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The effectiveness of today’s human-machine interaction is limited
by a communication bottleneck as operators are required to trans-
late high-level concepts into a machine-mandated sequence of in-
structions. In contrast, we demonstrate effective, goal-oriented
control of a computer system without any form of explicit commu-
nication from the human operator. Instead, the system generated
the necessary input itself, based on real-time analysis of brain activ-
ity. Specific brain responses were evoked by violating the operators’
expectations to varying degrees. The evoked brain activity demon-
strated detectable differences reflecting congruency with or devia-
tions from the operators’ expectations. Real-time analysis of this
activity was used to build a user model of those expectations, thus
representing the optimal (expected) state as perceived by the oper-
ator. Based on this model, which was continuously updated, the
computer automatically adapted itself to the expectations of its oper-
ator. Further analyses showed this evoked activity to originate from
the medial prefrontal cortex and to exhibit a linear correspondence to
the degree of expectation violation. These findings extend our un-
derstanding of human predictive coding and provide evidence that
the information used to generate the user model is task-specific and
reflects goal congruency. This paper demonstrates a form of interac-
tion without any explicit input by the operator, enabling computer
systems to become neuroadaptive, that is, to automatically adapt to
specific aspects of their operator’s mindset. Neuroadaptive technology
significantly widens the communication bottleneck and has the poten-
tial to fundamentally change the way we interact with technology.

human-computer interaction | passive brain-computer interfaces |
electroencephalogram | predictive coding | neuroadaptive technology

n the European Union, 96% of enterprises rely on computers

for their productivity (1). Advances in human-computer in-
teraction (HCI), concerning the effective, efficient, and satisfying
use of computer systems, may thus carry great societal benefits,
e.g., in terms of productivity. However, although interaction tech-
niques have become increasingly user-friendly—e.g., from punch
cards to touch screens—they still depend on the user (operator) to
translate their original thought or intention into a sequence of
small, explicit commands (2). This translational step, where the
human operator must ultimately obey the machine’s logic, presents
both a communication bottleneck and a source of potential error
(3). At the same time, the computer has practically no limitation to
the amount of information it can communicate, and is not as
adaptable as its user. In these aspects, present-day HCI is asym-
metrical (4). Comparing this to human-human interaction, Fischer
(5) emphasizes the importance of a shared understanding of the
situation and an understanding of the communication partner. In
this sense, for a computer system to “understand” its user, it needs
a model of that user—a source of information that goes beyond the
explicitly given commands. On the basis of such a model, a com-
puter system could adapt its behavior to better suit the current
mode of the user (5). This could help alleviate the issue of asym-
metry. Relevant information to that end concerns the user’s in-
tentions, subjective interpretations, and emotions.
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Four decades of developments in brain—computer interfaces
(BClISs) (6, 7) have yielded a set of methods that may be used to
obtain such information in real time, provided that this information
is detectably reflected in brain activity. Specifically, BCIs can detect
in real time changes in the electroencephalogram (EEG) and
translate these changes into control signals, in line with the prin-
ciples of physiological computing (8). A subgroup of BCIs, so-
called “passive BCIs” (pBCIs) (9), focuses on monitoring otherwise
covert aspects of the user state (10) during an ongoing HCIL.
Neurophysiological correlates of the above-mentioned aspects can
be detected and interpreted in the context of the interaction, and
can be used to inform the computer about relevant changes in the
user’s cognition and affect. Using pBCI, thus, a computer can in
fact acquire information about its operator other than the explicitly
given commands. As such, neurophysiological activity can induce
appropriate changes in the machine in real time, essentially serving
as an implicit command, without requiring the user to exert any
conscious effort in communicating to the computer (9).

