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Abstract
For motion control of uncertain servomechanisms, nonlinear dynamics including smooth and nonsmooth types, external
disturbances, signal measurement noises, asymmetric input saturation, and so on seriously hinder the further development
of high-performance closed-loop control algorithms. However, already existing control strategies cannot address the above-
mentioned issues at the same time. It greatly increases the difficulty of controller design especially when some states are not
measurable. Inspired by above motivations, this paper exploits neural networks to deal with nonlinear dynamics including
discontinuous types, and combines extended state observers to estimate disturbances and unmeasurable states for uncertain
nonlinear servomechanisms. Meanwhile, the desired-command-based model compensation approach is integrated into the
controller design. It is worth noting that the neural network weights are updated by the combination of the estimation error and
tracking error to acquire better approximation accuracy. According to above technologies, a novel extended-state-observer-
based neural network adaptive motion control algorithm will be synthesized. The bounded stability of the whole closed-loop
system is proved strictly. In addition, the comparisons of the application results on an electro-hydraulic servo system verify
the availability and superiority of the developed control algorithm.

Keywords Servomechanism · Input saturation · Motion control · Neural network · Extended state observer

Introduction

Servo mechanical systems, such as servo motor systems
[1–4], hydraulic servo systems [5–8], and aerocrafts [9, 10],
play an important role in industry and engineering applica-
tions, including processing, manufacturing, production, and
so on. And they are often affected by unknown nonlinear
dynamics, including continuous and discontinuous types,
external disturbances, signal measurement noises, input sat-
uration, and other factors. In addition, some signals in the
system cannot be measured, because they are not equipped
with corresponding sensors. Above-mentioned factors will
seriously affect the motion accuracy of servo mechanical
systems, leading it difficult to synthesize high-performance
closed-loop controllers.

During the past few decades, themotion control for uncer-
tain nonlinear servo systems has mainly revolved around
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overcoming the modeling uncertainties therein. It is worth
noting that a large number of leading control algorithms have
been presented alongwith the development of control theory.
Examples like adaptive robust control (ARC) [11], integral
robust control (IRC) [12, 13], sliding mode control (SMC)
[14, 15], disturbance-observer-based control [1, 2, 9, 16–18],
neural network (NN)-based control [19–24], and so on. In
[25], the authors have presented an integral retarded con-
troller for velocity control of a direct current motor servo
system. However, only a part of modeling uncertainties has
been dealt with. In [26], for a servo motor actuated gantry
system, the authors have developed a friction-compensation-
based adaptive SMC control algorithm which utilizes the
adaptive control technique to handle uncertain parameters
that lie linearly in the system and employs the SMC to deal
with external disturbances. However, the final control input
contains a discontinuous term, which may cause severe chat-
tering for the actual system. To handle large disturbances
existing in a pneumatic servo system, Yuanqing Xia et al.
have employed an extended state observer (ESO) to acquire
the estimate of lumped nonlinearities and thus compensate
for the total disturbances feedforwardly [27]. Furthermore,
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DaeheeWonet al. havedeveloped anoutput feedback integral
slidingmode controller by incorporating a high gain observer
to acquire the estimate of the unmeasured velocity as well as
load pressure [16]. However, unknown nonlinear dynamics
have not been considered in [16]. By taking advantage of
the good approximation performance of NN for unknown
functions, the authors in [7] and [23] have synthesized
an adaptive NN (ANN) control algorithm to treat largely
uncertain nonlinear dynamics existing in hydraulic cylinder
actuated active suspension systems. Furthermore, by exploit-
ing NNs to approximate unknown nonlinear functions and
dead zone, the authors in [24] have proposed a ANN control
strategy for a family of servo mechanisms. To simultane-
ously cope with unknown nonlinear dynamic uncertainties
and exogenous disturbances, some control strategies which
combine neural network with robust control methods have
been proposed. In [21], a NN-based ARC control algo-
rithm has been synthesized for a linear motor driven stage
to obtain high-accuracy tracking effect and reject external
disturbances. In [28], the authors have presented a recurrent
NN-based SMC control structure for nonlinear systems to
compensate for unknown nonlinear dynamics and suppress
external disturbances. Moreover, a NN-based IRC control
algorithm has been proposed by Jing Na et al. for uncertain
servomechanisms. Nevertheless, the control strategies men-
tioned above exist certain conservatism when the considered
system is faced with large external disturbances. Further-
more, influenced by external disturbances, the actual control
input added to the system may be saturated due to the limi-
tation of electrical hardware. Some control algorithms with
saturation compensation [11, 15, 29–31] have been devel-
oped for this working condition.

