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Abstract: Limited monitoring activities to assess data on heavy metal (HM) concentration contribute
to worldwide concern for the environmental quality and the degree of toxicants in areas where
there are elevated metals concentrations. Hence, this study used in-situ physicochemical parameters
to the limited data on HM concentration in SW and GW. The site of the study was Marinduque
Island Province in the Philippines, which experienced two mining disasters. Prediction model results
showed that the SW models during the dry and wet seasons recorded a mean squared error (MSE)
ranging from 6 × 10−7 to 0.070276. The GW models recorded a range from 5 × 10−8 to 0.045373, all
of which were approaching the ideal MSE value of 0. Kling–Gupta efficiency values of developed
models were all greater than 0.95. The developed neural network-particle swarm optimization (NN-
PSO) models for SW and GW were compared to linear and support vector machine (SVM) models
and previously published deterministic and artificial intelligence (AI) models. The findings indicated
that the developed NN-PSO models are superior to the developed linear and SVM models, up to 1.60
and 1.40 times greater than the best model observed created by linear and SVM models for SW and
GW, respectively. The developed models were also on par with previously published deterministic
and AI-based models considering their prediction capability. Sensitivity analysis using Olden’s
connection weights approach showed that pH influenced the concentration of HM significantly.
Established on the research findings, it can be stated that the NN-PSO is an effective and practical
approach in the prediction of HM concentration in water resources that contributes a solution to the
limited HM concentration monitored data.

Keywords: groundwater; surface water; heavy metals; neural network; particle swarm optimization

1. Introduction

The Philippines is an archipelagic country consisting of more than 7600 islands in the
Southeast Asian region. The Philippines is among the countries in the world with vast
mineral deposits, and it was assessed that thirty percent of the land area of the country has
the resources to commence mining activities [1]. Although the mining industry provides
immense livelihood opportunities, mining activities in the Philippines have a mixed foot-
print of economic progress and impact on humans and the environment. Consequently,
regular environmental quality monitoring, especially heavy metal (HM) concentration, is
lacking due to access to equipment, laboratory facilities, and water resource locations to
regularly monitor the degree of HM concentration. These resources could lead to different

Toxics 2022, 10, 95. https://doi.org/10.3390/toxics10020095 https://www.mdpi.com/journal/toxics

https://doi.org/10.3390/toxics10020095
https://doi.org/10.3390/toxics10020095
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/toxics
https://www.mdpi.com
https://orcid.org/0000-0002-5255-9979
https://doi.org/10.3390/toxics10020095
https://www.mdpi.com/journal/toxics
https://www.mdpi.com/article/10.3390/toxics10020095?type=check_update&version=2


Toxics 2022, 10, 95 2 of 44

risks, as much evidence is available that proper education and information regarding HM
concentrations in water resources are essential. Lack of information on the quality of water
could result in several detrimental effects not only on the environment but also on the
health of the people in the community [2]. The list of abbreviations and symbols in this
study is presented in Table 1.

Table 1. List of abbreviations and symbols used in this study.

Abbreviation/
Symbol Description Abbreviation/

Symbol Description

AAS Atomic Absorption Spectroscopy IoT Internet of Things
AI Artificial Intelligence KGE Kling-Gupta Efficiency

AIC Akaike Information Criterion KNN K-Nearest Neighbor
AMD Acid Mine Drainage LM Levenberg-Marquardt
ANN Artificial Neural Network LSTM Long Short-Term Memory
BBO Biogeography-Based Optimization LSW Lake Surface Water
BP Back Propagation M5P Model Tree

BR Bayesian Regularization MANFIS Multi-output Adaptive Neuro-Fuzzy
Inference System

CA Cluster Analysis MHMI Modified Heavy Metal Index
CI Contamination Index ML Machine Learning

CSW Coastal Surface Water MLGI Machine Learning Geostatistical
Interpolation

EBK Empirical Bayesian Kriging MLR Multiple Linear Regression

EHCI Entropy Weight-based HM Conc.
Index NARX Non-linear AutoRegressive

eXogeneous
FCM Fuzzy c-means Clustering Method PLI Pollution Load Index

GA Genetic Algorithm PMI Principal Component Analysis-based
Metal Index

GEP Gene Expression Programming PSO Particle Swarm Optimization
GFF Generalized Feed Forward RBF Radial Basis Function
GP Grid Partitioning RI Relative Importance

GRNN Generalized Regression Neural
Network SCM Subtractive Clustering Method

HEI Heavy Metal Evaluation Index SPI Synthetic Pollution Index

hN-PSO Hybrid Neuro-Particle Swarm
Optimization SVM Support Vector Machine

HPI Heavy Metal Pollution Index SVM-Poly SVM with Polynomial
ICA Imperialist Competitive Algorithm WQG Water Quality Guidelines

ICP-OES Inductively Coupled Plasma-Optical
Emission Spectrometry WQI Water Quality Index

Numerous areas affected by mine tailings have been identified in the Philippines.
These mine tailings, normally called acid mine drainage (AMD), are primarily in remote
areas and regions where access is a challenge. Due to vast deposits of minerals in the
Philippines, mining activities commenced in several provinces of the archipelago. Some
of these activities resulted in detrimental and extreme mining disasters that released toxic
substances into the environment, affecting the ecosystem and the community adjacent to
the mining site [3]. The summary of the mining disasters in the Philippines is presented in
Table A1 in Appendix A.

Due to the inadequacies in environmental quality assessment, individuals lack aware-
ness and understanding of the hazards presented by heavy metals to people, especially in
low-income countries such as the Philippines [4]. Nearly three decades of mining tailings
discharge on Marinduque Island have resulted in higher levels of HM in the environment
and residents. The typical exposure pathways of Marinduque villagers residing near the
Boac and Mogpog river, where mine tailings were hosted in 1993 and 1996, were bathing,
laundering, and passing through the river without protective gear or equipment [5].
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Heavy metal contamination in water resources is associated with high toxicity, per-
manence, and resistance to degradation, disrupting the regular function of water resource
systems and constituting a hazard to people by accessing various routes and developing
adverse significant health problems [6]. Exposure to these heavy metals can lead to many
diseases, including kidney problems such as proteinuria from cadmium exposure [7]; lung
carcinoma from chromium exposure [8]; severe damage to the nervous and reproductive
system, kidneys, and liver from lead exposure [9]; manganism, which is described as a
Parkinson’s-like syndrome that manifests weakness, myalgia, anorexia nervosa, apathy,
slow speech, emotionless facial expression, monotonous tone of voice, and clumsy limb
movement from manganese exposure [10]; contact dermatitis and eczema and respiratory
problems from oral exposure to nickel [11]; damage to the liver, brain, and kidney from
long-term copper exposure [12]; tissue damage, organ failure, and elevated cancer risks
from exposure to high concentrations of iron [13]; risk of developing anemia and damage
to the pancreas from chronic toxicity of zinc [14].

Testing of groundwater (GW) and surface water (SW) samples is a tedious activity
due to the different phases involved such as collection, transport, treatment, storage, and
analysis of samples. Another issue that might be encountered is the high cost involved in
the elemental analysis of these water samples. An additional challenge encountered by the
researchers in Marinduque Province is the difficulty in the procurement period for reagents,
chemical, and calibration standard solutions that could take 3–4 months to receive, as there
are imported from other countries. Another factor affecting the deficiency in monitoring
water resources affected by AMD is insufficient skilled personnel to perform the periodic
collection and testing of water samples. This condition has been experienced by various
local government units (LGUs). Moreover, although inductively coupled plasma (ICP) and
atomic absorption spectroscopy (AAS) instruments are being used effectively for heavy
metal detection in aquatic environments, several disadvantages, such as expensive instru-
mentation, limited sample throughput, slow turnaround time, difficulty in performing
required measurements for in-situ samples, and consumption of chemicals, have restricted
their frequent use in affected mine tailing sites [15,16]. This situation prompted researchers
to look for equally viable approaches to serve the need for convenient and regular water
quality assessment and monitoring.

The use of innovative tools and methods is essential to address the current issues on
environmental quality monitoring, especially in areas where there are AMDs. The onset of
the industry 4.0 scenario gives birth to artificial intelligence (AI) tools and techniques that
include the Internet of Things (IoT), smart sensors, advanced robotics, big data analytics,
3D printing, augmented reality, location detection, cloud computing, and machine learning
(ML). Due to the input and output correlation capability of ML, it can be used as a possible
approach for addressing the deficiency of instruments used for elemental analysis and tools
to determine the concentration of the metals in surface and groundwater [17].

Machine learning is a data analytics technology that enables computers to learn from
their experiences. It makes use of computational tools to derive knowledge completely
from information, rather than depending on a predefined equation as a model. ML tech-
niques discover natural patterns in data, providing insight and assisting in making more
accurate judgments and predictions [18]. The transition to industry 4.0, including the rise
in big data, enables the use of ML to become an essential technique in problem-solving of
different areas and industries, including environmental quality monitoring [19]. The ML
methods are classified into two categories: supervised and unsupervised learning. Whereas
supervised learning is used to train a model on identified input and output datasets to
forecast future outputs, unsupervised learning is used to discover unknown patterns or
inherent structures in the input dataset. Supervised and unsupervised machine learning
techniques are used concurrently. Classification and regression are part of supervised learn-
ing, whereas clustering is part of unsupervised learning. Support vector machines (SVM),
discriminant analysis, Naive Bayes, and nearest neighbor are all examples of classification
techniques, whereas multiple linear regression (MLR), generalized linear models, support
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vector regression (SVR), Gaussian process regression, ensemble methods, decision trees,
and neural networks are all examples of regression techniques. The clustering approaches
under unsupervised learning include hierarchical clustering, Markov models, and neural
networks. Neural networks are classified as both supervised and unsupervised machine
learning under the regression and clustering category.

The utilization of artificial neural networks (ANN) can capture the dominant character-
istics of complex and non-linear systems. Neural networks apply a modeling method that
is based on empirical data rather than on simplified ideal assumptions. ANN is broadly
applied in various areas of environmental engineering such as air quality monitoring [20],
soil quality monitoring [21], and water quality prediction [22]. The use of ANN was
found to be superior in performance as it was implemented in various fields including
medicine [23–25], geotechnical engineering [26], petroleum engineering [27], construction
technology [28], building energy [29], and waste management [30], as compared to other
models, such as linear and SVM models. Moreover, it was also found out that integrating
an optimization technique to ANN further improved its performance as compared to linear
and SVM models as observed in the studies of Sun et al. in 2019 [31] and Zhang et al. in
2020 [32].

Neural networks are a heuristic modeling technique that is established on the behavior
of genetic neural configurations. ANN could eliminate the tedious and invasive process
of digestion of water samples to obtain heavy metal concentrations [33,34]. By combining
the input and output data, it is possible to construct a network of interconnected neurons
capable of predicting variables given a set of inputs. The simplest and most broadly em-
ployed type of neural network is the feed-forward multilayered backpropagation algorithm
(BP-NN). However, traditional algorithms such as BP-NN have limitations such as being
unable to traverse error function peaks.

To address the BP-NN difficulties, evolutionary algorithms optimization methods
such as particle swarm optimization (PSO) are used. PSO has a global search function that
could be utilized to optimize the performance of the BP-NN [35]. The PSO method is a
well-established optimization technique that draws inspiration from the group interactions
and motion patterns of insects, birds, and fish. It is a search method based on optimization
and stochastic population search that seeks to solve problems in a continuous solution
space [36].

Recent studies involved the use of different ML tools in predicting heavy metals in
AMD-affected surface and groundwater sites. Table 2 presents the machine learning models
from published papers predicting heavy metal concentrations in surface and groundwater.

Table 2. Published heavy metal prediction models in groundwater and surface water.

Prediction Method Sample Type Target Output(s) of the Model Reference

ANN–PSO, ANN- Bayesian Regularization (BR) GW As, Cu, Pb, Zn [37]

ANN–Imperialist Competitive Algorithm (ICA),
ANN–Levenberg–Marquardt (LM) GW As, Cu, Pb, Zn [38]

ANN, ANN–Biogeography–Based Optimization
(BBO) Algorithm, Multi-output Adaptive

Neuro-Fuzzy Inference System
(MANFIS)–Subtractive Clustering

Method (SCM)

GW Fe, Mn, Pb, Zn [39]

SVM based Regression–Radial Basis
Function (RBF) GW Pb, Zn, Cu [40]

ANN GW Si, Al, Fe, K, Ca, Na, Mg, Cl, Mn, Sr,
Br(Groundwater) [41]

BP-NN, Nonlinear AutoRegressive
eXogenous (NARX) GW As [42]
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Table 2. Cont.