Previous and present-day BCI systems use information derived
about the user state in only an ad hoc fashion: momentary in-
formation derived by the BCI from the EEG is directly interpreted
as a specific user intention (11, 12), situational interpretation (13),
or a change in the cognitive (14) or affective (15) state. These
implementations represent one-to-one mappings of user states to
machine behavior. We propose, however, that a machine using
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pBCI can detect both general user states and transient, event-
related responses, and can use these to continuously and accumu-
latively learn about its operator. Specifically, we propose that the
machine collates the neurophysiological responses of its operator
(i.e., implicit inputs) and coregisters them against the events and
contexts that evoked them. This allows the machine to build and
continuously update a specific and context-sensitive model of that
operator (10). The goal is to combine the information gathered from
multiple responses to different events to gain insights into higher-
level aspects of the operator’s cognition.

One aspect of higher cognition that may be inferred in this
manner is described by the theory of human predictive coding.
Predictive coding holds that there exists a continuous, automatic
prediction of future (neuronal) events, as well as a continuous
comparison of those predictions with their corresponding final
perception (16-18). Discrepancies resulting from these compari-
sons inform the brain of the correctness of its predictions and
actions, providing a fundamental mechanism—prediction error
minimization—to shape and optimize behavior. The correspond-
ing predictive signals are assumed to be carried by the dopami-
nergic system. Changes in the continuous evaluation of events and
actions lead to changes in the dopaminergic input to the anterior
cingulate cortex, (dis)inhibiting its neurons and eliciting a detect-
able response (19). Predictions of what is expected to happen, in
this sense, relate closely to what is intended to happen. This makes
the correlates of predictive coding a fundamental source of infor-
mation concerning user intention—an aspect of the user’s cognition
that is highly relevant to HCL

In this paper, we demonstrate that by collating passive BCI
output and context information, it is possible to develop, step by
step, a user model that accurately reflects correlates of predictive
coding and reveals task-relevant subjective intent.

Specifically, we demonstrate that a user model can be developed
and used to guide a computer cursor toward the intended target,
without participants being aware of having communicated any such
information. Using a passive BCI system, the participant’s situa-
tional interpretations of cursor movements were classified and
interpreted, in the given context, as directional preferences. A user
model was generated to represent these context-dependent di-
rectional preferences, and this model was then used to guide the
cursor toward the intended movement direction.

Results

The experimental paradigm involved a form of cursor control.
The cursor moved discretely over the nodes of a (4 x 4 or in later
stages 6 x 6) grid. For each movement the cursor could travel up

to eight directions, horizontally, vertically, and diagonally, to one
of the adjacent nodes. Each movement served both to move the
cursor and to elicit a neurophysiological response, reflecting the
subjective correctness of that movement. In essence, each move-
ment thus also served as a probe for information. One of the grid’s
corners was designated the target. For each movement, it could
thus be determined at what angle of deviance relative to the target
the cursor had moved. This was used for an objective in-
terpretation of the cursor’s behavior. We describe the paradigm in
detail in ST Appendix.

The event-related potential (ERP) following each probe (i.e.,
each cursor movement) is shown in Fig. 14. A one-way analysis
of variance of the systematic peak differences around 180 ms
indicated a significant main effect of angular deviance from the
target direction on peak amplitude [F(7,126) = 47.243, P <
0.001]. Specifically, the peak amplitudes (Fig. 1B, upper curve)
differed significantly (P < 0.001) between both the lowest and
the highest angular deviation from the target direction as used by
the classifier. In between, the peak amplitudes scaled linearly
with angular deviance, as fitted by a linear regression model
using each group’s mean angular deviance as a predictor (slope
coefficient b = —0.0035, F = 45.28, P < 0.001; R> = 0.33). Further
posthoc comparisons corrected for false discovery rate addi-
tionally indicated that significant differences between adjacent
groups (P < 0.05) were found mostly for groups of lower angular
deviance, whereas differences between the three largest-deviance
groups (124° and up) were not significant. The results of all posthoc
comparisons are listed in SI Appendix, Table S3. In summary, the
probe elicited systematic variations in event-related amplitudes,
depending on the goal congruency of the presented stimulus.