After careful analysis of the existing studies, it is known
that scholars mainly deal with the continuous nonlinear
dynamic uncertainties via NN, but pay little attention to the
existence of discontinuous nonlinear dynamics in the system.
As for servomechanisms, there prominently exist various
discontinuous nonlinear dynamics, such as discontinuous
nonlinear friction, discontinuous hydraulic fluid leakage, and
so on. In addition, for feedback control, themeasurement val-
ues of state feedback information are often needed, but they
are usually not measurable for actual systems due to eco-
nomic, structural, and other factors. As for speed feedback
and acceleration feedback in the actual servo mechanical
systems, these information are often not obtained by adding
corresponding sensors, but by position information via filters.
However, the dynamics of these filters are often not included
in the closed-loop stability proof of the system, resulting
in great conservatism in implementing the final controller.
In addition, using the measured value of the signals directly
when designing the controller causes a large amount of noises
to bemixed, whichmay lead to unsatisfactory control effects.
It is worth noting that most of the existing controllers still use

the traditional backstepping method, which will lead to the
issue of “explosion of complexity (EC)”. By analyzing and
summarizing the above studies, it can be found that unknown
nonlinear dynamics in the system, especially the types of dis-
continuities, external interference, measurement noises, and
input saturation, and so on, cannot simultaneously be han-
dled under the condition that only some state signals can be
measured. And it will also be affected by ECwhen designing
the controller. The above factors bring great challenges to the
design of the controller.

Stimulated by above analysis, we will propose a novel
control algorithm to deal with the issues. Specially, the pro-
posed control algorithm will employ NN adaptive control
[32] to simultaneously estimate the continuous and discon-
tinuous nonlinear dynamics that present in the system. And
ESOs [33] will be exploited to estimate unmeasured states,
mismatched, and matched exogenous disturbances in the
system. By incorporating the desired-command-based tech-
nology into NN adaptive control, observer and controller
to minimize the influence of signal measurement noises.
More importantly, the effect of EC will be eliminated via
the command-filtered backstepping technique. And the satu-
ration compensation technology will be utilized to deal with
the input saturation effect suffered by the system.

In summary, the proposed control algorithm has the fol-
lowing innovations:

• Theproposed control algorithmcan simultaneously handle
smooth and nonsmooth nonlinear dynamics, matched and
mismatched exogenous disturbances, measurement signal
noises, and input saturation.

• The better neural network adaptive performance can be
acquired, since the weight adaption laws are driven by the
composite errors comprised of state prediction errors and
system tracking errors.

• The proposed control algorithm can be adapted in the
working condition with unmeasurable information, which
means that it has strong adaptability toworking conditions.

• The integrated control algorithm can not only eliminate
the effects of “explosion of complexity”, but also avoid
the influence of filtering error.

For simplification, some notations are presented as fol-
lows:

i 1, 2, 3

j 2, 3

b 1, 2

•̂ the estimate of •
•̃ � • − •̂ the estimation error of •
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Problem statement

A family of third-order uncertain nonlinear servomecha-
nisms in the following state-space form is considered as

χ̇1 � χ2

χ̇2 � χ3 + ξ2(χ2) + ε2(t)

χ̇3 � u(ν) + ξ3(χ3) + ψ3(χ3) + ε3(t)

yo � χ1. (1)

Here, χ i means the system state variable; ξ j (χ j ) denotes
the unknown nonlinear dynamic with respect to χ j � [χ1,
…,χ j]T;ψ3(χ3) means the unknown nonlinear dynamicwith
respect to χ3; εj(t) represents the lumped time-varying exter-
nal disturbance; yo stands for the system output; and the input
saturation nonlinearity u (ν) can be described by

u(ν) � sat(ν) �

⎧
⎪⎨

⎪⎩

u, ν ≥ u

ν, u < ν <

u, ν ≤ u

u, (2)

where ν indicates the control input; moreover, u >0 and u
<0 denote known bounds for u (ν).

Control Goal: To construct a bounded input ν with only
partial state measurements, so that the yo � χ1 can follow
any desired command χ1d(t)∈Σ1 closely in spite of various
modeling uncertainties and input saturation nonlinearity.

Before synthesizing the control scheme to acquire the
above-mentioned control objective, we firstly make the fol-
lowing several assumptions.

Assumption 1 The desired command χ1d(t) belongs to C2.
The system signals χ1 and χ3 are measurable, while the
system signal χ2 is immeasurable. The unknown nonlinear
function ξ j (χ j ) belongs to C

1. Specially, the unknown non-
linear function ψ3(χ3) is bounded and continuous except at
χ3 � cc where it exhibits a finite jump and is always contin-
uous from the right, in which cc means a constant.

