone derived from SPCA.

Eigenvector Band 1 Band 4 Band 6 Band 7

PC 1 −0.583430 −0.457601 −0.472606 −0.476292
PC 2 −0.811464 0.294887 0.349311 0.364074
PC 3 −0.033560 0.833551 −0.298210 −0.463828
PC 4 0.003041 0.093998 −0.752127 0.652273

Analyzing the eigenvector matrix of bands 1, 4, 8 and 9 is considered for detecting
propylitic zone (Table 7). The PC4 has strong loading in band 8 (−0.705894) with a negative
sign and strong loading in band 9 (0.707293) with a positive sign. The propylitic zone is
characterized by absorption features of Fe, Mg-OH and CO3 [48]. The absorption features
are situated in band 8 (2.295–2.365 µm) [47]. Thus, propylitic zone can be mapped as bright
pixels in the PC4 image with considering band 9 as reflectance band. Propylitic alteration
is detected in ophiolite mélange, shale and sandstone, ultrabasic rocks, basalt, andesite
and some parts of conglomerate, limestone, and Quaternary sediments (Figure 7D). The
identified propylitic zone is almost identical with the band ratio (9/8) results, however,
SPCA shows strong surface distribution in northwestern and western parts of the study
area. Propylitic, gossan and argillic zones are typically mapped in the location of copper
deposits, old mines, and indices in the study area (see Figures 6 and 7).

Table 7. Eigenvector matrix of selected bands for mapping propylitic zone derived from SPCA.

Eigenvector Band 1 Band 4 Band 8 Band 9

PC 1 −0.545145 −0.432945 −0.525490 −0.489117
PC 2 −0.830444 0.168516 0.355665 0.394294
PC 3 −0.109009 0.885442 −0.314765 −0.324087
PC 4 0.036012 0.012378 −0.705894 0.707293

4.2. Geological Maps Derived from the Geochronology, Structures and Geochemistry

The host-rock of the known VMS copper deposits in the study area, namely Mes-
garan, Chah-Raste and Zahri are documented as andesite, andesite-basalt and basalt units.
Ultrabasic unit, ophiolite melange and schist are also related to structurally-controlled
copper mineralization in the study area [20,31]. The geological ages of the above mentioned
lithologies are Upper Cretaceous and Paleogene (see Tables 2 and 3). A geochronological
map of the study area was generated (Figure 8). This map shows the spatial distribution of
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lithological units for the geological ages of Neogene, Upper Cretaceous, Quaternary and
Paleogene. Copper deposits, old mines, and indices in the study area are mostly hosted
in Upper Cretaceous and Paleogene units (Figure 8). The three main copper deposits are
placed in Upper Cretaceous units. However, old mines and some of the indices are situated
in Paleogene units (see Figure 8).
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In the study area, fault systems and copper mineralization have a close relationship.
The fault system controlled the trend of the host lithology of copper mineralization [31].
Previous research in the study area confirmed that the high intensity areas (LF more than 30)
is one of the most important factors in identifying copper mineralization [31]. Accordingly,
the Lineament Factor (LF) map of the study area was adopted herein (Figure 9). The NW-SE
fault systems are controlling the lithology of the host-rock for copper mineralization. The
NW-SE fault systems are consistent with the main trend of lithological units related to
copper deposits, old mines, and indices in the area (see Figure 9). Figure 10 shows the
geochemical map for geochemical family of copper (Pb, Zn, Sn, Ag and Mo) in the study
area. The elements Pb, Zn, Sn, Ag and Mo were considered as trace elements and predictor
composition of copper mineralization in the study area. Hence, the group behavior was
investigated to clarify the geochemical relationships of trace elements with the Cu. Copper
deposits, old mines, and indices in the study area are mainly associated with moderate to
high anomaly zones (Figure 10).
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4.3. Fusion of Information Layers

In the BPNN algorithm, the training data (see Table 3) should be divided into two
categories (30% to 70%). For this purpose, the training data were randomly divided into
two groups and 70% of the group entered the artificial neural network. The result of the
estimated line of copper mineralization with real points in the training data and test data is
presented in Figure 11A,B and the accuracy of the training data and test data was estimated
(Figure 11C,D). According to the results, the accuracy value for training data and test data
is over 99%. This result indicates a high performance of the BPNN algorithm in predicting
information about copper mineralization in the Sahlabad mining area. In other words,
the information obtained from copper exploration studies in the area is practically 99%
reliable and is sufficiently fit to be used in the decision-making process and the integration
of information layers.
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Figure 11. (A) Copper occurrences estimation line based on copper occurrences in training data;
(B) copper occurrences estimation line based on copper occurrences in test data; (C) regression of
estimated data versus training data; (D) regression of estimated data versus test data.