To enable real-time detection of the individual, single-trial
neuroelectric responses, we calibrated a discriminative classifica-
tion system. Calibration was based on two classes of responses
representing the extreme ends of the spectrum, with angular de-
viances of 0° making up the one class, and angular deviances of
>135° the other (Fig. 24). This classification system used a sub-
ject-dependent linear combination of all 64 available channels,
taking into account full scalp information. It automatically gen-
erated appropriate spatial filters for eight 50-ms time windows—
starting at 50 ms after stimulus presentation—using supervised
machine learning and linear discriminant analysis. This set of fil-
ters weighted each electrode in each time window, depending on
its relevance to classification. The recorded signal projected
through them thus allowed an optimal discrimination between the
two classes. This projected recorded signal—from all 64 channels,
between 50 and 450 ms after stimulus presentation—defined the
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ment, divided into eight groups depending on
angular deviance. (B) Peak amplitudes around 180 ms
for the ERP in A, and mean classifier output for cursor
movements sorted by angular deviance with selected
significant differences indicated (***P < 0.001, **P <
0.01, *P < 0.05). (C) Grand average ERP (n = 19) pro-
jected through the sources focused on in the third
time window (150-200 ms; indicated in gray). (D) Scalp
map of difference-between-classes activity that con-
tributed to classification in the third time window.
(E) Source localization for the third time window.
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Fig. 2. Cursor behavior and user model generation. (A) Sample online cursor movements. Also indicated: selected movement directions, their relative an-
gular deviance, and class membership (calibration phase). Movements with an angular deviance >0°, <135° (e.g., gray arrows) were not in the training set.
(B) User model evolution during the movements in A based on movement classifications. Ground truth is taken from button presses. (C) The mean final user
model representing the directional probabilities/preferences upon reaching the target, grouped by absolute target position.

control signal. The feature extraction is described in more detail in
SI Appendix.

The resulting classification system not only provided a filtered
discriminative control signal; it also allowed us to investigate which
cortical sources the system focused on. Based on this information,
conclusions can be drawn about the discriminative cognitive pro-
cesses underlying the classification. Fig. 1 C-E shows an analysis
of the features used for classification between 150 and 200 ms,
highlighting the relevant factors in this time window: the discrim-
inative scalp activity, the source localization of this activity within
the brain, and a projected ERP of the signal generated from the
identified sources. SI Appendix, Fig. S5 and Movies S1 and S2 pre-
sent this same analysis for the full time course under investigation.
See SI Appendix, Fig. S8 for scalp maps of the class-specific activity
in each time window.

This approach identified a specific neuroanatomical area across
participants: The system based its decisions on neuronal activity
that predominantly originated in the medial prefrontal cortex
(mPFC). The classification system was trained only on two binary
classes representing the smallest and largest angular deviances.
Back-projection of the signal through the system’s filters, however,
reveals that the classification system optimally identified the same
sources that generated the linear modulations seen in the grand
average ERP. Following the pattern found for the peak ampli-
tudes at Fz, peak amplitudes of the projected ERPs differed sig-
nificantly (P < 0.001) between the classes used by the classifier. In
between, the peak amplitudes scaled linearly with angular de-
viance, as fitted by a linear regression model of the aggregated
means, using each group’s mean angular deviance as a predictor
(b = —0.0019, F = 31.9, P = 0.011; R* = 0.91). Statistically signif-
icant differences between adjacent groups also followed a similar
pattern; see SI Appendix, Table S5 for all pairwise comparisons. It
is thus clear that the classification system focused on a response
that reflected the probe’s logic.

The signal thus carried task-relevant information. For a true
test of this signal’s single-trial reflection of individual judgments
of cursor movements, and thus its usefulness in creating a user
model describing subjective intent, we created a closed-loop,
online version of the original offline paradigm. Following each
single cursor movement, an individually calibrated classification
system classified the evoked response. The extracted information
was used for reinforcement learning on the side of the cursor
(20), modifying the probabilities of upcoming cursor movements
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such that the cursor would be more likely to go toward the target
if the classifications were correct. The resulting probability sta-
tistics can then be understood as a user model, describing the
user’s preferred behavior of the cursor. This description’s accu-
racy is then reflected in the user model’s success in enabling
effective, goal-oriented control of the cursor.