Assumption 2 There exist some positive constants ε2m and
ε3m, such that exogenous disturbances ε2(t) and ε3(t) fulfill

|ε2(t)| ≤ ε2m, |ε3(t)| ≤ ε3m . (3)

Lemma 1 Denote a command filter as follows [31]:

ẋ1 � wcx2

ẋ2 � −2w f wcx2 − wc(x1 − xr ). (4)

If the input variable xr fulfills |ẋr (0)|≤xr1 and |ẍr (0)|≤xr2
for any time t ≥0 with xr1 and xr2 being some positive
constants, and meanwhile, x1(0) � xr(0), x2(0) � 0, hence

there exist positive constants ωc, εc, and 0<ωf <1, so that
|x1–xr |≤εc.

Remark 1 For a large number of practical applications, typi-
cal examples like hydraulic/motor servo systems [1, 2, 6, 18,
34], they can always be modeled or transformed as (1). Fur-
thermore, some discontinuous nonlinear dynamics, such as
discontinuous friction and discontinuous leakage, which are
not ignored have yet been considered in (1). In addition, it can
be found from (1) that mismatched modeling uncertainties
including ξ2(χ2) and ε2(t), matched modeling uncertainties
including ξ3(χ3) and ε3(t), and input saturation nonlinearity
are simultaneously taken into account.

Command-filter-based neural network
controller with partial state feedback

Neural network approximation

According to the powerful universal approximation charac-
teristic of NN, for any C1 nonlinear function F1(x), there
exist ideal weights W* ∈R

L with L being the number of
RBFNN nodes, so that [32]

F1(x) � WT∗ η∗(x) + σ (x), (5)

where x means the input vector, σ (x) indicates the approxi-
mation error, and η∗(x) � [η∗1(x),η∗2(x), …,η∗L (x)]T with
the function η∗l (x), l � 1, 2, …, L, usually being chosen as
the Gaussian RBF [32]

η∗l (x) � e−‖x−cl‖2
/
2w2

l , (6)

in which cl and wl are center vectors and widths of the RBF,
respectively.

Noting (5), the function F1(x) is able to be approximated
by

F̂1(x) � Ŵ T∗ η∗(x). (7)

Furthermore, for any continuously nonlinear function
F2(x) except at x � cc where it exhibits a jump and is also
continuous from the right, there exist ideal weightsG* ∈R

M

withM being the number of NN nodes, so that

F2(x) � GT∗ ψ∗(x) + μc(x), (8)

where μc(x) indicates the approximation error; and ψ∗(x) �
[ψ∗1(x),ψ∗2(x), …,ψ∗M (x)]T with the sigmoid jump func-
tionψ∗m(x),m� 0, 1,…,M, usually being chosen as follows
[35]:

ψ∗m(x) �
{(

1 − e−x
)m ifx ≥ 0

0 otherwise
. (9)
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Based on (8), F2(x) can be estimated by

F̂2(x) � ĜT∗ ψ∗(x) (10)

NN-based ESOs design

Noting the considered system in (1), we can reorganize the
expression ξ3(χ3) as

ξ3(χ3) � ϕ3(χ2, χ̇2) + ε4(t), (11)

where ϕ3(χ2, χ̇2) indicates a nonlinear function with respect
to χ2 and χ̇2, and ε4(t) represents the lumped time-varying
external disturbance.

Based on (1) and (11), the nonlinear system (1) can be
reorganized as

χ̇1 � χ2

χ̇2 � χ3 + ξ2(χ2d ) + Ñ2 + ε2(t)

χ̇3 � u(ν) + ϕ3(χ3d ) + Ñ3 + ε4(t) + ψ3(χ3) + ε3(t), (12)

where χ2d � [χ1d , χ̇1d ]T and χ3d � [χ1d , χ̇1d , χ̈1d ]T are
vectors with respect to desired commands. In addition, Ñ2

and Ñ3 are expressed as

Ñ2 � ξ2(χ2) − ξ2(χ2d ), Ñ3 � ϕ3(χ2, χ̇2) − ϕ3(χ3d ). (13)

Depending on (5), (8), (12), and (13), the system (1) can
be equivalent to the form as below

χ̇1 � χ2

χ̇2 � χ3 +WT
2 η2(χ̄2d ) + σ2(χ̄2d ) + Ñ2 + ε2(t)

χ̇3 � u(ν) +WT
3 η3(χ̄3d ) + σ3(χ̄3d ) + Ñ3 + ε4(t)

+GTψp(χ3) + μ(χ3) + ε3(t),

(14)

where η2(χ2d ) and η3(χ3d ) are Gaussian RBFs whose
expressions are similar to (6); ψp(χ3) indicates the sig-
moid jump function whose expression is similar to (9);
in addition,σ2(χ2d ), σ3(χ3d ) and μ(χ3) represent different
approximation errors.

