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Abstract. The neuroagent game model of collective decision making in 

conditions of stochastic uncertainty is proposed. Neuroagents are based on 

artificial neural networks with feedback and learning without a teacher. The 

current collective decision is obtained after the independent choice of their own 

decision by all players. Each player generates a current version of decision 

according to values of the neural network outputs. The choice of decisions is 

carried out by neuroagents in a random way, regardless of time and other 

agents. Random choice involves calculation of the probabilities of choosing 

decisions by optimal design of neural network outputs for a single simplex. 

After choosing a collective decision, the reaction of decision making 

environment is determined as a set of values of current neuroagents’ gains. The 

current gain of each neuroagent is transmitted to the inputs of the appropriate 

two-layer neural network. Then, the training of neuroagents is carried out by 

changing the weights of neuronal relationships by one of the learning 

algorithms without a teacher. The learning process is repeated until the weights 

of the neurons relationships are stabilized with a given accuracy. The course of 

training is aimed at maximizing the average gains of neuroagents. The decision 

of the game is achieved in one of the points of the collective optimum or 

equilibrium, depending on the values of the parameters of the chosen method of 

neuroagents training. 

Keywords: Collective Decision Making, Uncertainty Conditions, Neuroagent 

Stochastic Game, Adaptive Learning Methods. 

1 Introduction to the problem of collective decision making in conditions of 

uncertainty 

To solve the tasks of distributed management and decision making in technical, 

economic, informational and social systems, there is a need for a collective choice of 

decisions that satisfy one of the conditions of multicriteria optimality, such as Nash, 
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Pareto, etc. [1-7]. These conditions in one way or another determine the degree of 

benefit and fairness of the collectively achieved decision. 

The formal model of the system of collective choice of decisions is determined by 

managed environment and decision making managing agents. The environment model 

is determined by the structure and functions of the managed system. 

The environment perceives agents’ managing decisions and generates output 

signals which are interpreted by agents as estimates of efficiency of realized 

decisions. Agents get estimations from the environment, choose and implement 

decisions to maximize their own win or minimize losses. Such an approach to 

building a decision making system is called optimization [7]. In contrast to the 

situational approach, when the decision is obtained immediately on the basis of input 

data, in an optimization approach, the decision is refined through the feedback link.  

An agent is an intelligent decision making system, software or technical 

implementation of the model of decision maker. Generally, the agent consists of the 

following main subsystems: receptor, intellectual and effector. The receptor 

subsystem receives signals from the decision making environment, intellectual makes 

decisions based on current information, self-study and forecasting, effector provides 

the implementation of decisions made with appropriate impact on the environment. 

Collective decision making in a distributed environment is conducted by a set of 

interacting intelligent agents, which is called the multiagent system (MAS) [8-12]. 

Each agent makes a decision based on available local information and interaction 

within the MAS. As an active element of MAS, the agent is able to perceive and 

analyze data of the information network, negotiate and exchange current information 

with other agents, make stand-alone decisions, change the states of the network, 

inform the system and the user about the results of their actions. 

The intelligent agents have the following basic properties: 

1) autonomy – in pursuit of the goal, the agent can independently make decisions 

based on his own knowledge, without requiring external management;  

2) reactivity – the agent can perceive external information, produce and implement 

adequate actions; 

3) intelligence – the agent's ability to learn, adapt to environment changes, to 

process data obtained by artificial intelligence methods, to make optimal decisions; 

4) specialization – as a rule, the agents perform highly specialized functions; 

5) mobility – to achieve the goal, the software agent can move within the 

information network; 

6) coordination – distribution of roles and coordination of actions of agents in 

solving common tasks; 

7) interactivity – the agent interacts with other agents, with the information 

resources of the network and with the user; 

8) communication – the ability of agents to communicate in technical language and 

understand each other; 

9) personality – the unique qualities of the agent, modeling his psychological 

features, current emotions, etc.; 



10) decentralization – each of the agents doesn’t have a complete imagination of 

the whole system and, therefore, there are no agents who manage the whole system. 