Performance was operationalized as the number of cursor
movements required to reach one target. Because even a com-
pletely randomly moving cursor would eventually reach the target,
three conditions were distinguished: random, online, and “per-
fect.” In the random condition, no reinforcement took place and
the cursor merely moved randomly. In the online condition, the
cursor was reinforced based on the classifications of the classifi-
cation system. The perfect condition was simulated: the cursor
already knew the location of the target and reinforced itself with
100% accuracy, although it did proceed to move probabilistically.
This condition represents the best possible performance given the
constraints of the grid and the cursor’s movement algorithm.

The offline calibration data were gathered on a 4 x 4 grid. The
online, closed-loop system was tested on both a 4 x 4 grid, and
on a theretofore unseen 6 x 6 grid. Performance results are
summarized in Fig. 3.

On the 4 x 4 grid, a randomly moving cursor required an
average of 27 movements. In the simulated condition of perfect
performance, this number dropped to 10. When the cursor was
reinforced online, an average of 13 steps was required—a sig-
nificant improvement compared to the random condition (P <
0.025) bridging the gap toward the perfect condition by 82%.

On the 6 x 6 grid random cursor movement required 90 steps on
average, and 14 in the perfect-accuracy simulation. Even though no
training data had been gathered from the 6 x 6 grids, the online
system bridged this gap by 88%, requiring 23 movements on av-
erage (P < 0.01).

On both grids, the online performance also differed signifi-
cantly from the perfect performance (P < 0.025).

Movie S3 shows a number of online cursor movements and
illustrates the adaptive paradigm’s responses.

Online application thus significantly increased the goal congru-
ency, confirming that the signal the classification system focused on
was situationally relevant. Although the cursor only made binary
interpretations of the classifier’s output, this output was continu-
ous: a scale, from —1 to +1, correlating to the movements’ degree
of goal congruency. This is illustrated in Fig. 1B (lower curve). The
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Fig. 3. Performance measure distributions for nonsupported, online, and
perfectly reinforced cursor movements on the two online grid sizes. (A)
Performance on the 4 x 4 grids. (B) Performance on the 6 x 6 grids. All
differences between the three conditions are significant (P < 0.025). Whis-
kers cover +2.7c.

classifier output differs significantly (P < 0.001) between the classes
used by the classifier. In between, the classifier output scaled lin-
early with angular deviance, as fitted by a linear regression model
using each group’s mean angular deviance as predictor (b = 0.0035,
F =295.42, P < 0.001; R* = 0.76). See SI Appendix, Table S4 for
further comparisons.

Even though the linearly scaled information was not taken into
account, binary classifications still resulted in a graded user
model, describing the appropriateness of the different cursor
movements depending on the intended target’s position. To il-
lustrate this, Fig. 24 visualizes the cursor’s movements over a
grid during one of the online runs with the target in the south-
west corner. Fig. 2B shows how the individual directional pref-
erences/probabilities in the user model are updated after every
cursor movement, showing the progression toward a clearly
identified preference for the southwest corner. Fig. 2C illustrates
the mean final user models for all participants for the four dif-
ferent target positions. It is clear that the user models accurately
represent the intended target position. The mean final user
model across all participants is illustrated in ST Appendix, Fig. S4,
with statistics in SI Appendix, Table S2. SI Appendix, Fig. S9
shows one more example of online cursor behavior.

Discussion

We have demonstrated that binary classifications of subjective in-
terpretations of cursor movements can be aggregated into a user
model reflecting, in the given context, directional intent. Based on
this model, the cursor was effectively guided toward the target. Par-
ticipants were not aware of their influence on the cursor. Although
not used explicitly in this study, analysis shows that more fine-grained
information may be available in the elicited responses, encoded in the
linear dependency of the response on the angular deviance.