First, let us introduce two variables χD2(t) � σ2(χ2d ) +
ε2(t) and χD3(t)� σ3(χ3d ) + ε3(t) + ε4(t) as extended states;
thus, the state-space expression (14) can be converted into the
following form:

⎧
⎪⎨

⎪⎩

χ̇1 � χ2

χ̇2 � χ3 +WT
2 η2(χ̄2d ) + χD2 + Ñ2

χ̇D2 � α1(t)
⎧
⎪⎨

⎪⎩

χ̇3 � u(ν) +WT
3 η3(χ̄3d ) + Ñ3

+ GTψp(χ3) + μ(χ3) + χD3.

χ̇D3 � α2(t)

(15)

Thus, the NN-based ESOs for (15) can be synthesized as

⎧
⎪⎪⎨

⎪⎪⎩

˙̂χ1 � χ̂2 + γ1ωo1
(
χ1 − χ̂1

)

˙̂χ2 � χ3 + Ŵ T
2 η2(χ2d ) + χ̂D2 + γ2ω

2
o1

(
χ1 − χ̂1

)

˙̂χD2 � γ3ω
3
o1

(
χ1 − χ̂1

)

⎧
⎪⎨

⎪⎩

˙̂χ3 � u(ν) + Ŵ T
3 η3(χ3d ) + ĜTψp(χ3)

+ χ̂D3 + r1ωo2
(
χ3 − χ̂3

)

˙̂χD3 � r2ω
2
o2

(
χ3 − χ̂3

)
, (16)

where the adjustable gains ωo1 >0 andωo2 >0 can be seen as
the bandwidths of the designed observers; design parameters
γ i and rb need tobe chosen toguarantee that the characteristic
polynomials γ 1s2 + γ 2s + γ 3 and r1s + r2 of the following
matrices Co and Ro are Hurwitz, respectively. It is worth
noted from [36] that γ i and rb can be parameterized as γ 1 �
3, γ 2 � 3, γ 3 � 1 and r1 � 2, r2 � 1, respectively.

Upon (15) and (16), the estimation error dynamics of the
constructed observers are arranged as

⎧
⎪⎪⎨

⎪⎪⎩

˙̃χ1 � −γ1ωo1χ̃1 + χ̃2

˙̃χ2 � −γ2ω
2
o1χ̃1 + χ̃D2 + W̃ T

2 η2(χ̄2d ) + Ñ2

˙̃χD2 � −γ3ω
3
o1χ̃1 + α1(t)

⎧
⎪⎪⎨

⎪⎪⎩

˙̃χ3 � −r1ωo2χ̃3 + χ̃D3 + W̃ T
3 η3(χ̄3d )

+ Ñ3 + G̃Tψp(χ3) + μ(χ3)

˙̃χD3 � −r2ω
2
o2χ̃3 + α2(t)

.

(17)

For facilitating the subsequent theoretical analysis, a set
of state vectors ζ � [ζ 1, ζ 2, ζ 3]T � [χ̃1,χ̃2

/
ωo1,χ̃D2

/
ω2
o1]

T

and δ � [δ1, δ2]T � [χ̃3,χ̃D3
/
ωo2]T are introduced. Hence,

(17) can be rearranged as

ζ̇ � ωo1Coζ + H1
W̃ T

2 η2(χ2d ) + Ñ2

ωo1
+ H2

α1(t)

ω2
o1

(18)

δ̇ � ωo2Roδ + S1
[
W̃ T

3 η3(χ3d ) + Ñ3

]

+ S1
[
G̃Tψp(χ3) + μ(χ3)

]
+ S2

α2(t)

ωo2
,

(19)

in which

Co �
⎡

⎣
−γ1 1 0
−γ2 0 1
−γ3 0 0

⎤

⎦, H1 �
⎡

⎣
0
1
0

⎤

⎦, H2 �
⎡

⎣
0
0
1

⎤

⎦ (20)

Ro �
[−r1 1

−r2 0

]

, S1 �
[
1
0

]

, S2 �
[
0
1

]

. (21)

As the matrices Co and Ro are Hurwitz, there must exist
positive definite matrices Eo and Yo, such thatCT

o Eo + EoCo

� –I and RT
o Yo + YoRo � –I always hold [37]. Furthermore,
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according to aforementioned parameterized values γ i and rb,
Eo and Yo can be, respectively, calculated as

Eo �
⎡

⎣
1 − 1

2 −1
− 1

2 1 − 1
2−1 − 1

2 4

⎤

⎦,Yo �
[ 1

2 − 1
2− 1

2
3
2

]

. (22)

Furthermore, the theoretical analysis for the stability of
the constructed NN-based ESOs which is included in that of
the whole closed-loop system will be provided in Appendix
A.