Prediction Method Sample Type Target Output(s) of the Model Reference

ANN GW Water Quality Index [43]

ANN, MLR GW pH, EC, TDS, TH, MHMI, PLI, SPI [44]

ANN, Deep Learning GW HPI, HEI, CI, EHCI, HMI, PMI [45]

MLP-NN, Elman-NN, GFF-NN GW Pb, Zn, As [46]

BP-NN GW
Turbidity, Fe, Cl, SO4, TDS, TH, Mn,
Zn, KMnO4 Index, NO3-N, NO2-N,

NH3-N, F
[47]

MLR, BP-NN, GEP SW WQI [48]

NARX, BP-NN CSW Cr, Ni, Cu, Pb [49]

K-Means CA, BP-NN LSW Fe, Cu [50]

ANN, SVM SW Ti, Cu, Mn, Ni, As, Cd, Sb, Pb [51]

MANFIS–Grid Partitioning (GP), MANFIS-SCM,
MANFIS–Fuzzy c-means Clustering

Method (FCM)
SW Cu, Fe, Mn, Zn [52]

Adaptive Neuro–Fuzzy Inference
System (ANFIS) SW Cd [53]

ANN–LM, ANN–ICA SW As, Cu, Pb, Zn [38]

ANN SW Mn [42]

ANN, SVM with Polynomial (SVM-Poly),
SVM–RBF, Model Tree (M5P), K–Nearest

Neighbor (K-NN)
SW Cu [54]

ANN SW Cu [55]

SVM, Generalized Regression Neural
Network (GRNN) SW Cu, Fe, Mn, Zn [56]

SVM, ANN SW Ni, Fe [57]

BP-LM SW Cd, Cr, Cu, [58]

These ML models for heavy metal detection were developed using water parameters
that can only be obtained through laboratory testing such as nitrate, sulphate, biological
oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (TN), total phos-
phorus (TP), and phosphate, to name a few. The in-situ implementation has never been
carried out due to due to the challenges described above. Therefore, the purpose of this
study was to develop a heavy metal prediction model that utilized in-situ measurements
to create tools, such as prediction models, to address the challenges in conducting regular
water quality assessment and monitoring.

2. Materials and Methods

The study implemented a hybrid neuro–particle swarm optimization (hN-PSO) ap-
proach in predicting heavy metal concentrations in SW and GW. This hN-PSO method
utilized simple physicochemical water properties such as temperature, water pH, electri-
cal conductivity (EC), and total dissolved solids (TDS) as input datasets. The number of
water samples with elemental analysis was also included. These SW and GW samples
were utilized to generate spatial concentration maps of physicochemical parameters and
heavy metal concentrations using the machine learning geostatistical interpolation (MLGI)
approach through the use of MATLAB and GIS ArcMap. The following sections detail the
focus and analysis implemented in this study.
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2.1. Location of the Study and Data Gathering

One of the largest mining activities in the country was in the province of Marinduque,
an island in the southern portion of Luzon approximately 160 km south of Metro Manila.
The mining operations in the province started in 1969 and the generated mine tailings were
discharged to the major water bodies on the island [59]. An earth dam was constructed
at Maguilaguila to prevent silt from a waste pit from being discharged to the Mogpog
River. A dam break happened in 1993 and impacted the Mogpog River, causing detrimental
effects such as flooding, significant adverse effects on the infrastructure, agriculture, and
public health in the surrounding community. In 1996, the Tapian Pit collapsed, dumping
approximately 180,000 to 260,000 m3 of mine tailings into the 27-km-long Boac River. This
was considered one of the world’s worst mining disasters [60]. The rivers and tributaries in
the province of Marinduque were shown in Figure 1.
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Figure 1. Major rivers and its tributaries in the province of Marinduque.

The GW samples were collected from various wells from six municipalities of Marinduque
island province. Surface water samples were also taken from the island province’s different
rivers and tributaries. One (1) liter polyethylene bottle was used for samples collection.
The GW and SW data were gathered in accordance with EPA regulations SESDPROC-301-
R3 [61] and SESDPROC-201-R3 [62]. The SW bodies in the province of Marinduque are
classified as Type C, which is defined as fishery water for the reproduction as well as the
growth of aquatic species, for boating, fishing, and water for agriculture, according to the
Department of Environment and Natural Resources (DENR) Administrative Order (DAO)
2016–08 [63]. The island province has a climatic classification of Type III, with a Dry Season
(DS) running from November to April and a Wet Season (WS) spanning the remainder of
the year [64]. Both GW and SW samples were collected covering the DS and WS.

2.2. Analysis of Physicochemical Parameters and HM Concentrations

In–situ measurements of the physicochemical parameters from 62 SW and 34 GW
sampling sites were collected during the DS, whereas 59 SW and 49 GW were collected
during the WS. These water properties were temperature (◦C), pH, EC (µS/cm), and TDS
(mg/L) using a Hanna HI 9811-5 handheld multi-parameter sampler. Total metals were also
quantified for each surface water and groundwater sample. The EPA Method 3005A and
200.7 were used for the acid digestion and elemental analysis, respectively, to determine
total recoverable or dissolved metals [65,66] and HM metal concentrations for SW and
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GW at limited sampling locations. The elemental analysis was carried out by ICP-OES
Optima 8000.

2.3. Neuro-Particle Swarm Optimization Modelling (NN-PSO)

The prediction models for the HM concentration in SW and GW were developed using
a particle swarm optimization informed backpropagation neural network. For this purpose,
the MATLAB R2021a Neural Network Toolbox was utilized throughout the study.

2.3.1. Machine Learning Geostatistical Interpolation (MLGI) Mapping

The collected surface water and groundwater samples during the dry season (DS) and
wet season (WS) were mapped using an MLGI method [67]. This included physicochemical
parameters and heavy metal concentrations of SW and GW. The hybrid technique integrated
with the empirical Bayesian kriging (EBK) method generated the spatial concentration
maps of the target study area. The generated maps were used as part of the datasets utilized
in the development of heavy metal prediction models.

2.3.2. Data Pre-Processing

The ANN is capable of processing purely numerical data input. As a result, all
data must be transformed into numerical data input format. Data normalization was
accomplished by scaling the network’s input and output data nodes between −1 and +1.
To prevent the inverse effect of input variables with differing scales, the data from the
input variables and heavy metal concentrations were normalized to the same scale. Data
normalization was used to ensure rapid convergence and to acquire the lowest mean square
error (MSE) values possible [45]. The normalized values of each input and output were
achieved using Equation (1).

y =
(ymax − ymin)(x− xmin)

(xmax − xmin)
+ ymin (1)

where y is the normalized value, ymax = +1, ymin = −1, x is the real value, and xmax and xmin
are the upper and lower limit quantities of the parameter being normalized.

2.3.3. Backpropagation Neural Network

ANN is a basic and appropriate approach for modeling non-linear connections. To
describe the effects of each aspect, it is based on a mathematical model that incorporates
managing components called neurons and the relationships between them. This approach’s
extensive flexibility to generate outcomes from complex or partial data makes it ideal
for forecasting unique scenarios [68]. ANN is a data management strategy that mimics
how a natural neural system like the human brain integrates data. It exports experi-
mental data to the network configuration. The network understands the total system by
calculating mathematical facts. The model’s key feature is its unique data management
structure arrangement. An ANN is designed to categorize data or identify arrays using
knowledge-based techniques. The synaptic interactions between neurons include learning
knowledge [69]. The learning methodology is used to change and develop the neural
network. The model is upgraded to provide a better result from a given input. An ANN
is composed of three layers, each of which is derived from a biological neuron. Input
neurons (IN) of the biological neuron transmit data to the hidden layer (HL), which in
turn delivers data to the output neurons (ON). During activation, each neuron performs
a biased sum of the inputs from the neurons to which it is linked. If the entire database
exceeds the established limitation amount, the neuron links to additional neurons called
transfer [70,71].

The internal characteristics of the surface water and groundwater heavy metal pre-
diction model include the training algorithm and the transfer function. The LM approach
(training algorithm) employs a second-order derivative of the performance index but ap-
proximates the Hessian matrix using the Jacobian gradient. This approach is the fastest
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way to train feedforward ANNs with a few hundredweights [72]. For the transfer function,
the hyperbolic tangent sigmoid (tansig) is the most often utilized neural activation function
for multilayer networks. The tansig functions return outputs scaled between −1 and 1 [73].
The architecture of the heavy metal prediction models is presented in Figure 2.

Toxics 2022, 10, x FOR PEER REVIEW 8 of 45 
 

 

knowledge [69]. The learning methodology is used to change and develop the neural net-
work. The model is upgraded to provide a better result from a given input. An ANN is 
composed of three layers, each of which is derived from a biological neuron. Input neu-
rons (IN) of the biological neuron transmit data to the hidden layer (HL), which in turn 
delivers data to the output neurons (ON). During activation, each neuron performs a bi-
ased sum of the inputs from the neurons to which it is linked. If the entire database ex-
ceeds the established limitation amount, the neuron links to additional neurons called 
transfer [70,71]. 

The internal characteristics of the surface water and groundwater heavy metal pre-
diction model include the training algorithm and the transfer function. The LM approach 
(training algorithm) employs a second-order derivative of the performance index but ap-
proximates the Hessian matrix using the Jacobian gradient. This approach is the fastest 
way to train feedforward ANNs with a few hundredweights [72]. For the transfer func-
tion, the hyperbolic tangent sigmoid (tansig) is the most often utilized neural activation 
function for multilayer networks. The tansig functions return outputs scaled between -1 
and 1 [73]. The architecture of the heavy metal prediction models is presented in Figure 2. 

 
Figure 2. The architecture of the heavy metal prediction models. 

The complete data array used during the training and testing stages was split into 
two groups. One set contains 70% of the dataset utilized for network training, whereas the 
remaining 30% of the data were used for network validation (15%) and testing (15%). The 
training procedure involved exhibiting entire example pattern pairs in the training dataset 
to the network and adjusting the weights of the connections until desired values are ob-
tained by the MATLAB Neural Network Toolbox using an iteration-based method. The 
trained network is exposed to the testing data array to verify the efficiency of the training 
process after the training procedure is complete [74]. The purpose of the testing step of an 
ANN model is to ensure that the constructed model was properly trained, and that ade-
quate generalization was achieved. As a result, testing and training the network are basi-
cally similar. The testing set is crucial for ensuring that the network has not only remem-
bered a particular dataset but has also learned the application-specific patterns. The test-
ing dataset is a separate dataset that is unknown to the network. After the training phase 
was completed, the testing dataset is employed to validate and generalize the trained net-
work. When the network can exactly generalize the output for this testing data, the neural 
network is able to properly forecast the output for new data, and the network is verified 
[75]. 

Figure 2. The architecture of the heavy metal prediction models.

The complete data array used during the training and testing stages was split into
two groups. One set contains 70% of the dataset utilized for network training, whereas
the remaining 30% of the data were used for network validation (15%) and testing (15%).
The training procedure involved exhibiting entire example pattern pairs in the training
dataset to the network and adjusting the weights of the connections until desired values
are obtained by the MATLAB Neural Network Toolbox using an iteration-based method.
The trained network is exposed to the testing data array to verify the efficiency of the
training process after the training procedure is complete [74]. The purpose of the testing
step of an ANN model is to ensure that the constructed model was properly trained, and
that adequate generalization was achieved. As a result, testing and training the network
are basically similar. The testing set is crucial for ensuring that the network has not only
remembered a particular dataset but has also learned the application-specific patterns. The
testing dataset is a separate dataset that is unknown to the network. After the training
phase was completed, the testing dataset is employed to validate and generalize the trained
network. When the network can exactly generalize the output for this testing data, the
neural network is able to properly forecast the output for new data, and the network is
verified [75].