When solving a task between agents there are phenomena of cooperation or 

competition. As it is known, these types of interaction between agents under 

conditions of uncertainty are studied by the theory of stochastic games [13–15]. 

Therefore, to study the collective behavior of agents in the decision making process, it 

is advisable to use the mathematical apparatus of the theory of stochastic games. 

The typical features of the game decision making in the MAS are: 

1) distribution or multiparameter of the decision making environment; 

2) internal stochasticity of the environment; 

3) complete or partial absence of a priori information (uncertainty) about the 

decision making environment; 

4) manageability of the environment and the possibility of distributed 

implementation of management options; 

5) multicriteria of management or decision making; 

6) discreteness and finiteness of the set of decision making options; 

7) stochastic independence of choice of decisions in space and time; 

8) the possibility of multiple repetition of variants of decisions implementations in 

time; 

9) distributed locally-dependent character of the formation and collection of 

information for statistical identification of the decision making environment; 

10) the possibility of using a distributed game algorithm, which ensures the 

achievement of compromise decisions area; 

11) implementation of the game algorithm in real time; 

12) determination of the moments of stopping the game algorithm for the 

possibility of its practical application. 

The functioning of the MAS decision making is conducted in conditions of a priori 

uncertainty [16]. Uncertainty can be caused by internal or external MAS factors. We 

distinguish the following types of uncertainties: 

1) structural – unknown composition of the system and connections between its 

elements; 

2) algorithmic – unknown algorithm of the system functioning; 

3) information-fuzziness, lack of complete information necessary for decision 

making; 

4) linguistic – ambiguity of statements in the exchange of messages between 

agents;  

5) target – an unknown global purpose of the system; 

6) social – due to the collective interaction of agents, when the actions of one of 

the agents influence the choice of decisions by other agents; 

7) stochastic – the influence on the system of uncontrolled external factors. 



In scientific research, the uncertainty of decision making is most often modeled with 

the use of mechanism of random variables, which is the basis of stochastic 

uncertainty. Partial compensation of uncertainty is provided by the ability of agents to 

self-learning and adaptive decision making strategies. 

In the cybernetic literature, game methods of self-learning based on the adaptive 

formation of probability distributions of discrete variants of decisions (pure strategies 

of players) are well studied [14]. After chosing and implementation of pure strategies 

by all players is completed, each of them receives a current win from the 

environment, which is used to change the dynamic mixed strategies (conditional 

probabilities vectors of the choice of decisions), which are the basis for the 

mechanism of generating random pure strategies. This change means that the 

probability of choosing a clean strategy increases proportionally to the value of the 

current win. The method of reconstructing mixed strategies with the passage of time 

built on the basis of stochastic approximation provides maximization of the functions 

of average gains on unit simplexes. The intellectual capabilities of agents of such 

game are limited, because they model only the reflex behavior of biological systems. 

Artificial neural networks (ANN) can be used to construct intellectual decision 

making systems as models of processes of the nervous activity of biological systems 

with the ability to memorize, analyze and predict behavior [17–20]. Neural networks 

implement "soft" calculations based on the processes occurring in the human brain 

and are used as models of objects with unknown characteristics. ANN consist of 

many neurons and the connections among them. Training of ANN is to correct the 

synaptic connections among neurons based on information which enters the neural 

network from the environment. To obtain the necessary structure of connections, 

some connections among neurons are amplified while others are weakened.  

The decision making system, based on ANN, is called a neuroagent. Neuroagent 

game models of decision making in conditions of uncertainty are insufficiently 

studied in modern professional scientific literature.  