Command filteredmodel compensation controller
with partial state feedback

To synthesize the subsequent control scheme, we define a set
of tracking error variables zi and error compensation signals
ei as follows:

z1 � χ1 − χ1d , e1 � z1 − φ1

z2 � χ2 − v1, e2 � z2 − φ2

z3 � χ3 − v2,c, e3 � z3 − φ3, (23)

where v1 and v2 indicate virtual control functions; v2,c
denotes the filtered signal of v2 via the presented command
filter in (4). In addition, a set of compensating signals φi is
introduced as follows:

φ̇1 � −k1φ1 + φ2

φ̇2 � −k2φ2 + φ3 + (v2,c − v2)

φ̇3 � −k3φ3 + �u,

(24)

where ki indicates positive feedback gains and�u� u (ν)–ν.
Step 1:
Upon (1), (11), and (12), the time derivative of e1 is pro-

duced as

ė1 � e2 + φ2 + v1 − χ̇1d − (−k1φ1 + φ2)

� e2 + v1 − χ̇1d + k1φ1.
(25)

Thus, the virtual control function v1 is synthesized as

v1 � −k1z1 + χ̇1d . (26)

After substituting (26) into (25), we have

ė1 � −k1e1 + e2. (27)

Step 2:
Noting (14), (23), and (24), we can get the time derivative

of e2 as

ė2 � χ̇2 − v̇1 − φ̇2

� χ3 +WT
2 η2(χ̄2d ) + χD2 + Ñ2

− (−k1 ż1 + χ̈1d) + k2φ2 − φ3 − (v2,c − v2). (28)

As

ż1 � ė1 + φ̇1

� −k1e1 + e2 − k1φ1 + φ2. (29)

We can achieve

ė2 � e3 + v2 + k2φ2 +WT
2 η2(χ2d ) + χD2

+ Ñ2 + k1(−k1e1 + e2 − k1φ1 + φ2) − χ̈1d . (30)

Therefore, we can construct the virtual control function
v2 as

v2 � −k2
(
χ̂2 − v1

) − Ŵ T
2 η2(χ2d ) − χ̂D2 + χ̈1d − e1. (31)

After substituting (31) into (30), one has

ė2 � e3 − k2e2 − e1 + k2χ̃2 + W̃ T
2 η2(χ̄2d )

+ χ̃D2 + Ñ2 − k21e1 + k1e2 − k21φ1 + k1φ2. (32)

Step 3:
Based on (14), (23), and (24), we are able to acquire the

time derivative of e3 as

ė3 � χ̇3 − v̇2,c − φ̇3

� u(ν) +WT
3 η3(χ3d ) + Ñ3 + GTψp(χ3)

+ μ(χ3) + χD3 − v̇2,c − (−k3φ3 + �u)

� ν + k3φ3 +WT
3 η3(χ3d ) + Ñ3

+ GTψp(χ3) + μ(χ3) + χD3 − v̇2,c. (33)

Noting (33), the resulting control law ν can be synthesized
by

ν � −k3(χ3 − v2,c) − Ŵ T
3 η3(χ3d )

− ĜTψp(χ3) − χ̂D3 + v̇2,c − e2. (34)

After substituting (34) into (33), one gets

ė3 � −k3e3 − e2 + W̃ T
3 η3(χ3d )

+ Ñ3 + G̃Tψ(χ3) + μ(χ3) + χ̃D3. (35)

The framework of the developed controller is shown in
Fig. 1.
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Fig. 1 The framework of the developed control scheme

Main results

Theorem 1 With the NNs’ weights online updated by

˙̂W2 � Proj

{

ϒ2

[

η2(χ2d )

(

χ̂2 − v1 − φ2 − 1

2ωo1
ζ1

)

− ρ2Ŵ2

]}

˙̂W3 � Proj

{

ϒ3

[

η3(χ3d )

(

e3 +
1

2
δ1

)

− ρ3Ŵ3

]}

˙̂G � Proj

{

�

[

ψp(χ3)

(

e3 +
1

2
δ1

)

− ρGĜ

]}

, (36)

in which Proj(•) indicates a smooth projection operator; U2,
U3, and G mean positive definite and symmetric adjustable
gain matrices; moreover, ρ2, ρ3, and ρG indicate adjustable
positive gains. By choosing design parameters wc, wf for the
introduced command filter and other positive gains includ-
ing ωo1, ωo2, ki felicitously, thus the integrated control
algorithm can make sure that all signals in the closed-
loop servomechanism (1)with largely unknownmismatched,

matched modeling uncertainties and input saturation nonlin-
earity are bounded.