After determining the main criteria and sub-criteria in the Fuzzy-AHP method (see
Figure 4), their weights were calculated successively. A paired comparison matrix was
formed for the main criteria and sub-criteria and based on expert opinions and prioriti-
zation table [45,46]. The main criteria and sub-criteria weights were calculated by paired
comparison. Paired comparison matrices for the main criteria and sub-criteria are presented
in Tables 8–11, respectively. According to the calculations performed for each of the above
paired comparison matrices, the Inconsistency Rate (IR) (%) was obtained for the main
criteria and sub-criteria matrices (Table 12). Given that all Inconsistency Rates (IRs) are less
than 10%, it can be said that the consistency of the expert judgment is accepted [45]. At
information layers fuzzification stage, each information layer, which was defined as the
main criteria, was fuzzified based on fuzzy logic. Fuzzy maps are shown in Figure 12.
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Table 8. Paired comparison matrix and calculated weights for each of the main criteria by
AHP method.

Criteria Geology Geochronology Structural
Geology Geochemistry Alterations Importance Rank Weight (%)

Geology 1 4 0.2 3 0.25 3 13.3
Geochronology 0.25 1 0.14 0.2 0.14 5 3.6

Structural
Geology 5 7 1 5 2 1 44.6

Geochemistry 0.33 5 0.2 1 0.33 4 9.3
Alterations 4 7 0.5 3 1 2 29.2

Table 9. Paired comparison matrix and calculated weights for sub-criteria of geology criteria by
AHP method.

Sub-Criteria of Geology An Ba Ml Ub Importance Rank Weight (%)

An 1 1 0.33 0.2 3 9.9
Ba 1 1 0.33 0.2 3 9.9
Ml 3 3 1 0.5 2 28.4
Ub 5 5 2 1 1 51.8

Table 10. Paired comparison matrix and calculated weights for sub-criteria of geochronology criteria
by AHP method.

Sub-Criteria of Geochronology Upper Cretaceous Paleogene Importance Rank Weight (%)

Upper Cretaceous 1 2 1 66.7
Paleogene 0.5 1 2 33.3

Table 11. Paired comparison matrix and calculated weights for sub-criteria of alterations criteria by
AHP method.

Sub-Criteria of Alterations Argillic Phyllic Propylitic Importance Rank Weight (%)

Argillic 1 1 1 1 33.3
Phyllic 1 1 1 1 33.3

Propylitic 1 1 1 1 33.3

Table 12. The inconsistency rate (%) of criteria and sub-criteria paired comparison matrices.

Inconsistency Rate (%)

Main Criteria 8.9
Sub-criteria of Geology 0.2

Sub-criteria of Geochronology 0
Sub-criteria of Alterations 0

In the fusion of information layers based on the calculated weights step, the fuzzified
information layers were integrated using AHP and based on the calculated weights. Con-
sequently, the final fused map/potential map of copper mineralization for the Sahlabad
mining area was generated (Figure 13). In the potential map of the study area (Figure 13),
copper occurrences in the area, including copper deposits, old mines and mineral indices
were plotted to validate the results. The map shows the potential copper mineraliza-
tion zones (Figure 13). The areas with the highest potential are shown in the black color
spectrum and the areas with the lowest potential or barren areas are shown in the white
spectrum. As can be seen in Figure 13, all copper occurrences in the Sahlabad mining area
are located in areas with high potential copper mineralization. This indicates the high
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validity of the results. Some new copper potential zones are also identified in northwestern
and southeastern parts of the study area (Figure 13). These zones can be considered for
subsequent field campaigns and drilling programs in the Sahlabad mining area.
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zones (Figure 13). The areas with the highest potential are shown in the black color spec-
trum and the areas with the lowest potential or barren areas are shown in the white spec-
trum. As can be seen in Figure 13, all copper occurrences in the Sahlabad mining area are 
located in areas with high potential copper mineralization. This indicates the high validity 
of the results. Some new copper potential zones are also identified in northwestern and 
southeastern parts of the study area (Figure 13). These zones can be considered for subse-
quent field campaigns and drilling programs in the Sahlabad mining area. 
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5. Discussion