The application of neuroagent game models is a promising direction for increasing 

the efficiency of collective development and decision making processes in conditions 

of uncertainty due to the following features:  

1) nonlinearity – neural networks allow to obtain a nonlinear dependence of the 

output signal from the input;  

2) adaptability – neural networks have the ability to adapt their synaptic weights to 

environmental changes; 

3) plasticity and resistance to failures – neural networks store information in 

distributed form over all connections of the neural network. Failure of one or more 

neurons does not lead to failure of the system as a whole; 

4) universality – neural networks do not require special programming, because they 

allow to solve various tasks of information processing with the same algorithms of 

neurons training. 

The aim of this work is to develop a model of stochastic game of neuroagents for 

collective decision making in conditions of uncertainty. To achieve this aim it is 

necessary: to set the task of game decision making in conditions of uncertainty; to set 



the environment for collective decision making; develop the structure of neuroagents; 

to choose the method of teaching neuroagents to solve the formulated task; to develop 

algorithm and software tools for simulation of stochastic game of neuroagents; to 

analyze the obtained results and make recommendations for their practical use. 

2 Setting up of the Game Task of Decision Making In 

Conditions Of Uncertainty 

Matrix stochastic game 𝐺 = (𝐼, {𝑈𝑖}𝑖𝜖𝐼 , [𝑉𝑖]) of decision making is given by: 

1) multitude of agents { | 1.. }I i i L  , where | |L I  is a power of multitude or 

number of players; 

2) set of pure strategies of agents { (1), (2),..., ( )}i i i i iU u u u N , where iN  is 

quantity of pure player’s strategies with number i ; 

3) matrices of the average gains of agents  ( )iv u  i I  , u U  , where 

i
i I

u U U


    is collective player’s strategies.  

The stochastic game takes place in discrete moments of time 1,2,...t  . After the 

implementation of the collective strategy tu u  each agent gets a current random 

gain 
1

, ( )i t u R   with unknown mathematical expectation ,{ ( )} ( )i t iM u v u   and 

limited dispersion ( )id u   . Here and below the index i  is the number of the 

player, and the index t  is the current time. 

The obtained current agent’s gains are averaged over time to evaluate the 

effectiveness of the decision making process by each agent: 

1

, ,

1

 ({ })
t

i t t iu t 







    i I  .     (1) 

The aim of the agents is to maximize their average payment functions: 

 

,lim max
i

i t
ut

   i I  .               (2) 

 

Thus, based on observations of current gains ,i t  each agent i I  must choose 

current decisions ,i t i iu u U   so that with the passage of time 1,2,...t  to ensure 

maximization of system of target functions (1). 

The decision of the multicriterial problem (2) should be sought in the set of points 

of collective equilibrium (for example, Nash) or optimality (for example, Pareto) 

depending on the way of agents' choice the sequences of decisions variants. 



3 Game Neuroagent Method of Task Solution 

Known adaptive sequence generation methods 
,{ }i tu i I  , 1,2,...t   based on 

dynamic distributions of discrete random variables, which use mixed players’ 

strategies [14]. In contrast, let’s consider the neuroagent method for solving a matrix 

stochastic game, the scheme of which is shown in Fig. 1 

 

Fig. 1. The structure of the matrix game of neuroagents. 

The model of the decision making environment is given by the matrices of the 

mathematical expectations of random gains iv  i I  . The values of the decision 

variants are presented to the input of the environment i iu U . The output of the 

environment is the corresponding values of the current gains ( )i u .  

Each neuroagent is assigned an artificial network with 2n   layers of neurons. 

The number of elements of each layer is the same, equal to the number of decisions 

| |i iN U . The vectors of the parameters of the neuroagents are presented to the 

inputs 
( 1)n

ix 
, calculated on the basis of outputs of the environment ( )i u  i I  . 

The outputs of neuroagents are vectors of the parameters 
( )n

iy , on the basis of which 

decision variants are determined i iu U  i I  . Weights 
( 1)n

iw 
 indicate the value 

of synaptic connections among neurons of i -th agent. The positive values of weights 

of connections correspond to exciting and negative values correspond to inhibitory 

synapses. Zero value of weights means the absence of connection among the neurons.  