Proof See Appendix A.

Remark 2 Notably, the developed control strategy can com-
pensate for largely uncertain nonlinear dynamics and external
disturbances with only partial state measurements. Specially,
discontinuous nonlinear dynamics are also handled. And a
command filter is introduced to remove the effect of EC.
Moreover, by introducing a series of compensation functions,
not only the input saturation effect is compensated, but also
the filtering error is eliminated [38, 39]. Furthermore, mea-
surement noises are suppressed by introducing the desired
compensation technique.

Application verification

To check the performance of the above-mentioned control
strategy in different aspects, wewill carry out numerical sim-
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ulations for a typical verification platform, i.e., a double-rod
electric-hydraulic position servomechanism [8]. Moreover,
random measurement noises are added.

By introducing a set of state variables χ1 � yL , χ2 � ẏL ,
and χ3 � AJPL/J , the nonlinear model of the double-rod
hydraulic position servomechanism in [8] can be written as

χ̇1 � χ2

χ̇2 � χ3 + ξ2(χ2) + ε2(t)

χ̇3 � U (ν) + ξ3(χ3) + ψ3(χ3) + ε3(t), (37)

whereU(ν)� gmu(ν) with gm being gm � 4AJβoektkv/(JVt).
Specially, the definitions of the system variables are pre-
sented as follows.

J The load mass

yL The displacement of the load

Vt The total volume of the hydraulic chambers

AJ The active area of the piston rod

Ps The oil supply pressure

Pr The oil return pressure

PL The load pressure

βoe The effective bulk modulus of oil

kv The gain of the employed servo valve

kt The discharge coefficient

It is worth noted from (37) that an additional variable
U (ν) is employed, which means that the actual control input
ν can be calculated once U (ν) is synthesized out. Moreover,
the central physical values of the system parameters for the
employed hydraulic servomechanism are collected in Table
1.

To indicate the high-performance tracking effect of the
developed algorithm, the following controllers are set for
comparison in two working conditions.

(1) C1: This is the integrated control scheme in this paper,
i.e., the NN controller with disturbance and nonlinear

Table 1 The central physical values for the hydraulic servomechanism

Parameters Values (unit)

J 30 (kg)

Vt 7.962×10–5 (m3)

AJ 9.0478×10–4 (m2)

βoe 7×108 (Pa)

kv 2.5×10–3(m/V)

kt 5×10–2 (m3/s)

Ps 1×107 (Pa)

Pr 0

Table 2 The design parameters of the C1 controller

The positive feedback gains k1 � 200, k2 � 600, k3 � 100

The gains for the ESOs ωo1 � 200, ωo2 � 1500

The design parameters for the
NNs

U2 � 500I9×9, U3 �
1000I11×11, G � 10I16×16, ρ2
� 0.1, ρ3 � 0.1, ρG � 1; the
center vectors for η2(χ2d ) and
η3(χ3d ) are evenly spaced in
[− 1.2, 1.2] and [− 2, 2],
respectively; the widths for
η2(χ2d ) and η3(χ3d ) are 1
and 5, respectively

The design parameters of the
command filter for v2

ωf �0.99, ωc � 1500

The bounds for u(ν) in working
condition 1

u � 1.12, u � −1.12

The bounds for u(ν) in working
condition 2

u � 2.1, u � −2.2

dynamics compensation via partial state information
feedback. To make it clear, the design parameters of
this controller are presented in Table 2.

(2) C2: This is the controller which is same as the afore-
mentioned C1 control scheme but without external
disturbance compensation. The objective of setting such
a controller is to test the disturbance compensation per-
formance of the developed C1 controller.

(3) C3: This is the controllerwhich is same as the aforemen-
tioned C1 control algorithm but without NN adaptive
and disturbance compensation.

(4) C4: This is the integral robust controller whose control
scheme is integrated as follows:

z1 � χ1 − χ1d , z2 � χ2 − v1,

z3 � χ3 − v2, v1 � −k1z1 + χ̇1d ,

v2 � v̇1 − k2z2 − kr z2

−
∫ t

0
[kr k2z2 + βr2sign(z2)dτ ,

u � [−k3z3 + v̇2 − βr3sign(z3)]
/
gm . (38)

The gains of this controller are presented as kr � 80, βr2

� 80, and βr3 � 80, respectively.