An approach combining independent component analysis
(ICA, refs. 21, 22; Materials and Methods), supervised machine
learning, and higher-order statistics not only gave insight into the
individual single-trial responses, but also enabled error-mini-
mized source localization and signal back-projection as well as
real-time single-trial analysis. These characteristics could be used
to validate the classification system as well as the user model.
Firstly, the online application of the classification system in-
creased the paradigm’s goal congruency to near the optimum:
The gap from no reinforcement to optimal reinforcement could
be bridged by over 80% using the presented classification system,
both on the 4 x 4 grid and on the theretofore unseen 6 x 6 grid.
This significant reduction in the number of steps required to
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reach a target provides evidence that the classification of brain
responses following a cursor movement was based on task-rele-
vant information: Each movement indeed elicited a response
enabling the identification of subjective directional preferences.

Secondly, the neurophysiological analysis, based on the classifica-
tion system’s filter set, revealed that the underlying signal pre-
dominantly stemmed from the mPFC, and reflected the experimental
paradigm’s logic. Further interpretation of the neurophysiological
response points to its likely generator process. Given the signal’s time
course, its localization, and the evoking stimuli, the response is in line
with the framework of predictive coding. We hypothesize that in the
present study, participants consistently predicted—for lack of in-
formation that would indicate otherwise—that the cursor would
perform the only action that would have been appropriate, i.e.,
that it would move in the direction of the target. Interestingly,
however, our findings imply an extension of the general frame-
work of predictive coding. A focus on “negative” signals is central
to current interpretations and findings related to predictive cod-
ing: Indications of discrepancies, of prediction errors, are seen as
central to learning by reinforcement, in turn explaining the large
range of rich human behavior and intelligence (23). The sensitivity
of the ERP amplitude to the quality of the cursor movements,
however, seems to indicate that neural activity generated within
the mPFC provides a range of graded responses to both positive
and negative movements. In this context, these reflect the ob-
server’s directional preferences, modeling an important, task-rel-
evant factor of their subjective cognition. This points to a
continuous response range within the mPFC that not only detects
deviations from a predicted event to adapt future behavior, but
also confirms correct predictions to reinforce adequate behavior
or sharpen perceptive hypotheses. This activity thus reflects
complex aspects of the operator’s cognition, and can be highly
informative for external systems that have access to it.

Taken together, these results demonstrate effective cursor con-
trol through implicit interaction: While participants were unaware
of having any influence on the cursor, the presented stimuli elicited
informative neuronal responses that allowed the system to establish
a user model from which the participants’ intentions could be de-
rived. The computer system adapted its behavior to fit this model—
thus becoming neuroadaptive. The necessary information could
also have been provided explicitly and volitionally, but conscious
interpretation can involve any number of additional considerations
and processes (e.g., resolving competing interpretations from dif-
ferent judgment strategies), and would require an explicit decision
as well as its translation into a command to inform the machine.
Direct access to such interpretations circumvents these time-con-
suming and effortful steps, proving advantageous even with simple
binary decisions, as implemented here. Communicating more fine-
grained information, as seems also to be available, would be even
more difficult using traditional input techniques, but equally ef-
fortless using the method presented here. As such, neuroadaptive
technology based on passive BCI bypasses the communication
bottleneck present in traditional HCI, effectively widening it by
allowing interaction to take place through implicit channels. This
decreases the asymmetry present in current HCI paradigms.