The functioning of a neuroagent is carried out by one of the adaptive algorithms of 

unsupervised learning, for example, Hebb, Kohonen or others [19]. Unsupervised 

learning or self-learning is by nature closest to the brain as its biological prototype. 



Self-learning is not oriented to the presence of correct outputs of neural network. The 

self-learning algorithm independently detects the internal structure of input data, 

rebuilding the weights of synaptic connections so that close (by some metric) sets of 

input signals cause sufficiently close output sets of signals. In fact, the process of 

neural network self-learning solves the task of data clustering, identifying the 

statistical properties of learning multitudes and grouping similar output multitudes 

into clusters. By entering a vector from given class to the input of trained neural 

network, we obtain the characteristic output vector for this class. The output vector is 

not known in advance. Its formation is due to the structure of the training sample, 

random distribution of initial values of weights of connections among neurons and a 

combination of excited neurons of the output layer of the neural network.  

Neuroagents carry out a random choice of decisions ,i t iu U  independently of 

each other i I   and in time 1,2,...t  . To do this, each neuroagent builds a 

vector of conditional probabilities ,i tp  choice of decisions ,i tu  by designing the 

output vector 
( )

,

n

i ty  on a single iN -measurable  -simplex:  

( )

, , , , ,( | , , 1,2,..., 1) { }i

t

N n

i t i t i i i tp u u t y        i I  ,                                     (3) 

where i

t

N

  is a projector on a single  -simplex i i

t

N N
S S  [14]. Parameter t  

adjusts the speed of expansion of  -simplex i

t

N
S  to a single simplex iN

S  and can 

be used as an additional factor in controlling of convergence of game neuroagent 

decision making method. The obtained probability vector is used to construct an 

empirical distribution of discrete random variables, on the basis of which a choice of 

decisions is made: 

 

, , ,

1

[ ] arg min ( [ ]) , 1..
k

i t i i t i t i
k

j

u u k k p u j k N


   
     

   
  i I  ,                (4) 

 

where [0, 1]  is a real random number with uniform distribution. 

The response of decision making environment to the chosen version is the value of 

a random variable with an unknown distribution Z , which is interpreted as the 

agent's current gain: 

( ) ~ ( ( ), ( ))i t i t i tu Z v u d u , 

where ( )i tv u is mathematical expectation, ( )i td u  is dispersion.  

The obtained current gains , ( )i t tu  are submitted to the inputs of neuroagents 

( 1)

, ( )n

i t i tx e u   i I  ,                                        (5) 

where  1| i ie u U    is the vector, all elements of which are equal to one. If 

necessary, normalization of vector elements is carried out 
( 1)

,

n

i tx 
, for example, such 

as: 



( 1)

, max( ) / | |n

i t i tx e u    i I  , 

where max  is the maximum value of current gains. Normalization can reduce the 

number of steps required to train the neuroagent. 

Total inputs 
( )

,

n

i tx  of neurons of n -th layer are calculated based on outputs 
( 1)

,

n

i ty 
of 

neurons of ( 1)n -th layer: 

( ) ( 1) ( 1)

, , ,

1

[ ] [ , ] [ ]
iN

n n n

i t i t i t

j

x k w j k y j 



  i I  , 1.. ik N ,                                    (6) 

where 
( 1)

, [ , ]n

i t i iw N N
 is the matrix of the weights of connections among the nodes of 

the neural network, calculated at the moment of time t . Here 
( 1)

, [ , ]n

i tw j k
 indicates 

the weight of connection between j -th node ( 1)n -th layer and k -th node of n -th 

layer. To calculate outputs 
( )

,

n

i ty  of neuroagent a transfer function ()  of neuron is 

used: 

 
( ) ( )

, ,[ ] ( [ ])n n

i t i ty k x k ,                                                             (7) 

where 1.. ik N . 