(5) C5: This is the distinguished proportional integral con-
troller with its proportional gain and integral gain being
1500 and 600, respectively.

For fair comparison, all corresponding design parameters
of C2, C3, and C4 controllers are chosen as same as that of
the C1 controller.

123



2534 Complex & Intelligent Systems (2022) 8:2527–2539

0 5 10 15 20 25 30 35 40

Time(s)

-40

-30

-20

-10

0

10

20

30

40

T
ra

ck
in

g
 P

er
fo

rm
an

ce
 o

f 
C

1
(m

m
)

1d 1

Fig. 2 The tracking performance of C1
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Fig. 3 Tracking errors of the contradistinctive controllers

Working condition 1: normal motion

To indicate the high-performance tracking effects of the
synthesized C1 controller, we employ the desired motion tra-
jectory χ1d(t) � 38sin(πt)mm which is displayed in Fig. 2.
Moreover, we can see fromFig. 2 that the outputχ1 under the
C1controller can trackχ1d closely. Furthermore, the tracking
errors of the employed five controllers are shown in Fig. 3.
From them, we can easily find that the synthesized C1 con-
troller in this paper expresses best tracking performance than
the other three controllers in terms of transient and steady-
state performance. Moreover, the high tracking performance
of C1 can be indicated via the presented performance indices
in Figs. 4 and 5. It is noted that the reason why the C1 con-
troller exhibits such excellent control performance is due to
its model compensations for nonlinear dynamics and distur-
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Fig. 4 Performance indices of C1, C4, and C5 controllers during last
one cycle
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Fig. 5 Performance indices of C2 and C3 controllers during last one
cycle

bances. In detail, the availability of the developed adaptive
NN-based nonlinear dynamics compensation can be verified
by comparing the tracking errors of C2 and C3. Further-
more, the validity of the developed ESO-based disturbance
compensation performance can be proved by comparing the
tracking errors of C1 and C2. Specially, the good state esti-
mation performance and disturbance estimation performance
fromFigs. 6 and 7 illustrate the effectiveness of the developed
ESOs. In addition, the estimation performance of nonlinear
functions with the C1 controller in Fig. 8, who is regular and
bounded, shows that the developed NN adaptive control has
good function approximation performance.The effectiveness
of combining nonlinear dynamics and disturbance compen-
sation can be illustrated by comparing the tracking errors of
C1 and C3. From Fig. 9, we can make out that the actual
control input is always within the preset ranges and presents
corresponding rules, even in the case of input saturation.
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Fig. 7 Disturbances’ estimation performance with the C1 controller

Working condition 2: high-frequencymotion

To further indicate the high-performance tracking effects of
the synthesized C1 controller, we employ the desired motion
trajectory χ1d(t) � 10sin(6πt)mm which is displayed in
Fig. 10.Moreover, we can see from Fig. 10 that the output χ1

under the C1 controller can track χ1d closely. Furthermore,
the tracking errors and performance indices of the employed
five controllers are shown from Figs. 11, 12, 13. All results
indicate the high tracking performance of C1. In addition,
from Fig. 14, we can make out that the actual control input is
always within the preset ranges and presents corresponding
rules, even in the case of input saturation.
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Fig. 8 Estimation performance of nonlinear functions with the C1 con-
troller
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Fig. 9 Control input u with its upper and lower bounds of the C1 con-
troller

Conclusion

In this article, a ESO-based NN adaptive motion control
strategy has been proposed for a family of servomechanisms
with input saturation, which can be adapted to the working
condition where some state information can be measured.
By comparing several controllers, the compensation per-
formances for disturbance, nonlinear dynamics, and input
saturation have been verified. Especially, the estimation-
error-and-tracking-error-basedNNadaptive control has good
approximation ability to function uncertainties including the
nonsmooth unknown nonlinear dynamics. In addition, even
when the system is saturated, the actual control input still
does not exceed the preset limits.Moreover, the systemshows
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0.7271

1.2848

0.3713

0.6457

0.1859
0.3371

0
0.2
0.4
0.6
0.8

1
1.2
1.4

C1 C5

Pe
rf

or
m

an
ce

 In
de

x(
m

m
)

Controller

Maximum tracking error
Average tracking error
Standard deviation of the tracking error
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high-performance tracking effects with the joint action of
ESO and NN. Finally, strict theoretical proof has been pre-
sented to ensure the stability of the synthesized closed-loop
controller.
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Appendix A