The number of hidden layers was reduced to one, and the number of hidden neurons
was limited to 1–30 to prevent an overly complex model. Additionally, the early stopping
approach was used to avoid overfitting. The training was halted at the moment of the
lowest error [76].

2.3.4. Particle Swarm Optimization

PSO is a well-known evolutionary process that is motivated by the individual inter-
action and mobility kinetics of insects, birds, and fish. It is a search method based on
optimization and population stochastic search that seeks to solve problems in a continuous
search space [11]. Particle swarm optimization’s primary benefits over other optimization
methods such as ICA and genetic algorithm (GA) are its faster learning rate and lower
memory requirements. The particle motions determine the optimal global and optimal
personal locations using the PSO. Equations (2) and (3) are the equations for the location
and velocity of the particles.

Xn = Xc + Vn (2)
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Vn = ωVc + Cara(pbest − Xc) + Cara(gbest − Xc) (3)

where Vc, Vn, Xc, and Xn refer to the particle’s current and new velocity and location, re-
spectively. Additionally, Ca and Cb indicate two positive and steady acceleration quantities
designated from operators. The variables ra and rb refer to arbitrary variables in the form
of (0,1), whereasω denotes the inertia weight (IW) [77].

2.3.5. Hybrid NN-PSO (hN-PSO)

The ANN’s training process generates a minimization issue that may be addressed
using either traditional or metaheuristic techniques. In an hH-PSO model, the PSO is used
to reduce the ANN’s errors by establishing the model’s optimal weights and biases [78].
The parameters in this study are the weights and biases, and the model’s viable area is
based on the interval over which these parameters fluctuate. Equation (4) may be utilized
to determine the fitness function of the ith particle.

E(wi, bi) =

√√√√ 1
S

S

∑
k=1

[
O

∑
l=1
{Tkl − Pkl(wi, bi)}2

]
(4)

where E is the fitness variable, Tkl is the target variable, Pkl is the forecasted variable output
based on weights and biases, S is the population of training samples, and O is the number
of neurons.

The following steps are required to implement the hN-PSO model: (a) developing an
ANN model with initial weights and biases using a specified number of hidden neurons
(HN) in the HL, (b) revising the weights and biases to represent the location of a particle in
the model’s “x”-dimensional space, where “x” is the total number of weights and biases,
(c) using each particle in each iteration, output values can be predicted and the fitness
function value can be calculated using Equation (3), and (d) updating the location of the
particles by the PSO algorithm for a specified number of populations and iterations until
the target is achieved (fitness function is minimized) [35]. The number of HN for HM
models assessed in this research ranges from 1 to 30, as suggested by Tufaner and Demicri
in 2020 [79]. Moreover, the number of iterations has been set to 2000 as suggested in the
study of Rukhaiyar et al. in 2018 [80]. The hN-PSO system for predicting the heavy metal
concentration is shown in Figure 3 [32].

PSO was used to train and optimize the initial ANN model. The neural network’s
weights and biases were introduced and optimized using the following steps: (a) data
collection, (b) network development, (c) network design, (d) initial weights and biases,
(e) ANN training using PSO, (f) network validation, and (g) network acceptance as the
governing model. Following the preparation of the obtained data, the PSO initialized the
particles randomly, including the number of hidden neurons and transfer function and the
location and velocity of each particle, which are updated with each iteration. The process
starts by traversing the hyperspace of possible solutions in search of the ideal solution. At
each iteration, the particles respond adequately depending on their knowledge of other
particles. The ANN optimization block diagram using PSO is presented in Figure 4 [81].

2.3.6. Performance Validation and Measurement

Internal and external validation will be used to assess the network’s performance. In-
ternal validation is a component of the model’s development phase and will be carried out
in the manner proposed by Thio et al. [82]. An external validation, which includes an exter-
nal dataset, will be performed to assess the generalizability of the governing neural network
architecture when applied to an external set of data [83,84]. The performance measurement
criteria used is the Pearson’s correlation coefficient (PCC) and MSE wherein the ideal value
is 1 and 0 for the Pearson’s correlation coefficient and MSE, respectively [77,85]. These
values are statistical measurement factors employed to compute the connection and the vari-
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ance concerning computed and forecasted quantities, respectively. Equations for computing
the MSE and Pearson’s correlation coefficient are presented in Equations (5) and (6).
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where n is the overall quantity of the dataset, and Pi and Oi are the HM concentrations fore-
casted by the ANN techniques and observed quantities, respectively, whereas the Oi and Pi
were the average observed values and average forecasted values of the HM concentrations.

Moreover, to extend the evaluation of the models, the Akaike information criterion
(AIC) and the Kling–Gupta efficiency (KGE) were also used as performance metrics in this
study. The AIC is a measure of goodness and a tool for model selection wherein the least
value is the criterion for selecting the best model. At the same time, the KGE is based on
the correlation, variability bias, and mean inclination of the model [86,87]. The equations
for obtaining the AIC and KGE are presented in Equations (7) and (8).

AIC = N ln(MSE) + 2k (7)

KGE = 1−
√
(R− 1)2 + (VE− 1)2 + (BT − 1)2 (8)

where N is the number of datasets, k is the quantity of HN, R is the linear correlation
between the actual and predicted value, VE is the variability error, which is the ratio
between the standard deviation of the expected and the observed value, and BT is the bias
term, which is the ratio of the mean predicted and mean actual value. The ideal value for
KGE is equal to 1.

The optimal architecture of the models, which includes the number of hidden neurons
in the hidden layer, was obtained using the MSE and AIC values. The MSE values were



Toxics 2022, 10, 95 11 of 44

utilized to calculate the AIC values for each model topology (hidden neurons from 1 to
30) for SW and GW during the DS and WS. The hidden neuron that corresponds to the
minimum AIC values was the governing model structure adopted in each HM model.
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2.4. Comparison to Other Models

The performance of the developed hN-PSO model for predicting heavy metals in SW
and GW were compared to the performance of the other prediction models such as linear
and support vector machine models. Linear models include robust linear regression, linear
regression, and stepwise linear regression models. Support vector machine models include
linear SVM, fine Gaussian SVM, cubic SVM, medium Gaussian SVM, and quadratic SVM.

Robust regression is an effective method for regression analysis and a viable alternative
to least squares regression approaches for datasets polluted by outliers or influential
observations [88]. MLR determines the correlation between two or more input variables
by applying a linear equation to observed data. MLR involves both data summarization
and investigation of the connection between variables. The general form of MLR models
is presented in Equation (9) wherein Y is the independent variable, X is the dependent
variable, and ai are the regression coefficients [89], and a stepwise regression is a technique
for testing the statistical significance of each independent variable in a linear regression
model sequentially [90].

Y =
n

∑
i=1

aiXi + a0 (9)
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Linear SVM is utilized for linearly separable data, which implies that if a dataset can
be categorized into two classes using a single straight line, the data are linearly separable,
and a linear SVM classifier is employed [91]. There are three Gaussian SVMs employed
in the model comparison, including the fine Gaussian SVM, medium Gaussian SVM, and
coarse Gaussian SVM. Fine Gaussian SVM uses a moderate amount of memory for bi-
nary classification and a large amount of memory for multiclass classification during the
training phase, whereas medium Gaussian SVM uses a moderate amount of memory for
binary classification and a large amount of memory for multiclass classification during
the training phase. Additionally, the memory consumption of a medium Gaussian SVM is
high for multiclass classification and low for binary classification [92]. Coarse Gaussian
SVM is a non-linear SVM learning approach that falls under the category of data mining.
Furthermore, the coarse Gaussian SVM is difficult to comprehend and has limited flexi-
bility [93]. Additionally, cubic and quadratic SVMs were also compared to the developed
NN-PSO models. A cubic SVM is an effective SVM approach when dealing with a memory
space constraint wherein SVM locates a hyperplane in a multidimensional space that best
separates the classes [94], whereas in quadratic SVM, memory utilization is low for binary
classification and high for multiclass classification during its training phase. The prediction
speed is likewise rapid for binary classification and slow for multiclass classification [95].

2.5. Sensitivity Analysis

Due to the efficiency of the simulation results, the connection weight (CW) segmen-
tation approach was able to calculate the contribution of each input variable to the HM
concentration using a sensitivity analysis. Sensitivity analysis was utilized to determine
the rate of change in model output as a function of model parameter changes and, as a
result, to identify the most influential factors in HM concentrations in surface and ground-
water [96,97]. The connections between the neurons are represented by the CW, which
means the connections between the issue and the resolution. Sensitivity analysis was used
to establish the RI of individual input parameters. Olden’s CW technique was used in this
work to estimate the variable significance of individual input variables to the number of
heavy metals in SW and GW [98].

The CW approach was used to compute the product of the IN–HN and HN–ON, CWs
for each IN and ON, and then add the products across the HN. The higher the sum, the
more significant the IN is. Equation (10) is used to compute the RI of an input variable “i”.

R.I.i =

w
∑

x=1
WixWxy

z
∑

i=1

w
∑

x=1
WixWxy

× 100 (10)

where R.I.i is the variable significance of the variable “i” in the input layer (IL) to the HM
concentration, x is the index quantity of the HN, Wix is the CW between the input parameter
“i” and the HN noted as x, and Wxy is the CW between the HN noted as x and the ON
noted as y [99].

3. Results

This section summarizes the principal results and includes all models developed using
neural networks coupled with particle swarm optimization technique. This section also
provides the result of the sensitivity analysis of the variables and their influence on the HM
concentrations in SW and GW as well as uncertainty analysis of the HM models.

3.1. Heavy Metal Concentrations

The dataset for the physicochemical characteristics and HM concentrations used in the
study are depicted in Appendix B. The physicochemical characteristics observed include
temperature (Figure A1), pH (Figure A2), EC (Figure A3), and TDS (Figure A4). The heavy
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metal concentrations observed include Cr (Figure A5), Cd (Figure A6), Fe (Figure A7), Mn
(Figure A8), Zn (Figure A9), Ni (Figure A10), Pb (Figure A11), and Cu (Figure A12).

Tables 3 and 4 enumerate descriptive information on the HM concentrations in SW
samples from Marinduque Province. The mean surface water temperature for both the dry
and wet seasons was within the Philippine Water Quality Guidelines (WQG). The mean
surface water pH for both the dry and wet seasons was less than the minimum pH value set
by the Philippine WQG and the WHO standards. The mean EC and TDS of surface water
were greater than the guidelines set by the WHO, which are 1500 µS/cm and 1200 mg/L,
respectively. The mean concentration of total Cd, Fe, and Cu was above the Philippine
WQG and the World Health Organization guidelines (WHO). The mean concentration of
Cr in SW was above the Philippine WQG. Ni concentration also exceeded the guidelines
set by the WHO for both dry and wet seasons.

Table 3. Descriptive statistics of the physicochemical parameters and total concentration of HM (in
mg/L) used in the DS–SW model.

Parameter N Min Max Mean
Guidelines

Philippine
WQG [100] WHO

Temp (◦C) 80 26.0 36.4 30.58 25–31 -
pH 80 2.9 9.4 6.28 6.5–9.0 6.5–9.2

EC (µS/cm) 80 130.0 6000.0 2617.21 - 1500
TDS (mg/L) 80 60.0 3000.0 1377.66 - 1200
Cr (mg/L) 80 0.00029 0.03766 0.01820 0.010 0.050
Cd (mg/L) 80 0.00706 0.06122 0.04315 0.005 0.003
Fe (mg/L) 80 0.45237 2.76195 2.32390 1.500 0.300
Mn (mg/L) 80 0.00049 11.09783 2.07269 0.200 0.400
Zn (mg/L) 80 0.00047 9.58050 1.69057 2.000 3.000
Ni (mg/L) 80 0.00413 0.12689 0.10156 0.200 0.070
Pb (mg/L) 80 0.00339 0.05608 0.03851 0.050 0.010
Cu (mg/L) 80 0.02763 17.16567 7.67426 - 2.000

Table 4. Descriptive statistics of the physicochemical parameters and total concentration of HM (in
mg/L) used in the WS–SW model.