Identifying potential areas of VMS copper mineralization depends on various parame-
ters such as fault systems, lithological and geochronological units, geochemical anomalies
and hydrothermal alteration mineral zones [49–51]. Using information layer integration
methods has a great potential to increase the accuracy of the identification of high potential
areas. Recently, Artificial Intelligence (AI)-based techniques such as Machine Learning
(ML) and Artificial Neural Network (ANN) have been successfully used for mineral explo-
ration [52–55]. In this research, the BPNN method was used before integrating exploratory
information layers by Fuzzy-AHP for exploration of massive sulfide copper mineralization
in the Sahlabad mining area, east Iran. In fact, the BPNN evaluates the ability to predict



Remote Sens. 2022, 14, 5562 18 of 21

copper occurrences by prospecting parameters that exploratory information layers pro-
vided based on them. This integrated technique is called Neuro-Fuzzy-AHP (NFAHP),
which is developed in the present study.

To use the proposed BPNN network, exploratory features of each copper occurrence
such as host lithology, geochemical anomalies, fault system, ore mineralization, alterations
and geochronological units of each copper occurrence should be investigated. The BPNN
technique ensures the prediction ability of the information layers before combining them.
If the exploratory features cannot predict copper occurrences, they should be removed in
the final decision making (Fuzzy-AHP). Another advantage of the combined use of BPNN
with Fuzzy-AHP is to help prioritize information layers relative to each other.

In this research, by using the exploratory parameters related to 14 occurrences of
massive sulfide copper in the Sahlabad mining area, the prediction of copper mineralization
was established with 99% accuracy. Then, by combining exploration layers, the map of
copper mineralization potential in the area was prepared using fuzzy-AHP method. After
plotting the copper occurrences, as can be seen in the map in Figure 13, all the documented
points are located in areas with high potential for massive sulfide copper mineralization.
The NFAHP approach presented in this study first evaluates the input data by means of the
BPNN algorithm to determine whether the mineralizations in question can be estimated
based on the factors or not. Then, if the accuracy of the factors is confirmed, it combines the
information layers with each other (by Fuzzy-AHP). Therefore, using the NFAHP, any type
of mineralization can be prospected, provided that the exploration factors related to target
mineralization type, are taken precisely. In fact, using a greater number of information
layers and exploration factors, more accurate results will be obtained.

6. Conclusions

To identify the potential areas of VMS copper mineralization in Sahlabad mining
area, east of Iran, hydrothermal alterations including argillic, phyllic and propylitic, were
identified using band ratios and SPCA that were implemented to ASTER remote sensing
data. The integration of faults and the alteration map showed that the faults are one
of the controlling factors of the alterations and ore mineralization trend in the study
area. Information layers, including alterations, geochemistry, host lithology, LF map
and geochronology have been prepared based on exploration factors related to copper
occurrences in the study area. Subsequently, using the BPNN, the predictive power of
copper occurrences estimation was evaluated based on exploration factors. According to
the results, the available exploration factors with an accuracy of 99% were able to estimate
copper mineralizations in the Sahlabad mining area. After the validity of the available
information had been confirmed by BPNN, the information layers were fused using the
Fuzzy-AHP decision method and a copper mineralization potential map was produced.
Copper occurrences points were plotted on the final map. In this way, the validation of
the final map was examined. As a result, all points were located in high potential areas,
which shows the high reliability of this map. It is recommended that the Neuro-Fuzzy-
AHP (NFAHP) technique can be considered for mineral exploration in other metallogenic
provinces in Iran and other regions around the world.
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