Proof of Theorem 1 Consider a non-negative Lyapunov
function candidate VL which consists of state estimation
errors, disturbance estimation errors, NNs weights approx-
imate errors, tracking errors, and compensating signals as
follows:

VL � 1

2
e21 +

1

2
e22 +

1

2
e23 +

1

2
φ2
1 +

1

2
φ2
2 +

1

2
φ2
3 +

1

2
ζ T Eoζ

+
1

2
δT Yoδ +

1

2
W̃ T

2 ϒ−1
2 W̃2 +

1

2
W̃ T

3 ϒ−1
3 W̃3

+
1

2
G̃T�−1G̃. (A.1)

After differentiating both sides of (A.1)with time and sub-
stituting (18), (19), (24), (27), (32), (35) into it, one obtains

V̇L � e1(−k1e1 + e2) + e2
[
e3 − k2e2 + k2χ̃2 + W̃ T

2 η2(χ2d )
]

+ e2
(
−e1 + χ̃D2 + Ñ2 − k21e1 + k1e2 − k21φ1 + k1φ2

)

+ e3
[
−k3e3 + W̃ T

3 η3(χ3d ) + Ñ3 + G̃Tψ(χ3) + μ(χ3) + χ̃D3

]

− e2e3 + φ1(−k1φ1 + φ2) + φ2
[−k2φ2 + φ3 + (v2,c − v2)

]

− 1

2
ωo1‖ζ‖2 + ζ T Eo

[

H1
W̃ T

2 η2(χ2d ) + Ñ2

ωo1
+ H2

α1(t)

ω2
o1

]

+ φ3(−k3φ3 + �u) − 1

2
ωo2‖δ‖2 + δT YoS1

[
W̃ T

3 η3(χ3d ) + Ñ3

]

+ δT YoS1
[
G̃Tψp(χ3) + μ(χ3)

]
+ δT YoS2

α2(t)

ωo2

− W̃ T
2 ϒ−1

2
˙̂W2 − W̃ T

3 ϒ−1
3

˙̂W3 − G̃T�−1 ˙̂G. (A.2)

Moreover, we can reorganize (A.2) as

V̇L � −k1e
2
1 − (k2 − k1)e

2
2 − k3e

2
3 − k21e1e2

+ k2e2χ̃2 + e2χ̃D2 + e2 Ñ2 + e3 Ñ3 + μ(χ3)e3 + e3χ̃D3
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2
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2
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2
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(A.3)

Noting the definitions of ζ and δ as well as (20), (21), (22),
we have

ζ T EoH1 � −1

2
ζ1 + ζ2 − 1

2
ζ3, δ

T YoS1 � 1

2
δ1 − 1

2
δ2.

(A.4)

Based on (36) and (A.4), we can get the upper bound of
(A.3) as

V̇L ≤ −k1e
2
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(A.5)

Depending on Young’s inequality, one yields
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Moreover, we have
∣
∣
∣Ñ2

∣
∣
∣ ≤ p2(|e1| + |e2| + |φ1| + |φ2|)

∣
∣
∣Ñ3

∣
∣
∣ ≤ p3(|e1| + |e2| + |e3| + |φ1| + |φ2| + |φ3| + εN3)

|μ(χ3)| ≤ μM ,
∣
∣v2,c − v2

∣
∣ ≤ ε f , |�u| ≤ εs

|α1(t)| ≤ α1M , |α2(t)| ≤ α2M , (A.7)

where p2, p3, εN3, μM , εf , εs, α1M , and α2M indicate some
positive constants.

Based on (A.6) and (A.7), we can rearrange (A.5) as
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Applying on Young’s inequality, thus one gets
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where
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in which q1, q2, q3, q4, η2M , η3M , and ψM indicate some
positive constants. Specially, η2M , η3M , and ψM denote the
upper bounds of η2(χ2d ), η3(χ3d ), and ψ(χ3), respectively.

From (A.9), we have

V̇L ≤ −ρLVL + εL , (A.11)

where ρL � 2 min{ke1, ke2, ke3, kφ1, kφ2, kφ3, kζ /λmax(Eo),

kδ/λmax(Yo),kW̃2

/
λmax(ϒ

−1
2 ),kW̃3

/
λmax(ϒ

−1
3 ),kG̃

/

λmax(�−1)} indicates a positive constant.

Furthermore, we have

VL (t) ≤ VL (0)e
−ρL t +

εL

ρL

(
1 − e−ρL t

)
. (A.12)

Noting the expressions in (A.1) and (A.12), we can infer
that all system signals in the considered closed-loop ser-
vomechanism always stay bounded [40]. Consequently, all
the results in Theorem 1 have been completely proved.
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