Parameter N Min Max Mean
Guidelines

Philippine
WQG [100] WHO

Temp (◦C) 80 26.7 33.7 30.26 25–31 -
pH 80 3.1 8.4 5.94 6.5–9.0 6.5–9.2

EC (µS/cm) 80 90 5380.0 2211.00 - 1500.00
TDS (mg/L) 80 40 2670.0 1142.35 - 1200.00
Cr (mg/L) 80 0.00023 0.03766 0.02937 0.010 0.05
Cd (mg/L) 80 0.00040 0.06122 0.04459 0.005 0.003
Fe (mg/L) 80 0.06915 53.01624 21.74808 1.5 0.3
Mn (mg/L) 80 0.00361 0.01769 0.01027 0.2 0.4
Zn (mg/L) 80 0.02480 0.07430 0.03922 2.00 3.00
Ni (mg/L) 80 0.00415 0.12689 0.08820 0.20 0.07
Pb (mg/L) 80 0.00680 0.05607 0.03458 0.05 0.01
Cu (mg/L) 80 0.00690 0.20730 0.09144 - 2.00

The GW physicochemical characteristics recorded were below the Philippine National
Standards for Drinking Water (PNSDW) 2017 and WHO requirements for both dry and
rainy seasons. Likewise, the EC and TDS were within the World Health Organization
limits. The total mean concentration of Cr, Cd, Fe, Zn, and Ni exceeded the PNSDW 2017
and the WHO guidelines. Tables 5 and 6 include descriptive data for the physicochemical
parameters and total concentrations of HM utilized in the DS and WS-GW models.
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Table 5. Descriptive statistics of the physicochemical parameters and total concentration of HM
(mg/L) used in the DS–GW model.

Parameter N Min Max Mean
Guidelines

PNSDW
2017 [67] WHO

Temp (◦C) 80 26.3 49.6 37.72 - -
pH 80 6.1 7.9 7.01 6.5–8.5 6.5–9.2

EC (µS/cm) 80 80.0 2350.0 1140.45 - 1500.000
TDS (mg/L) 80 30.0 1150.0 499.12 600.000 1200.000
Cr (mg/L) 80 0.01733 0.17182 0.07527 0.050 0.050
Cd (mg/L) 80 0.00055 0.10389 0.06879 0.003 0.003
Fe (mg/L) 80 0.00038 54.68567 11.50116 1.000 0.300
Mn (mg/L) 80 0.00009 8.71857 2.44137 0.400 0.400
Zn (mg/L) 80 0.00098 56.96133 13.95211 5.000 3.000
Ni (mg/L) 80 0.00013 0.12530 0.08955 0.070 0.070
Pb (mg/L) 80 0.01560 0.12178 0.10676 0.010 0.010
Cu (mg/L) 80 0.03711 0.26050 0.21542 1.000 2.000

Table 6. Descriptive statistics of the physicochemical parameters and total concentration of HM (in
mg/L) used in the WS–GW model.

Parameter N Min Max Mean
Guidelines

PNSDW
2017 [67] WHO

Temp (◦C) 80 26.2 36.7 30.25 - -
pH 80 5.6 7.9 6.85 6.5–8.5 6.5–9.2

EC (µS/cm) 80 20.0 2840.0 1185.05 - 1500.000
TDS (mg/L) 80 10.0 1400.0 601.20 600.00 1200.000
Cr (mg/L) 80 0.01638 0.17179 0.14767 0.050 0.050
Cd (mg/L) 80 0.00055 0.10389 0.04458 0.003 0.003
Fe (mg/L) 80 0.16390 13.58610 9.82432 1.000 0.300
Mn (mg/L) 80 0.00405 0.14579 0.04089 0.400 0.400
Zn (mg/L) 80 0.02480 0.51992 0.26563 5.000 3.000
Ni (mg/L) 80 0.00101 0.12490 0.10005 0.070 0.070
Pb (mg/L) 80 0.05496 0.12178 0.11831 0.010 0.010
Cu (mg/L) 80 0.00690 0.02759 0.02257 1.000 2.000

3.2. Correlation Analysis

The PCC was applied to examine the degree of association between physicochemical
properties and measured HM concentrations in SW throughout the dry and rainy seasons.
Pearson’s correlation matrix (PCM) plots of these parameters across the DS and WS are
shown in Figure 5. It was discovered that during both the DS and WS, the EC and TDS, as
well as Cr and Cd, were positively associated. This recorded data confirmed the study of
Tiwari et al. [101] and Huang et al. [102]. Cu and Zn also exhibited a positive association
throughout the dry and wet seasons, agreeing with the findings of Bhuyan et al. [103].
During the wet season, a positive relation between Cd:Cu and Cd:Pb, as well as Ni and
Pb, was recorded. These data agreed with the findings of Wang et al. [104]. These positive
correlations among the heavy metals could indicate that the water body in the research
area has similar hydro-chemical features [105].

Correlations between physicochemical characteristics and heavy metals in ground-
water were also studied. It was shown that EC and TDS had a positive relationship for
both dry and wet seasons as illustrated by Figure 6. The positive association between
EC and TDS is due to conductivity being a function of total dissolved solids, the ionic
composition of water, and the concentration of dissolved species [106]. Likewise, a positive
correlation was observed for Cd and Cr for both the dry and wet seasons, which suggests a
common origin of these heavy metals [107]. Additionally, it was established that during the
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dry season, Cr has a positive link with Ni and Pb, which was confirmed by the results of
Ukah et al. and Magesh et al. [105,108]. Moreover, similar to the findings of Rashid et al. in
2021 [109], there was a high positive correlation between Cd:Ni and Cd:Pb during the WS.
Furthermore, a positive correlation was recorded between Fe and Zn. This is consistent
with Senoro et al. results in 2022 [110]. Positive correlations between these metals showed
that they originated from a common source. The loadings from Cd, Pb, and Ni were
associated to anthropogenic sources as observed by Wagh et al. in 2018 [111]. The Fe and
Zn correlation was geogenic in nature as elaborated in the findings of Bhutiani et al. in
2016 [112].
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3.3. NN-PSO Modelling Results

Tables 7 and 8 illustrate the NN-PSO simulations for the HM models in SW during the
dry and rainy seasons, respectively. This section contains the R and MSE findings, as well
as the topology of the created HM models. The topology of the heavy metal models was
described as 4-HN-1 (input neurons-hidden neurons-output neurons), wherein the number
of hidden neurons for each HM model is likewise shown in Tables 7 and 8.

The R validation of HM models in SW varied between 0.95566 and 0.99972 during the
DS and between 0.95686 to 0.98779 during the WS. The R values varied from 0.95710 to
0.98620 and 0.94923 to 0.98897, respectively, during the DS and WS throughout the testing
phase. The highest MSE was observed in the Cu model, whereas the lowest MSE was
observed in the Cr model for SW during DS. Moreover, the highest MSE was observed in
the Fe model, whereas the lowest MSE was observed in the Mn model in the SW for the
period of the WS.
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Table 7. NN-PSO simulation results for the heavy metal models in SW during the DS.

Hidden
Neurons

No. of
Particles

No. of
Iterations

Elapsed Time
(sec) MSE

R

Validation Testing

Cr 30 7 2000 121.2884 0.000009 0.96878 0.98999
Cd 28 3 2000 153.1887 0.000021 0.95566 0.96404
Fe 29 9 2000 150.5006 0.004871 0.99585 0.97976
Mn 27 3 2000 151.0693 0.004364 0.99933 0.98620
Zn 30 6 2000 116.5287 0.031773 0.99904 0.96388
Ni 29 6 2000 115.7815 0.000047 0.98316 0.97981
Pb 30 4 2000 152.8467 0.000020 0.97832 0.96557
Cu 30 2 2000 153.2260 0.039010 0.99972 0.98390

Table 8. NN-PSO simulation results for the heavy metal models in SW during the WS.

Hidden
Neurons

No. of
Particles

No. of
Iterations

Elapsed
Time (sec) MSE

R

Validation Testing

Cr 29 2 2000 157.2246 0.0000009 0.99050 0.98830
Cd 30 8 2000 152.5088 0.0000150 0.98307 0.96868
Fe 28 10 2000 151.0597 0.0702760 0.98099 0.96368
Mn 29 10 2000 138.3126 0.0000006 0.95686 0.96337
Zn 30 3 2000 114.7199 0.000005 0.98559 0.98614
Ni 27 1 2000 120.5753 0.000058 0.98779 0.96227
Pb 29 1 2000 119.6443 0.000008 0.98377 0.98897
Cu 28 9 2000 153.6068 0.000269 0.96707 0.95589

The R validation of HM models in GW varied between 0.97786 and 0.99965 during the
dry season and between 0.96040 to 0.99925 during the wet season. The R values varied from
0.95538 to 0.99835 and 0.97544 to 0.99815, respectively, during the DS and WS throughout
the testing phase. The Mn model had the greatest MSE, whereas the Pb model had the
lowest for GW during DS. Additionally, the Fe model had the greatest MSE, whereas the
Cu model had the lowest MSE in GW during the WS. The NN-PSO simulation findings for
the HM models in GW during the DS and WS are shown in Tables 9 and 10.

Table 9. NN-PSO simulation results for the HM models in GW during the DS.

Hidden
Neurons

No. of
Particles

No. of
Iterations

Elapsed
Time (sec) MSE

R

Validation Testing

Cr 30 8 2000 154.5653 0.000014 0.98851 0.98640
Cd 28 1 2000 156.7819 0.000078 0.98910 0.98683
Fe 29 9 2000 150.3615 0.031866 0.98414 0.96054
Mn 30 6 2000 158.4757 0.040315 0.98414 0.96002
Zn 29 4 2000 122.3900 0.008780 0.99965 0.99577
Ni 27 10 2000 155.5062 0.000073 0.97786 0.95538
Pb 28 9 2000 124.1062 0.000003 0.99641 0.99788
Cu 29 3 2000 122.3725 0.000030 0.99663 0.99835

The validation and testing plots of the SW and GW during the DS and WS are exhibited
in Appendix C. These include the plots for Cr (Figure A13), Cd (Figure A14), Fe (Figure A15),
Mn (Figure A16), Zn (Figure A17), Ni (Figure A18), Pb (Figure A19), and Cu (Figure A20).

The optimal network parameters of the developed HM models (IN-HN-ON) for SW
and GW are presented in Table 11. These include the training algorithm used (Levenberg–
Marquardt algorithm), transfer function (tansig), and the number of hidden neurons for
each model of SW and GW during the dry and wet seasons.

Figure 7 illustrates the link between the quantity of HN varying from 1 to 30 and the
corresponding AIC values. It was observed that the lowest AIC values were seen in 27 HN



Toxics 2022, 10, 95 17 of 44

for Mn (SW dry), Ni (SW wet and GW dry), and Cd (GW wet); 28HN for Cd (SW dry and
GW dry), Fe (SW wet), Cu (SW wet), Pb (GW dry and GW wet), and Zn (GW wet); 29 HN
for Fe (SW dry, GW dry, and GW wet), Ni (SW dry and GW wet), Cr (SW wet and GW wet),
Mn (SW wet), Pb (SW wet), Zn (GW dry), and Cu (GW dry); and 30 HN for Cr (SW dry
and GW dry), Zn (SW dry and SW wet), Pb (SW dry), Cu (SW dry and GW wet), Cd (SW
wet), and Mn (GW dry and GW wet). These lowest AIC values observed in the respective
hidden neurons were included in the metrics used to identify the governing model for each
target HM.

Table 10. NN-PSO simulation results for the HM models in GW during the WS.

Hidden
Neurons

No. of
Particles

No. of
Iterations

Elapsed
Time (sec) MSE

R

Validation Testing

Cr 29 2 2000 162.4754 0.00014800 0.96813 0.98011
Cd 27 4 2000 157.0324 0.00003800 0.99426 0.98938
Fe 29 8 2000 145.3954 0.04537300 0.96040 0.97544
Mn 30 8 2000 164.0052 0.00007800 0.98231 0.97926
Zn 28 5 2000 161.1227 0.00012300 0.99861 0.99775
Ni 29 7 2000 160.0693 0.00002200 0.97463 0.98991
Pb 28 10 2000 122.7119 0.00000600 0.98788 0.99495
Cu 30 5 2000 157.5830 0.00000005 0.99925 0.99815

Table 11. Optimal parameters of the developed HM models in SW and GW during the DS and WS.