Depending on the task being solved and the type of neural network, the transfer 

function ()  can be threshold, linear with saturation, sigmoidal, sinusoidal, radially 

symmetrical, and so on. Most often for modeling an artificial neural network, linear 

 
( )

,( )

, ( ) ( )

, ,

0, [ ] ,
[ ]

( [ ] ), [ ]

n

i tn

i t n n

i t i t

if x k
y k

x k if x k



  

 
 

 

                                               (8) 

bipolar sigmoidal 

 
( ) ( )

, ,[ ] 0.5 1/(1 exp( ( [ ] )))n n

i t i ty k x k                                                  (9) 

transfer functions are used. Parameter 0   defines the tangent of the slope angle for 

the linear transfer function and the level of steepness for the sigmoidal transfer 

function. Parameter 0   defines the threshold of neuron activation. 

Teaching the neuroagent is carried out by changing the weights 
( 1)

,

n

i tw 
 of synaptic 

connections among neurons. Recalculation of the weights of connections is performed 

according to Hebb’s signal method, Kohonen’s method or another method of 

unsupervised learning.  

Learning by Hebb’s method leads to increase of relationships among excited 

neurons: 

 
( 1) ( 1) ( 1) ( 1)

, , 1 , 1 , 1[ , ] [ , ] ( [ ]* [ ])n n n n

i t i t t i t i tw j k w j k y j y k   

    ,  1.. ij N , 1.. ik N ,       (10) 

 



where t  is the parameter of neuroagent training step. 

Excited are called neurons for which the value of the total input 
( )n

ix  exceeds the 

activation threshold  .  

Training by Hebb’s differential method leads to increasing of connections among 

those neurons, the outputs of which have changed the most:  

 
( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

, , 1 , , 1 , , 1[ , ] [ , ] ( [ ] [ ])*( [ ] [ ])n n n n n n

i t i t t i t i t i t i tw j k w j k y j y j y k y k     

      , 

1.. ij N , 1.. ik N .                                                                                       (11) 

Training by Kohonen’s method is based on the mechanism of competition, the 

essence of which is to minimize the difference between the input signals of a neuron-

winner, coming from the outputs of the neurons of the previous layer, and the weight 

coefficients of its synapses: 

 
( 1) * ( 1) * ( 1) ( 1) *

, , 1 , 1 , 1[ , ] [ , ] ( [ ] [ , ])n n n n

i t i i t i t i t i t iw j k w j k y j w j k   

     , 1.. ij N ,                (12) 

 

where 
*

ik  is index of the neuron-winner of i -th agent. 

In contrast to Hebb’s method, in which simultaneously several neurons of the same 

layer can be excited, in Kohonen’s method, neurons of the same layer compete with 

each other for the right of activation. This rule is known in literature on machine 

learning as "winner takes it all". 

According to Kohonen’s method the restructuring of weights of connections is 

carried out only for neuron-winner. The winner is the neuron whose synapse values 

are as similar as possible to the input image.  

The neuron-winner is determined by calculating the distance between the vectors 
( )

, 1

n

i ty   and 
( 1)

, 1

n

i tw 

 : 

 
2

( 1) ( 1)

, 1 , 1 , 1

1

[ ] [ ] [ , ]
iN

n n

i t i t i t

j

D k y j w j k 

  



  , 1.. ij N . 

The winner is the neuron with the smallest distance: 
*

, 1
1..

min ( [ ])
i

i i t
k N

k index D k


 . 

Another way to determine the neuron-winner is to maximize the outputs of 
( )

, 1

n

i ty   

neurons of n -th layer: 

( )

, 1 , 1
1..

[ ] arg max [ ]
i

n

i t i t
j N

u u k k y j 


 
  
 

. 

In this case, the index of the neuron-winner is a serial number of the chosen variant of 

decision , 1i tu  : 

*

, 1( [ ] | ( [ ] ), 1.. )i i i i t ik index u k u k u k N     i I  ,                                    (13) 

( ) {0,1}   is the indicator function of event. 