At this point, we would like to speculate about possible impli-
cations and future extensions of the findings and the line of
thought presented here. Our current method essentially quantified
subjective directional preferences, supplying a single value that
indicated, in the given context, whether a person interpreted a
single cursor movement as being supportive of reaching the target
or not. This can be seen as a real-time assessment of subjective
satisfaction/dissatisfaction with the presented probe stimulus, thus
allowing the generation of a user model representing subjective
intent. Interestingly, one can imagine a computer system that in-
telligently decides what probe to present, to gather information. A
system with an incomplete user model, for example, could present
a probe to gauge the user’s response and thus gather the missing
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information. Such an act of active learning (24) would invert the
traditional HCI cycle: The probe may be understood as a com-
mand—a request for feedback—direct from the machine to the
user’s brain, inducing its own interpretation, which results in the
machine indeed receiving the requested feedback. In the dem-
onstration presented here, each cursor movement served as such a
probe, and allowed the gradual development of a user model, but
a more intelligent selection of probes may improve the system’s
efficiency.

With such a fundamental process as for example predictive
coding underlying a neuroadaptive system, a large scope of po-
tential applications can be imagined. Any process or path that can
be divided into a sequence of one-dimensional (e.g., positive—
negative) responses could potentially be covered implicitly (S/
Appendix, Fig. S10). And, as human predictive coding shows, a
great deal can be achieved based on such information using, for
example, the relatively simple process of reinforcement. The 2D
grid used here could be replaced by any n-dimensional space
representing different system parameters. It is tempting to envision
how such neuroadaptive systems could transform work and leisure
activities in everyday settings. An implementation analogous to the
current demonstration (but going beyond the currently presented
results), using affective interpretations rather than cognitive ones
(25), could be an adaptive, open-ended electronic book. While
reading, the reader would interpret the story as it unfolded, thus
automatically responding to events with a detectable affective state.
Based on what the reader apparently finds enjoyable, a neuro-
adaptive system could then change the content of subsequent
pages. With a sequence of such adaptations, the story is gradually
steered in the reader’s preferred direction. However, the reader
would not actively be directing the story, and would not even need
to be aware of the system’s existence.

Similarly, the general method demonstrated here is of value to
neuroadaptive experimental paradigms. Such paradigms can use
the real-time feedback supplied by the classification system to
adapt to individual strategies, rather than enforcing a uniform
logic over all participants. Probe stimuli can be used to first in-
spect the subjective relevance of different experimental aspects,
for example, and then adaptively go into detail, presenting more
fine-grained nuances of these aspects, to model how they influ-
ence the brain dynamics of that individual.

A word of caution is in order. Neuroadaptive systems can be said
to be systems with an agenda, having a goal of their own (8). By
autonomously initiating each interaction cycle using a specifically
selected probe stimulus, they would be in a position to “guide” the
interaction such that specific information can be gathered, and to
change the interactive experience based on that or other informa-
tion. When designing such systems, care should be taken that this
agenda is not adverse to the user’s intention. Furthermore, the fact
that it can rely on automatic, unconscious responses represents a
potential danger to informed consent. Users should always have
access to full information concerning the system’s goals and actions.

The benefits of closed-loop neuroadaptive technology, how-
ever, may be vast. It enables experimental paradigms to model
and adapt to relevant individual aspects in real time. For tech-
nology in general, this concept could represent a paradigm shift
in that it skips translational effort, grants the machine initiative
and agency, and may even function outside of conscious aware-
ness. This offers designers the prospect to completely rethink the
notion of interaction and the possibilities offered by it. In almost
a century of neurophysiological research, a number of correlates
of cognitive processes have been identified in the EEG, some of
which can already be detected in single trials using passive BCI
methodology (as, e.g., refs. 11, 13-15, 26, 27). We are looking
forward to investigating which of these could be meaningfully
elicited and interpreted to inform personalized user models, as
per the concept of neuroadaptive technology presented here.
Commercial systems and experimental paradigms specifically
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designed for this type of implicit interaction—a cybernetic conver-
gence of human and machine intelligence—could offer new func-
tionality and scientific results we cannot currently foresee.

Materials and Methods

Experimental Procedure and Setup. All participants were informed of the
nature of the experiment and the recording and anonymization procedures
before signing a consent form. The Ethics Committee of the Department of
Psychology and Ergonomics at the Technische Universitat Berlin approved the
experiment and the procedures.