Model Governing Network
Structure Model Governing Network

Structure

SW Dry Cr 4-30-1 GW Dry Cr 4-30-1
SW Dry Cd 4-28-1 GW Dry Cd 4-28-1
SW Dry Fe 4-29-1 GW Dry Fe 4-29-1
SW Dry Mn 4-27-1 GW Dry Mn 4-30-1
SW Dry Zn 4-30-1 GW Dry Zn 4-29-1
SW Dry Ni 4-29-1 GW Dry Ni 4-27-1
SW Dry Pb 4-30-1 GW Dry Pb 4-28-1
SW Dry Cu 4-30-1 GW Dry Cu 4-29-1
SW Wet Cr 4-29-1 GW Wet Cr 4-29-1
SW Wet Cd 4-30-1 GW Wet Cd 4-27-1
SW Wet Fe 4-28-1 GW Wet Fe 4-29-1
SW Wet Mn 4-29-1 GW Wet Mn 4-30-1
SW Wet Zn 4-30-1 GW Wet Zn 4-28-1
SW Wet Ni 4-27-1 GW Wet Ni 4-29-1
SW Wet Pb 4-29-1 GW Wet Pb 4-28-1
SW Wet Cu 4-28-1 GW Wet Cu 4-30-1

The results of the additional evaluation metric using the KGE are presented in Figure 8.
Results show that the developed models for the SW and GW during the dry and wet
seasons have good KGE values, wherein all values were greater than 0.95.

3.4. Comparison to Other Models

Linear and support vector machine models were likewise developed to see how well
the developed hybrid NN-PSO models performed compared to other models. The results
indicated that for surface water models generated using NN-PSO, the R-values were up
to 1.60 times more than the R-values obtained using the SVM models and 1.2 to 2.0 times
greater than the R-values obtained using the linear models during the dry season. For the
wet season surface water model, the R values for HM models utilizing NN-PSO were up to
1.1 times and 1.6 times greater than the highest R-value observed from the SVM models
and linear models, respectively. Similarly, the R values obtained from the heavy metal dry
season groundwater models were up to 1.4 times greater than the highest R-value obtained
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from the SVM models and 1.2 to 2.5 times greater than the R-values obtained from the
linear models. Moreover, wet season ground-water models were shown to have R-values
up to 2.1 times and 1.9 times greater than the highest recorded R-value for models created
using SVM and linear models, respectively. The radar graphs of the observed values for
the generated NN-PSO models and the linear and SVM models are shown in Figures 9–12.
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3.5. Sensitivity Analysis Using Olden’s Connection Weight Approach

The CW of the models for DS and WS were utilized to calculate the RI of the physico-
chemical parameters to the HM concentrations. Using Olden’s CWs approach, the results
of the calculation of R.I. in each model are shown in Figure 13.
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It was observed in the DS SW models that the surface water pH is the parameter with
the highest RI to the Cr, Mn, Zn, Ni, and Cu concentration, whereas that of Cd, Pb, and
Fe were seen to be temperature, EC, and TDS, respectively. The SW models during WS
displayed temperature to have the highest R.I. to the Zn, Pb, and Cu concentration, whereas
that of Cr and Mn was determined to be the TDS. It was also observed that pH is the most
influential parameter for the Cd, Fe, and Ni concentrations.

For the GW models during DS, the temperature was observed to have the highest R.I.
to the Cr, Cd, Zn, Ni, and Pb concentration, whereas TDS recorded the highest RI for Mn
and Cu. It was likewise seen that groundwater pH is the most influential factor for the Fe
concentration in the DS. For the WS groundwater models, the temperature was observed
to have the highest R.I. for Cr and Cd, whereas it was EC for Fe and TDS for Ni and Cu. It
was also observed that the groundwater pH during the wet season is the most significant
parameter for the Ni, Zn, and Pb concentrations.

4. Discussion

The HM contaminants in SW and GW endanger human life and contribute to the
deterioration of the environment and health risks. Detected HM concentrations in SW
and GW were higher than the WHO and Philippine standards. As water is a vital part of
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everyday activity of a community such as Marinduque Province, guaranteeing universal
access and sustainable management of water should be ensured as mandated by the United
Nations Sustainable Development Goals (SGDs). Accurately predicting HM concentration
in water resources is significant to ensure that proper monitoring of its progression in the
environment is implemented. It also enables the proper dissemination of information of
the potential risks that a community might be exposed to and creates mitigating measures
and remediation strategies that the authorities could implement to address the heavy metal
contamination in water resources. The ML models are fundamentally data-driven, with
several studies implementing different ML techniques with different variables used as the
input parameters. The ANN-PSO technique was implemented in this study to develop the
HM intensity models. The developed NN-PSO models were compared to models created
using linear and SVM methods. It was observed that the developed NN-PSO models for
heavy metals in surface water during the dry and wet season performed better than the
models created using linear and SVM models. The observed R-values were up to 1.6 times
and 1.1 times greater than the highest R-values observed for linear and SVM models during
the dry and wet seasons. Moreover, the GW models were observed to have R-values that
were greater than up to 1.4 times and 1.6 times the R-values observed in the highest linear
and SVM models during the DS and WS. The findings were in agreement with the results of
the study by Zhang et al. in 2020 wherein the hybrid ANN-PSO was observed to perform
better as compared to the other MLR and machine learning models including SVM [32].

Furthermore, comparisons in the performance of the developed models to the pre-
viously published models are shown in Figure 14. These models include different ML
techniques such as NN-PSO, NN-BR, NN-ICA, NN-LM, NN-BBO, MANFIS-SCM, SVM,
MANFIS-GP, MANFIS-SCM, ANFIS, K-NN, and GRNN. In this study, a hybrid ANN-PSO
model, i.e., hN-PSO, was used with input parameters that were easier to obtain. The
findings reveal that the present study’s performance measures are on par with the per-
formance of previously published heavy metal models, with the additional advantage of
using parameters that can be collected in-situ.

 

(a) 
  

Figure 14. Cont.
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The simulation of different internal characteristics and topologies of models were
implemented to obtain the governing models of HMs total concentration in SW and GW.
It was observed that the governing models were based on the AIC performance metric
values, which are the minimum among the observed HN. It was observed that as the AIC
value reached its minimum value, further increasing the number of HN will return an
increased AIC value. This implies that the network has already become generalized [113].
In addition, KGE values for all models in surface and groundwater during the dry and wet
seasons were greater than 0.95, which suggests that the models are accurate. Additionally,
it was discovered that the quantity of HNs had no influence on the model’s performance,
which is consistent with Çolak’s findings in 2021 [114].

Olden’s CW technique is an excellent strategy for illuminating the neural network’s
black box design by offering more explanatory insight into the input parameters’ contri-
butions [115]. The Olden’s CWs approach was implemented in this study because it was
the best method as suggested in the findings of Olden et al. [116]. In this study, it was
observed that the temperature and pH are the most influential input parameters to the HM
concentrations; these findings were also observed in Morin and Mutt [117].

The use of ML tools such as NN-PSO models is in line with the transition of different
disciplines to Industry 4.0. Employing ML techniques provides a new avenue to create
models that can be applied in real-world conditions that can be complex and non-linear
in nature. The PSO method was used with the ANN model in this research to create the
optimal model with the least error.

5. Conclusions

Limited HM concentrations data in SW and GW inspired the researchers to develop
models as tools for environmental quality monitoring specifically on the total concentration
of HMs such as Cr, Cd, Fe, Mn, Zn, Ni, Pb, and Cu. Using the physicochemical properties
of SW and GW, which are the most commonly monitored data, the NN-PSO models were
developed and exhibited good performance that was on par with linear, SVM, and existing
published deterministic and AI models that used input parameters that cannot be obtained
in field conditions. The performance of the models was evaluated using their AIC values,
and the number of HN that returned the lowest AIC value was chosen as the governing
topology for the HM models. It was further observed that as the AIC value reached its
minimum value, further increasing the number of HN returned an increased AIC value
due to network generalization. Moreover, the R and KGE values of the governing model
were almost equal to 1, whereas MSE values were approaching 0, which are the ideal
values for these performance metrics. The performance of the developed NN-PSO models
was compared to created models using linear and SVM approaches, and the findings
suggest that the NN-PSO was the superior modeling tool in this study based on its model
performance. The R.I. of the input parameters was assessed using Olden’s CWs approach.
The sensitivity analysis showed that temperature and pH were the parameters with the
most influence on the HM concentration.

Based on the elaborated findings, it can be concluded that the use of the hN-PSO
for forecasting HM concentrations in water resources is both an effective and a practical
approach. Additionally, the recorded findings indicate the efficacy of using common
water parameters as inputs to prediction models for HM concentrations that may be
simply adopted for in-situ settings. These findings could initiate and contribute to regular
monitoring of HM concentrations in SW and GW.

The findings of the study illustrate that the NN-PSO is an effective method and
practical approach in predicting HM concentration in water resources. Moreover, this
study provides a model with parameters suitable for in-situ purposes and on par with
the other HM prediction models in water resources. Future studies on the inclusion of
HM speciation and its prediction models with more data dimensions, or the use of feature
reduction approach in model development are recommended. Multi-layered networks
using deep learning and other ML may also be studied. Integration of time components is
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another facet for future study that will be investigated using time series-based methods
such as NARX and LSTM, which can be used in dynamic analysis and transport studies.
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Appendix A

Table A1. Mining disasters in the Philippines.

Location/Date Cause of Release Description of Release Impact Reference

Siocon,
Zamboanga Del
Norte/6 April

and 11 July 2007

Heavy rains eroded the clay
soil and destroyed the

concrete wall of the zinc
extraction sulphide dam.

Contaminated water with
detectable levels of cyanide
and mercury ran down the

Canatuan River and into the
Siocon River, eventually

reaching the sea.

Reports of siltation had
reached up to 3 m thick,

which caused frequent flash
floods and obstructed

irrigation flow from the river.
The river mouth became

brown and fish
catches decreased.

[118]

Rapu–Rapu
Island, Albay/ 11

and 31 October
2005

The tailings pump failed,
spilling tailings from the

mill’s emergency pond into
the gold processing facility
and neighboring Alma and

Pagcolbon creeks.

At least 20 cubic meters of
slurry material (containing

cyanide beyond the standard
of 0.05 mg/L and other toxic
heavy metals and chemicals)

Two kilograms of dead small
fish and crustaceans at the
shoreline collected on the
same day at the location

where the affected creeks exit
into the sea.

[119]

San Marcelino,
Zambales

27 August 27 and
11 September

2002

The spillway of Bayarong
tailings dam collapsed

during heavy rain.

High concentrations of heavy
metals and sulfide materials.

Low-lying settlements were
inundated with mining

waste, 250 residents were
evacuated, and some tailings
leaked into Mapanuepe Lake

and later into the Sto.
Tomas River.

[120]

Sipalay, Negros
Occidental

8 December 1995

At the Bulawan gold mine,
the pressure of impounded
tailings created a leakage in
the decant tower of tailings

pond no. 1.

Mine tailings caused the
siltation of the Sipalay River.

Excessive quantities of dust
covered a 5-square-kilometer

region, affecting the air
quality, and local inhabitants

reported a rise in
respiratory diseases.

[121]
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Table A1. Cont.

Location/Date Cause of Release Description of Release Impact Reference

Toledo City, Cebu
9 August 1999

The outlet of an open pit’s
drainage tunnel (from a
closed copper mine) was

obstructed, resulting in the
loosening of accumulated silt

and discharge into the
Sapangdaku River toward

the sea.

5.7 million m3 of acidic water
Increased acidity in afflicted

water bodies, resulting in
fish mortality.

[122]

Placer, Surigao
del Norte/ 26

April 1999

Tailings pond No. 7 tailings
discharged due to a broken

concrete pipe.

700,000 cubic meters of
cyanide tailings

Seventeen homes buried, 40
heactares affected, including

20 hectares of
agricultural land

[123]

Sibutad,
Zamboanga del

Norte
6 November 1997

Two strong rain events
resulted in mudflows and
rockslides into a silt dam.

Sibutad gold project’s silt
dam overflowed

Caused flash floods
damaging the nearby houses
and rice fields and fish kills.

[124]

Mankayan,
Benguet

17 October 1986

Tailings pond 3 collapsed as
a result of a compromised

dam embankment caused by
excessive loading.

Mine tailings overflowed
and huge amounts of

Cu-contaminated mine
wastes carried by the

Comillas River

Caused siltation of the Abra
River, affecting nine towns,
and toxic contamination of

the river, depriving the
region of about 7.33 million

kg of rice every year.

[125]

Marinduque
Island

6 December 1993

Maguilaguila siltation dam
collapsed because of the
siltation pressure at the

dam wall.

Toxic mine tailings in silt
and water

Flooding of the Mogpog
River resulted in the death of

two children, cattle,
contamination of agricultural

land, and flooding of
downstream communities

and Mogpog town.

[126,127]

Marinduque
Island

24 March 1996

According to the official
explanation, the rock around

the plug in the Tapian Pit
drainage tunnel was cracked,
resulting in the plug’s failure.

However, in August 1995,
the tunnel began to leak.
Marcopper/Placer Dome

began drilling 160 m down to
the tube in September 1995.
The drill struck the tube on
24 March 1996, releasing an

air pocket that had been
holding back tailings and

initiating the leak.

The estimate based on the
United Nations is between

2–3 million cubic meters over
the first 4–5 days of

discharge alone.

Approximately 1200 persons
were evacuated, 26 km of the
Makulapnit and Boac river

systems were rendered
impassable by tailings, flash

floods cut off five
communities, and 67,000
cubic meters of bagged

tailings were gathered and
placed on the banks of the

Boac river since the cleaning
started in 2000.

[126,127]
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15. Şahan, T.; Erol, F.; Yılmaz, Ş. Mercury (II) adsorption by a novel adsorbent mercapto-modified bentonite using ICP-OES and use
of response surface methodology for optimization. Microchem. J. 2018, 138, 360–368. [CrossRef]

16. Diarra, I.; Kotra, K.K.; Prasad, S. Application of phytoremediation for heavy metal contaminated sites in the South Pacific:
Strategies, current challenges and future prospects. Appl. Spectrosc. Rev. 2021. [CrossRef]

17. Ahmed, A.N.; Othman, F.B.; Afan, H.A.; Ibrahim, R.K.; Fai, C.M.; Hossain, M.S.; Ehteram, M.; Elshafie, A. Machine learning
methods for better water quality prediction. J. Hydrol. 2019, 578, 124084. [CrossRef]

18. Myszczynska, M.A.; Ojamies, P.N.; Lacoste, A.; Neil, D.; Saffari, A.; Mead, R.; Hautbergue, G.M.; Holbrook, J.D.; Ferraiuolo, L.
Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat. Rev. Neurol. 2020, 16, 440–456.
[CrossRef]

19. Hino, M.; Benami, E.; Brooks, N. Machine learning for environmental monitoring. Nat. Sustain. 2018, 1, 583–588. [CrossRef]
20. Liu, J.; Sun, Y.; Li, Q. High-Resolution PM2.5 Estimation Based on the Distributed Perception Deep Neural Network Model.

Sustainability 2021, 13, 13985. [CrossRef]
21. Ding, X.; Zhao, Z.; Xing, Z.; Li, S.; Li, X.; Liu, Y. Comparison of Models for Spatial Distribution and Prediction of Cadmium in

Subtropical Forest Soils, Guangdong, China. Land 2021, 10, 906. [CrossRef]
22. Chen, S.; Fang, G.; Huang, X.; Zhang, Y. Water quality prediction model of a water diversion project based on the improved

artificial bee colony–backpropagation neural network. Water 2018, 10, 806. [CrossRef]
23. Jeon, J.P.; Kim, C.; Oh, B.D.; Kim, S.J.; Kim, Y.S. Prediction of persistent hemodynamic depression after carotid angioplasty and

stenting using artificial neural network model. Clin. Neurol. Neurosurg. 2018, 164, 127–131. [CrossRef]
24. Esmaeily, H.; Tayefi, M.; Ghayour-Mobarhan, M.; Amirabadizadeh, A. Comparing three data mining algorithms for identifying

the associated risk factors of type 2 diabetes. Iran. Biomed. J. 2018, 22, 303. [CrossRef] [PubMed]
25. Chiu, C.C.; Lee, K.T.; Lee, H.H.; Wang, J.J.; Sun, D.P.; Huang, C.C.; Shi, H.Y. Comparison of models for predicting quality of life

after surgical resection of hepatocellular carcinoma: A prospective study. J. Gastrointest. Surg. 2018, 22, 1724–1731. [CrossRef]
[PubMed]

26. Bayat, H.; Ebrahimzadeh, G.; Mohanty, B.P. Investigating the capability of estimating soil thermal conductivity using topographi-
cal attributes for the Southern Great Plains, USA. Soil Tillage Res. 2021, 206, 104811. [CrossRef]

27. Anifowose, F.; Ayadiuno, C.; Rashedan, F. Comparative Analysis of Machine Learning Based Feature Selection Approach for
Carbonate Reservoir Cementation Factor Prediction. In Proceedings of the International Petroleum Technology Conference,
Beijing, China, 26 March 2019; OnePetro: Richardson, TX, USA, 2019.

28. Torabi-Kaveh, M.; Sarshari, B. Predicting convergence rate of Namaklan twin tunnels using machine learning methods. Arab. J.
Sci. Eng. 2020, 45, 3761–3780. [CrossRef]

29. Mohandes, S.R.; Zhang, X.; Mahdiyar, A. A comprehensive review on the application of artificial neural networks in building
energy analysis. Neurocomputing 2019, 340, 55–75. [CrossRef]

30. Abdallah, M.; Talib, M.A.; Feroz, S.; Nasir, Q.; Abdalla, H.; Mahfood, B. Artificial intelligence applications in solid waste
management: A systematic research review. Waste Manag. 2020, 109, 231–246. [CrossRef]

31. Sun, Y.; Zhang, J.; Li, G.; Wang, Y.; Sun, J.; Jiang, C. Optimized neural network using beetle antennae search for predicting the
unconfined compressive strength of jet grouting coalcretes. Int. J. Numer. Anal. Methods Geomech. 2019, 43, 801–813. [CrossRef]

32. Zhang, X.; Nguyen, H.; Bui, X.N.; Le, H.A.; Nguyen-Thoi, T.; Moayedi, H.; Mahesh, V. Evaluating and predicting the stability
of roadways in tunnelling and underground space using artificial neural network-based particle swarm optimization. Tunn.
Undergr. Space Technol. 2020, 103, 103517. [CrossRef]

33. Bo, L.; Yi-Fan, Z.; Bei-Bei, Z.; Xian-Qing, W. A risk evaluation model for karst groundwater pollution based on geographic
information system and artificial neural network applications. Environ. Earth Sci. 2018, 77, 344. [CrossRef]

34. Islam, N.; Huang, W.; Zhuang, H.L. Machine learning for phase selection in multi-principal element alloys. Comput. Mater. Sci.
2018, 150, 230–235. [CrossRef]

http://doi.org/10.2147/OTT.S139262
http://doi.org/10.1016/j.envint.2018.08.013
http://doi.org/10.1016/j.jece.2018.03.019
http://doi.org/10.3390/ijerph17030679
http://www.ncbi.nlm.nih.gov/pubmed/31973020
http://doi.org/10.1016/j.jtemb.2019.05.003
http://www.ncbi.nlm.nih.gov/pubmed/31109617
http://doi.org/10.1016/j.biocel.2017.05.003
http://www.ncbi.nlm.nih.gov/pubmed/28495571
http://doi.org/10.1007/s13201-017-0607-4
http://doi.org/10.1016/j.microc.2018.01.028
http://doi.org/10.1080/05704928.2021.1904410
http://doi.org/10.1016/j.jhydrol.2019.124084
http://doi.org/10.1038/s41582-020-0377-8
http://doi.org/10.1038/s41893-018-0142-9
http://doi.org/10.3390/su132413985
http://doi.org/10.3390/land10090906
http://doi.org/10.3390/w10060806
http://doi.org/10.1016/j.clineuro.2017.12.005
http://doi.org/10.29252/ibj.22.5.303
http://www.ncbi.nlm.nih.gov/pubmed/29374085
http://doi.org/10.1007/s11605-018-3833-7
http://www.ncbi.nlm.nih.gov/pubmed/29916106
http://doi.org/10.1016/j.still.2020.104811
http://doi.org/10.1007/s13369-019-04239-1
http://doi.org/10.1016/j.neucom.2019.02.040
http://doi.org/10.1016/j.wasman.2020.04.057
http://doi.org/10.1002/nag.2891
http://doi.org/10.1016/j.tust.2020.103517
http://doi.org/10.1007/s12665-018-7539-7
http://doi.org/10.1016/j.commatsci.2018.04.003


Toxics 2022, 10, 95 41 of 44

35. Shariati, M.; Mafipour, M.S.; Mehrabi, P.; Bahadori, A.; Zandi, Y.; Salih, M.N.; Nguyen, H.; Dou, J.; Song, X.; Poi-Ngian, S.
Application of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of
channel shear connectors embedded in normal and high-strength concrete. Appl. Sci. 2019, 9, 5534. [CrossRef]

36. Zaman, H.R.R.; Gharehchopogh, F.S. An improved particle swarm optimization with backtracking search optimization algorithm
for solving continuous optimization problems. Eng. Comput. 2021. [CrossRef]

37. Alizamir, M.; Sobhanardakani, S. An Artificial Neural Network-Particle Swarm Optimization (ANN-PSO) approach to predict
heavy metals contamination in groundwater resources. Jundishapur J. Health Sci. 2018, 10, e67544. [CrossRef]

38. Alizamir, M.; Sobhanardakani, S. Predicting arsenic and heavy metals contamination in groundwater resources of Ghahavand
plain based on an artificial neural network optimized by imperialist competitive algorithm. Environ. Health Eng. Manag. J. 2017, 4,
225–231. [CrossRef]

39. Bayatzadeh Fard, Z.; Ghadimi, F.; Fattahi, H. Use of artificial intelligence techniques to predict distribution of heavy metals in
groundwater of Lakan lead-zinc mine in Iran. J. Min. Environ. 2017, 8, 35–48.

40. Ghadimi, F. Machine Learning Algorithm for Prediction of Heavy Metal Contamination in the Groundwater in the Arak Urban
Area. J. Tethys 2017, 5, 115–127.

41. Venkatramanan, S.; Chung, S.Y.; Selvam, S.; Son, J.H.; Kim, Y.J. Interrelationship between geochemical elements of sediment
and groundwater at Samrak Park Delta of Nakdong River Basin in Korea: Multivariate statistical analyses and artificial neural
network approaches. Environ. Earth Sci. 2017, 76, 456. [CrossRef]

42. Ahangar, A.G.; Soltani, J.; Abdolmaleki, A.S. Predicting Mn concentration in water reservoir using Artificial neural network
(Chahnimeh1 reservoir, Iran). Int. J. Agric. Crop Sci. 2013, 6, 1413.

43. Khudair, B.H.; Jasim, M.M.; Alsaqqar, A.S. Artificial neural network model for the prediction of groundwater quality. Civ. Eng. J.
2018, 4, 2959–2970. [CrossRef]

44. Egbueri, J.C.; Agbasi, J.C. Data-driven soft computing modeling of groundwater quality parameters in southeast Nigeria:
Comparing the performances of different algorithms. Environ. Sci. Pollut. Res. 2022. [CrossRef] [PubMed]

45. Singha, S.; Pasupuleti, S.; Singha, S.S.; Kumar, S. Effectiveness of groundwater heavy metal pollution indices studies by
deep-learning. J. Contam. Hydrol. 2020, 235, 103718. [CrossRef] [PubMed]

46. Boudaghpour, S.; Malekmohammadi, S. Modeling prediction of dispersal of heavy metals in plain using neural network. J. Appl.
Water Eng. Res. 2020, 8, 28–43. [CrossRef]

47. Kong, G.; Wang, Q.; Huang, Q. Evaluation of groundwater quality in Changping piedmont plain of Beijing based on BP neural
network. Trans. Chin. Soc. Agric. Eng. 2017, 33, 150–156.