A gray grid was shown on a black background, with a red target node
indicated in one of the grid’s corners, and a red circular cursor visible on one
of the nodes (Fig. 2A and SI Appendix, Fig. S1). The cursor’s starting position
on each grid was one node away from the corner opposite the target’s, in a
straight line to the target. In each trial, the cursor moved from its current
node to one of the adjacent nodes. A 1-s animation within the cursor served
as a countdown. The cursor would then instantaneously jump to the next
node, highlighting in white its new position and the grid line between the
two nodes. This configuration remained visible for 1 s. Following that, the
highlights disappeared and the cursor would remain at its new position for
1's more before the next trial. Movie S4 shows animated stimuli as seen by
the participant.

Throughout the experiment, participants were instructed to judge each
individual cursor movement as either “acceptable” or “not acceptable” with
respect to reaching the target, and to indicate their judgment by pressing
either “v” or “b,” respectively, on a computer keyboard using the index
finger of one hand. These button presses were logged by the system but
were not used as input.

EEG was recorded using 64 active Ag/AgCl electrodes mounted according
to the extended 10-20 system. The signal was sampled at 500 Hz and am-
plified using BrainAmp DC amplifiers (Brain Products GmbH).

Participants first performed 5 blocks of 120 trials on grids of 4 x 4 nodes. If
the target had not been reached after 55 trials in one grid, a new grid was
started. Fifty-five is twice the median number of random movements re-
quired to reach a target on a 4 x 4 grid. The EEG recorded during these five
blocks served to calibrate the classifier, as discussed below. In online sessions,
this classifier was then applied to one more block of 120 trials on 4 x 4 grids,
and one last block of 120 trials on 6 x 6 grids. No maximum number of trials
other than the block’s length was set for the 6 x 6 online blocks.

During calibration blocks, the cursor moved randomly. During online
application of the pBCl, the directional probabilities were altered based on
the classification of each movement as either “correct” or “incorrect,” bi-
asing the cursor to repeat movements classified as correct.

A total of 19 participants participated in this study, with an average age of
25.4y +3.4. Seven were female. All had normal or corrected to normal vision.
The first 3 only performed offline calibration trials, whereas the following 16
additionally performed online trials.

Additional details are provided in S/ Appendix.

Classifier. A classifier was individually calibrated on data from the initial 600-
trial recording of random cursor movements. Movements with an angular
deviance of 0° were labeled as class 1, and movements with an absolute
deviance of 135° or more were labeled as class 2. A regularized linear dis-
criminant analysis classifier was trained to separate classes (13).

The open-source toolbox BCILAB (28) version 1.01 was used to define and
implement the pBCl. Features were extracted through the windowed means
approach, using the average amplitudes of eight sequential time windows of 50 ms
each, between 50 and 450 ms after each cursor movement (13). For this fea-
ture extraction, the data were first resampled at 100 Hz and band-pass filtered
using fast Fourier transform from 0.1 to 15 Hz. Ensuring that the features were
independent and identically distributed, a 5 x 5-times nested cross-validation
with margins of 5 was used to select the shrinkage regularization parameter,
and to generate estimates of the classification system’s online reliability.

Additional details are provided in S/ Appendix.

Identifying Scalp Projections. Following Haufe et al. (29), linear discriminant
analysis (LDA) patterns A=(a;); were generated for each participant from
the LDA filters M= (m;); originally used for online classification by conju-
gation with the features’ covariance matrix C: A=CMC-'. Spatial in-
terpretation of these patterns for each time window reflects a mixture of
scalp activations related to discriminative source activity A= (aj); and class-
invariant noise representation N, with A=A+ N. The latter was filtered out
by weighting each pattern entry a; with the correlation of its associated
feature activity vector over trials F; to the binary vector of true class labels
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L: & =corr(F;, L) - a; The resulting correlated pattern A= (8)); can be visualized
by topographic plots for each time window, as in Fig. 1D.
Additional details are provided in S/ Appendix.

Localization. The classification model used was a multivariate approach, an
LDA, optimized for the discriminability of the extracted features between
classes. Each feature represents data at a single sensor for one of the chosen
time windows. Hence, applying the methodology recently introduced by
Haufe et al. (29) interprets the classification model at sensor level, and re-
veals further insight into the relevant underlying processes.

To identify the sources producing the signal, the backward model, i.e., the LDA
filter, was combined with an ICA. The ICA unmixing matrix W = (I, I, ..., In) was
determined on manually cleaned data for each participant by using the Adap-
tive Mixture ICA (AMICA) Toolbox (30), such that s = Wx, where s represents the
source activation related to a given scalp activation x. For each time window, the
relevance for classification R; of each independent component /; can then be
determined by distributing the LDA filter weights to the independent
components via W, weighted by two factors. The first factor compensates
for the amplitude alignment of the LDA filter weights to the feature am-
plitudes. It is determined by calculating the variance over trials of the fea-
ture F; extracted from the time series of the independent component: V; =
var(F;). A second weight is determined for filtering out noise representations
by weighting the independent components with the correlation of their
feature activity to the true class labels (as described above for electrode
activity): R; = V; * corr(F;, L) * WM.

To then localize these sources, equivalent dipole models that describe the
most likely position of the source in a standard head model were identified
for selected components by using the EEGLAB plug-in DIPFIT 2.x (31).
Components were selected by a threshold criterion for residual variance (RV)
of the dipole model (RV < 0.15) and visual inspection of the activation
spectra, time courses, and scalp topographies. Only dipolar components
clearly reflecting cortical, ocular, or muscular activity were included in the
analysis. For every time window, each of the 371 resulting dipoles was
weighted by the relevance R; of its associated independent component. The
areas of high relevance were then described by a weighted dipole density
plot using the EEGLAB plug-in dipoleDensity (32) by plotting the dipole
density per cubic millimeter weighted by the relevance R; of each included
dipole with a smoothing kernel of 12 mm.

Movie S2 shows the results of this analysis for the full time course
under investigation.
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The above-mentioned process of dipole selection did not markedly in-
fluence the analysis. Compared with all 1,191 dipoles and averaged over the 8
time windows, the 820 rejected dipoles (68.8%) carried 7.5% of the weights
distributed by the classifier. Relative to all 1,191 dipoles, a total of 87 dipoles
received a relevance weight larger than an SD of 1 in at least one of the time
windows. These 7.3% of dipoles carried 77.8% of the total weight distributed
by the classifier. Four of these highly weighted dipoles (4.6%) were rejected in
the process explained above and not included in the analysis. These four
represent 1.7% of the weight included in the analysis. Three belonged to the
same subject.

Additional details are provided in S/ Appendix.

Performance Measures and Statistical Methods. Cursor performance was
operationalized as the number of movements required to reach the target.
Only completed grids are included in the analysis, i.e., either when the target
was hit or the maximum number of trials was reached. Online, this latter event
occurred a total of seven times to seven participants on the 4 x 4 grids, and to
two participants on the larger grids. Out of 120 cursor movements per grid size
per participant, this resulted in 88 pBCl-supported target hits for the smaller
grid, and 47 for the larger one.

Random cursor movement data are nonparametrically distributed and
vary greatly. Therefore, we used a resampling approach where the available
sample of pBCl-supported measures was repeatedly compared with a new
random sample of the same size of nonsupported performance measures,
using a Wilcoxon rank-sum test. Out of 50,000 such comparisons, 98% of tests
were significant at a = 0.025 for the smaller grid; for the larger grid, 100% of
tests were significant at this level.

The perfect performance was simulated by automatically reinforcing the
cursor as in the online sessions, with all movements with an angular deviance
of less than 45° reinforced positively and all others negatively. The same
procedure as above yielded significant differences to the pBCl-supported
measures for both the 4 x 4 grid (99.9% of tests significant at « = 0.025) and
the 6 x 6 grid (100%).

Additional details are provided in S/ Appendix.
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