48. Said, S.; Khan, S.A. Remote sensing-based water quality index estimation using data-driven approaches: A case study of the Kali
River in Uttar Pradesh, India. Environ. Dev. Sustain. 2021, 23, 18252–18277. [CrossRef]

49. Ayaz, M.; Khan, N.U. Forecasting of heavy metal contamination in coastal sea surface waters of the karachi harbour area by
neural network approach. Nat. Environ. Pollut. Technol. 2019, 18, 719–733.

50. Zhang, X.; Zhang, F.; Kung, H.T.; Shi, P.; Yushanjiang, A.; Zhu, S. Estimation of the Fe and Cu contents of the surface water in the
Ebinur Lake basin based on LIBS and a machine learning algorithm. Int. J. Environ. Res. Public Health 2018, 15, 2390. [CrossRef]

51. Lu, H.; Li, H.; Liu, T.; Fan, Y.; Yuan, Y.; Xie, M.; Qian, X. Simulating heavy metal concentrations in an aquatic environment using
artificial intelligence models and physicochemical indexes. Sci. Total Environ. 2019, 694, 133591. [CrossRef]

52. Fattahi, H.; Agah, A.; Soleimanpourmoghadam, N. Multi-Output Adaptive Neuro-Fuzzy Inference System for Prediction of
Dissolved Metal Levels in Acid Rock Drainage: A Case Study. J. AI Data Min. 2018, 6, 121–132.

53. Sonmez, A.Y.; Kale, S.; Ozdemir, R.C.; Kadak, A.E. An Adaptive Neuro-Fuzzy Inference System (ANFIS) to Predict of Cadmium
(Cd) Concentrations in the Filyos River, Turkey. Turk. J. Fish. Aquat. Sci. 2018, 18, 1333–1343. [CrossRef]

54. Betrie, G.D.; Tesfamariam, S.; Morin, K.A.; Sadiq, R. Predicting copper concentrations in acid mine drainage: A comparative
analysis of five machine learning techniques. Environ. Monit. Assess. 2013, 185, 4171–4182. [CrossRef]

55. Shakeri Abdolmaleki, A.; Gholamalizadeh Ahangar, A.; Soltani, J. Artificial Neural Network (ANN) Approach for Predicting Cu
Concentration in Drinking Water of Chahnimeh1 Reservoir in Sistan-Balochistan, Iran. Health Scope 2013, 2, 31–38. [CrossRef]

56. Aryafar, A.; Gholami, R.; Rooki, R.; Ardejani, F.D. Heavy metal pollution assessment using support vector machine in the Shur
River, Sarcheshmeh copper mine, Iran. Environ. Earth Sci. 2012, 67, 1191–1199. [CrossRef]

57. Gholami, R.; Kamkar-Rouhani, A.; Ardejani, F.D.; Maleki, S. Prediction of toxic metals concentration using artificial intelligence
techniques. Appl. Water Sci. 2011, 1, 125–134. [CrossRef]

58. Sharma, Y.C.; Mukherjee, A.K.; Srivastava, J.; Mahato, M.; Singh, T.N. Prediction of various parameters of a river for assessment
of water quality by an intelligent technique. Chem. Prod. Process Model. 2008, 3. [CrossRef]

59. Coumans, C. Into the deep: Science, politics and law in conflicts over marine dumping of mine waste. Int. Soc. Sci. J. 2018, 68,
303–323. [CrossRef]

60. Senoro, D.B.; De Jesus, K.L.M.; Yanuaria, C.A.; Bonifacio, P.B.; Manuel, M.T.; Wang, B.N.; Kao, C.C.; Wu, T.N.; Ney, F.P.; Natal, P.
Rapid site assessment in a small island of the Philippines contaminated with mine tailings using ground and areal technique: The
environmental quality after twenty years. IOP Conf. Ser. Earth Environ. Sci. 2019, 351, 012022. [CrossRef]

61. Abdel-Satar, A.M.; Ali, M.H.; Goher, M.E. Indices of water quality and metal pollution of Nile River, Egypt. Egypt. J. Aquat. Res.
2017, 43, 21–29. [CrossRef]

http://doi.org/10.3390/app9245534
http://doi.org/10.1007/s00366-021-01431-6
http://doi.org/10.5812/jjhs.67544
http://doi.org/10.15171/EHEM.2017.31
http://doi.org/10.1007/s12665-017-6795-2
http://doi.org/10.28991/cej-03091212
http://doi.org/10.1007/s11356-022-18520-8
http://www.ncbi.nlm.nih.gov/pubmed/35079969
http://doi.org/10.1016/j.jconhyd.2020.103718
http://www.ncbi.nlm.nih.gov/pubmed/32987235
http://doi.org/10.1080/23249676.2020.1719219
http://doi.org/10.1007/s10668-021-01437-6
http://doi.org/10.3390/ijerph15112390
http://doi.org/10.1016/j.scitotenv.2019.133591
http://doi.org/10.4194/1303-2712-v18_12_01
http://doi.org/10.1007/s10661-012-2859-7
http://doi.org/10.17795/jhealthscope-9828
http://doi.org/10.1007/s12665-012-1565-7
http://doi.org/10.1007/s13201-011-0016-z
http://doi.org/10.2202/1934-2659.1181
http://doi.org/10.1111/issj.12199
http://doi.org/10.1088/1755-1315/351/1/012022
http://doi.org/10.1016/j.ejar.2016.12.006


Toxics 2022, 10, 95 42 of 44

62. Decker, C.; Simmons, K.; United States Environmental Protection Agency (U.S.E.P.A). Operating Procedure for In Situ Water
Quality Monitoring (SESDPROC-111-R4). Available online: https://www.epa.gov/sites/default/files/2015-06/documents/
Insitu-Water-Quality-Mon.pdf (accessed on 10 January 2022).

63. Migo, V.P.; Mendoza, M.D.; Alfafara, C.G.; Pulhin, J.M. Industrial water use and the associated pollution and disposal problems
in the Philippines. In Water Policy in the Philippines; Springer: Cham, Switzerland, 2018; pp. 87–116.

64. Tolentino, P.L.M.; Poortinga, A.; Kanamaru, H.; Keesstra, S.; Maroulis, J.; David, C.P.C.; Ritsema, C.J. Projected impact of climate
change on hydrological regimes in the Philippines. PLoS ONE 2016, 11, e0163941. [CrossRef] [PubMed]

65. Moodley, R.; Mahlangeni, N.T.; Reddy, P. Determination of heavy metals in selected fish species and seawater from the South
Durban Industrial Basin, KwaZulu-Natal, South Africa. Environ. Monit. Assess. 2021, 193, 206. [CrossRef] [PubMed]

66. Reiman, J.H.; Xu, Y.J.; He, S.; DelDuco, E.M. Metals geochemistry and mass export from the Mississippi-Atchafalaya River system
to the Northern Gulf of Mexico. Chemosphere 2018, 205, 559–569. [CrossRef]

67. De Jesus, K.L.M.; Senoro, D.B.; Dela Cruz, J.C.; Chan, E.B. A Hybrid Neural Network–Particle Swarm Optimization Informed
Spatial Interpolation Technique for Groundwater Quality Mapping in a Small Island Province of the Philippines. Toxics 2021,
9, 273. [CrossRef]

68. Chen, Y.; Yu, G.; Long, Y.; Teng, J.; You, X.; Liao, B.Q.; Lin, H. Application of radial basis function artificial neural network
to quantify interfacial energies related to membrane fouling in a membrane bioreactor. Bioresour. Technol. 2019, 293, 122103.
[CrossRef]

69. Ostad-Ali-Askari, K.; Shayannejad, M.; Ghorbanizadeh-Kharazi, H. Artificial neural network for modeling nitrate pollution of
groundwater in marginal area of Zayandeh-rood River, Isfahan, Iran. KSCE J. Civ. Eng. 2017, 21, 134–140. [CrossRef]

70. Okon, A.N.; Adewole, S.E.; Uguma, E.M. Artificial neural network model for reservoir petrophysical properties: Porosity,
permeability and water saturation prediction. Model. Earth Syst. Environ. 2021, 7, 2373–2390. [CrossRef]

71. Concha, N.; Oreta, A.W. A model for time-to-cracking of concrete due to chloride induced corrosion using artificial neural
network. IOP Conf. Ser. Earth Environ. Sci. 2018, 431, 072009. [CrossRef]

72. Mammadli, S. Financial time series prediction using artificial neural network based on Levenberg-Marquardt algorithm. Procedia
Comput. Sci. 2017, 120, 602–607. [CrossRef]

73. Rinchon, J.P.M. Strength durability-based design mix of self-compacting concrete with cementitious blend using hybrid neural
network-genetic algorithm. IPTEK J. Proc. Ser. 2017, 3. [CrossRef]

74. Babu, D.; Thangarasu, V.; Ramanathan, A. Artificial neural network approach on forecasting diesel engine characteristics fuelled
with waste frying oil biodiesel. Appl. Energy 2020, 263, 114612. [CrossRef]

75. El-Gohary, K.M.; Aziz, R.F.; Abdel-Khalek, H.A. Engineering approach using ANN to improve and predict construction labor
productivity under different influences. J. Const. Eng. Manag. 2017, 143, 04017045. [CrossRef]

76. Abnisa, F.; Anuar Sharuddin, S.D.; bin Zanil, M.F.; Wan Daud, W.M.A.; Indra Mahlia, T.M. The yield prediction of synthetic fuel
production from pyrolysis of plastic waste by levenberg–Marquardt approach in feedforward neural networks model. Polymers
2019, 11, 1853. [CrossRef]

77. Alnaqi, A.A.; Moayedi, H.; Shahsavar, A.; Nguyen, T.K. Prediction of energetic performance of a building integrated photo-
voltaic/thermal system thorough artificial neural network and hybrid particle swarm optimization models. Energy Convers.
Manag. 2019, 183, 137–148. [CrossRef]

78. Nguyen, H.; Bui, H.B.; Bui, X.N. Rapid determination of gross calorific value of coal using artificial neural network and particle
swarm optimization. Nat. Resour. Res. 2021, 30, 621–638. [CrossRef]

79. Tufaner, F.; Demirci, Y. Prediction of biogas production rate from anaerobic hybrid reactor by artificial neural network and
nonlinear regressions models. Clean Technol. Environ. Policy 2020, 22, 713–724. [CrossRef]

80. Rukhaiyar, S.; Alam, M.N.; Samadhiya, N.K. A PSO-ANN hybrid model for predicting factor of safety of slope. Int. J. Geotech.
Eng. 2018, 12, 556–566. [CrossRef]

81. da Silva Veloso, Y.M.; de Almeida, M.M.; de Alsina, O.L.S.; Passos, M.L.; Mujumdar, A.S.; Leite, M.S. Hybrid phenomenological/ANN-
PSO modelling of a deformable material in spouted bed drying process. Powder Technol. 2020, 366, 185–196. [CrossRef]

82. Thio, Q.C.; Karhade, A.V.; Ogink, P.T.; Bramer, J.A.; Ferrone, M.L.; Calderón, S.L.; Raskin, K.A.; Schwab, J.H. Development and
internal validation of machine learning algorithms for preoperative survival prediction of extremity metastatic disease. Clin.
Orthop. Relat. Res. 2020, 478, 322. [CrossRef]

83. Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y. Cardiologist-level arrhythmia
detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 2019, 25, 65–69. [CrossRef]

84. Disse, E.; Ledoux, S.; Bétry, C.; Caussy, C.; Maitrepierre, C.; Coupaye, M.; Laville, M.; Simon, C. An artificial neural network to
predict resting energy expenditure in obesity. Clin. Nutr. 2018, 37, 1661–1669. [CrossRef]

85. Gao, Z.; Zhang, H.; Mao, G.; Ren, J.; Chen, Z.; Wu, C.; Gates, I.D.; Yang, W.; Ding, X.; Yao, J. Screening for lead-free inorganic
double perovskites with suitable band gaps and high stability using combined machine learning and DFT calculation. Appl. Surf.
Sci. 2021, 568, 150916. [CrossRef]

86. Hou, J.; Yao, D.; Wu, F.; Shen, J.; Chao, X. Online vehicle velocity prediction using an adaptive radial basis function neural
network. IEEE Trans. Veh. Technol. 2021, 70, 3113–3122. [CrossRef]

87. Zhou, F.; Liu, B.; Duan, K. Coupling wavelet transform and artificial neural network for forecasting estuarine salinity. J. Hydrol.
2020, 588, 125127. [CrossRef]

https://www.epa.gov/sites/default/files/2015-06/documents/Insitu-Water-Quality-Mon.pdf
https://www.epa.gov/sites/default/files/2015-06/documents/Insitu-Water-Quality-Mon.pdf
http://doi.org/10.1371/journal.pone.0163941
http://www.ncbi.nlm.nih.gov/pubmed/27749908
http://doi.org/10.1007/s10661-021-09014-0
http://www.ncbi.nlm.nih.gov/pubmed/33751252
http://doi.org/10.1016/j.chemosphere.2018.04.094
http://doi.org/10.3390/toxics9110273
http://doi.org/10.1016/j.biortech.2019.122103
http://doi.org/10.1007/s12205-016-0572-8
http://doi.org/10.1007/s40808-020-01012-4
http://doi.org/10.1088/1757-899X/431/7/072009
http://doi.org/10.1016/j.procs.2017.11.285
http://doi.org/10.12962/j23546026.y2017i6.3267
http://doi.org/10.1016/j.apenergy.2020.114612
http://doi.org/10.1061/(ASCE)CO.1943-7862.0001340
http://doi.org/10.3390/polym11111853
http://doi.org/10.1016/j.enconman.2019.01.005
http://doi.org/10.1007/s11053-020-09727-y
http://doi.org/10.1007/s10098-020-01816-z
http://doi.org/10.1080/19386362.2017.1305652
http://doi.org/10.1016/j.powtec.2019.12.047
http://doi.org/10.1097/CORR.0000000000000997
http://doi.org/10.1038/s41591-018-0268-3
http://doi.org/10.1016/j.clnu.2017.07.017
http://doi.org/10.1016/j.apsusc.2021.150916
http://doi.org/10.1109/TVT.2021.3063483
http://doi.org/10.1016/j.jhydrol.2020.125127


Toxics 2022, 10, 95 43 of 44

88. Hesamian, G.; Akbari, M.G. A robust varying coefficient approach to fuzzy multiple regression model. J. Comput. Appl. Math.
2020, 371, 112704. [CrossRef]

89. Khademi, F.; Akbari, M.; Jamal, S.M.; Nikoo, M. Multiple linear regression, artificial neural network, and fuzzy logic prediction of
28 days compressive strength of concrete. Front. Struct. Civ. Eng. 2017, 11, 90–99. [CrossRef]

90. Alnowami, M.; Abolaban, F.; Hijazi, H.; Nisbet, A. Regression Analysis of Rectal Cancer and Possible Application of Artificial
Intelligence (AI) Utilization in Radiotherapy. Appl. Sci. 2022, 12, 725. [CrossRef]

91. Garg, M.; Dhiman, G. A novel content-based image retrieval approach for classification using GLCM features and texture fused
LBP variants. Neural Comput. Appl. 2021, 33, 1311–1328. [CrossRef]

92. Bhati, B.S.; Rai, C.S. Analysis of support vector machine-based intrusion detection techniques. Arab. J. Sci. Eng. 2020, 45,
2371–2383. [CrossRef]

93. Yap, K.Y.; Sarimuthu, C.R.; Lim, J.M.Y. Artificial intelligence based MPPT techniques for solar power system: A review. J. Mod.
Power Syst. Clean Energy 2020, 8, 1043–1059.

94. Jain, U.; Nathani, K.; Ruban, N.; Raj, A.N.J.; Zhuang, Z.; Mahesh, V.G. Cubic SVM classifier based feature extraction and emotion
detection from speech signals. In Proceedings of the 2018 International Conference on Sensor Networks and Signal Processing
(SNSP), Xi’an, China, 28–31 October 2018; IEEE: New York, NY, USA, 2018; pp. 386–391.

95. Naicker, N.; Adeliyi, T.; Wing, J. Linear support vector machines for prediction of student performance in school-based education.
Math. Probl. Eng. 2020, 2020. [CrossRef]

96. Jimeno-Sáez, P.; Senent-Aparicio, J.; Pérez-Sánchez, J.; Pulido-Velazquez, D. A comparison of SWAT and ANN models for daily
runoff simulation in different climatic zones of peninsular Spain. Water 2018, 10, 192. [CrossRef]

97. Tenza-Abril, A.J.; Villacampa, Y.; Solak, A.M.; Baeza-Brotons, F. Prediction and sensitivity analysis of compressive strength in
segregated lightweight concrete based on artificial neural network using ultrasonic pulse velocity. Constr. Build. Mater. 2018, 189,
1173–1183. [CrossRef]

98. Hui, E.; Stafford, R.; Matthews, I.M.; Smith, V.A. Bayesian networks as a novel tool to enhance interpretability and predictive
power of ecological models. Ecol. Inform. 2021, 68, 101539. [CrossRef]

99. Alkadri, S.; Ledwos, N.; Mirchi, N.; Reich, A.; Yilmaz, R.; Driscoll, M.; Del Maestro, R.F. Utilizing a multilayer perceptron artificial
neural network to assess a virtual reality surgical procedure. Comput. Biol. Med. 2021, 136, 104770. [CrossRef] [PubMed]

100. DENR Administrative Order (DAO). No. 2016-08: Water Quality Guidelines and General Effluent Standards of 2016. Available
online: https://emb.gov.ph/wp-content/uploads/2019/04/DAO-2016-08_WATER-QUALITY-GUIDELINES-AND-GENERAL-
EFFLUENT-STANDARDS.pdf (accessed on 15 January 2022).

101. Tiwari, A.K.; Singh, A.K.; Singh, A.K.; Singh, M.P. Hydrogeochemical analysis and evaluation of surface water quality of
Pratapgarh district, Uttar Pradesh, India. Appl. Water Sci. 2017, 7, 1609–1623. [CrossRef]

102. Huang, Z.; Zheng, S.; Liu, Y.; Zhao, X.; Qiao, X.; Liu, C.; Zheng, B.; Yin, D. Distribution, toxicity load, and risk assessment of
dissolved metal in surface and overlying water at the Xiangjiang River in southern China. Sci. Rep. 2021, 11, 109. [CrossRef]

103. Bhuyan, M.S.; Bakar, M.A.; Akhtar, A.; Hossain, M.B.; Ali, M.M.; Islam, M.S. Heavy metal contamination in surface water and
sediment of the Meghna River, Bangladesh. Environ. Nanotechnol. Monit. Manag. 2017, 8, 273–279. [CrossRef]

104. Wang, J.; Liu, G.; Liu, H.; Lam, P.K. Multivariate statistical evaluation of dissolved trace elements and a water quality assessment
in the middle reaches of Huaihe River, Anhui, China. Sci. Total Environ. 2017, 583, 421–431. [CrossRef]

105. Ukah, B.U.; Egbueri, J.C.; Unigwe, C.O.; Ubido, O.E. Extent of heavy metals pollution and health risk assessment of groundwater
in a densely populated industrial area, Lagos, Nigeria. Int. J. Energy Water Resour. 2019, 3, 291–303. [CrossRef]

106. Taylor, M.; Elliott, H.A.; Navitsky, L.O. Relationship between total dissolved solids and electrical conductivity in Marcellus
hydraulic fracturing fluids. Water Sci. Technol. 2018, 77, 1998–2004. [CrossRef] [PubMed]

107. Ahmed, A.S.; Sultana, S.; Habib, A.; Ullah, H.; Musa, N.; Hossain, M.B.; Rahman, M.M.; Sarker, M.S.I. Bioaccumulation of heavy
metals in some commercially important fishes from a tropical river estuary suggests higher potential health risk in children than
adults. PLoS ONE 2019, 14, e0219336. [CrossRef] [PubMed]

108. Magesh, N.S.; Chandrasekar, N.; Elango, L. Trace element concentrations in the groundwater of the Tamiraparani river basin,
South India: Insights from human health risk and multivariate statistical techniques. Chemosphere 2017, 185, 468–479. [CrossRef]
[PubMed]

109. Rashid, A.; Ayub, M.; Javed, A.; Khan, S.; Gao, X.; Li, C.; Ullah, Z.; Sardar, T.; Muhammad, J.; Nazneen, S. Potentially harmful
metals, and health risk evaluation in groundwater of Mardan, Pakistan: Application of geostatistical approach and geographic
information system. Geosci. Front. 2021, 12, 101128. [CrossRef]

110. Senoro, D.B.; de Jesus, K.L.M.; Mendoza, L.C.; Apostol, E.M.D.; Escalona, K.S.; Chan, E.B. Groundwater Quality Monitoring
Using In-Situ Measurements and Hybrid Machine Learning with Empirical Bayesian Kriging Interpolation Method. Appl. Sci.
2022, 12, 132. [CrossRef]

111. Wagh, V.M.; Panaskar, D.B.; Mukate, S.V.; Gaikwad, S.K.; Muley, A.A.; Varade, A.M. Health risk assessment of heavy metal
contamination in groundwater of Kadava River Basin, Nashik, India. Model. Earth Syst. Environ. 2018, 4, 969–980. [CrossRef]

112. Bhutiani, R.; Kulkarni, D.B.; Khanna, D.R.; Gautam, A. Water quality, pollution source apportionment and health risk assessment
of heavy metals in groundwater of an industrial area in North India. Expo. Health 2016, 8, 3–18. [CrossRef]

113. Hussein, A.A.; Chehade, A.A. Robust artificial neural network-based models for accurate surface temperature estimation of
batteries. IEEE Trans. Ind. Appl. 2020, 56, 5269–5278. [CrossRef]

http://doi.org/10.1016/j.cam.2019.112704
http://doi.org/10.1007/s11709-016-0363-9
http://doi.org/10.3390/app12020725
http://doi.org/10.1007/s00521-020-05017-z
http://doi.org/10.1007/s13369-019-03970-z
http://doi.org/10.1155/2020/4761468
http://doi.org/10.3390/w10020192
http://doi.org/10.1016/j.conbuildmat.2018.09.096
http://doi.org/10.1016/j.ecoinf.2021.101539
http://doi.org/10.1016/j.compbiomed.2021.104770
http://www.ncbi.nlm.nih.gov/pubmed/34426170
https://emb.gov.ph/wp-content/uploads/2019/04/DAO-2016-08_WATER-QUALITY-GUIDELINES-AND-GENERAL-EFFLUENT-STANDARDS.pdf
https://emb.gov.ph/wp-content/uploads/2019/04/DAO-2016-08_WATER-QUALITY-GUIDELINES-AND-GENERAL-EFFLUENT-STANDARDS.pdf
http://doi.org/10.1007/s13201-015-0313-z
http://doi.org/10.1038/s41598-020-80403-0
http://doi.org/10.1016/j.enmm.2017.10.003
http://doi.org/10.1016/j.scitotenv.2017.01.088
http://doi.org/10.1007/s42108-019-00039-3
http://doi.org/10.2166/wst.2018.092
http://www.ncbi.nlm.nih.gov/pubmed/29722685
http://doi.org/10.1371/journal.pone.0219336
http://www.ncbi.nlm.nih.gov/pubmed/31622361
http://doi.org/10.1016/j.chemosphere.2017.07.044
http://www.ncbi.nlm.nih.gov/pubmed/28715757
http://doi.org/10.1016/j.gsf.2020.12.009
http://doi.org/10.3390/app12010132
http://doi.org/10.1007/s40808-018-0496-z
http://doi.org/10.1007/s12403-015-0178-2
http://doi.org/10.1109/TIA.2020.3001256


Toxics 2022, 10, 95 44 of 44

114. Çolak, A.B. A novel comparative investigation of the effect of the number of neurons on the predictive performance of the
artificial neural network: An experimental study on the thermal conductivity of ZrO2 nanofluid. Int. J. Energy Res. 2021, 45,
18944–18956. [CrossRef]

115. Mathew, J.; Kshirsagar, R.; Zabeen, S.; Smyth, N.; Kanarachos, S.; Langer, K.; Fitzpatrick, M.E. Machine Learning-Based Prediction
and Optimisation System for Laser Shock Peening. Appl. Sci. 2021, 11, 2888. [CrossRef]
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