The training radius can be set around the neuron-winner R  in space of the vectors 

of weights of neurons: 
( 1) * ( 1)

, , ,[ ] [ ] [ ]n n

i t i t i i tr k w k w k   , 1.. ik N , 

where 
( 1) *

, [ ]n

i t iw k
 is the vector of weights of the neuron-winner;   is Euclidean 

vector norm. 

Each neuron whose distance from the vector of weights to the vector of weights of the 

neuron-winner is less than the radius of training ( , [ ]i tr k R ), takes part in the 

calculation of weights of synapses. The weights of neurons that are outside the 

training radius do not change. The training radius decreases in time so that at the end 

of the training process correction of the weights of connections can be carried out 

only by one neuron-winner. 

The parameters t  у (10) – (12) and t  у (3) determine the learning rate of 

neuroagents.To ensure the convergence of neuroagents training process, these 

parameters are set as positive monotonously decreasing values: 

 

0 /t t  , 0 /t t  ,                                                                (14) 

where 0 , 0   ; 0 , 0   . 

The choice of decision options continues to a specified number of steps maxt t , or to 

fulfillment the condition of the training accuracy: 

 
1 ( 1) ( 1)

, , 1| | n n

t i t i t

i I

I w w   





     i I  ,                                                      (15) 

where   is the neuroagents training accuracy, which is determined by Euclidean 

norm of change the weights of connections among neurons for two consecutive 

moments of time. 

4 Indicators of Stochastic Game Effectiveness 

For practical applications, it is necessary to determine the indicators of the game 

effectiveness, which can be used to evaluate the convergence of the game method. In 

the absence of direct information exchange between players, such indicators are 

formed on the basis of the collective equilibrium condition according to Nash [1, 14, 

21]. To do this, let’s define the functions of the average players’ gains: 

 

;

( ) ( ) ( )
j

i i j j

u U j I u u

V p v u p u
  

  ,      (16) 

where 
Ip S , jNI

j I

S S


 , ,( ) { ( )}i i tv u M u , and the values 
jN

jp S  are 

determined according to (3). 



The Nash equilibrium determines the following strategies for solving the game, for 

which the condition is performed: 
* \ *     ( ) ( , ) 0I i

i i ii I V p V p p    ,                                                                (17) 

where 
* Ip S  is the optimal collective mixed players’ strategy; 

\ *( , )I i

i iV p p  is the 

function of average gains, defined on the simplex 
IS  at random deviation of the 

mixed strategy of the i -th player from the equilibrium point by Nash within the unit 

simplex. The optimal by Nash leveling mixed strategies can be obtained from the 

condition of complementary non-rigidity [21]: 

 
i

i

N

p i iV V e    i I  ,                                                             (18) 

where iN

ip S  is the mixed strategy of the i -th player;
ip iV  is the gradient of 

polylinear function of average gains (16); (1 | 1.. )iN

j ie j N   is a vector, all 

elements of which are equal to 1. 

To account for solutions on the boundary of a simple simplex, let’s perform the 

weighing of the vector condition of complementary non-rigidity with the elements of 

the vectors of mixed strategies: 

 

( )( ( ) ( )) 0i

i

N

i p i idiag p V p e V p    i I  ,                                               (19) 

where ( )idiag p is the square diagonal matrix of iN  order, constructed from 

elements of the vector ip ; 
Ip S  is combined mixed players’ strategies, set on 

convex simplexes of 
IS . 

Let’s define the Lyapunov’s function as the total current players’ error during the 

search for a point of equilibrium according to Nash: 
1

,| |t i t

i I

I 



   ,                                                   (20) 

where 
2

, , ,i t i t i tp p   % , , ,, iN

i t i tp p S% . Values 0t   1,2,...t   turns to zero 

at the points of equilibrium according to Nash, which can be achieved both inside and 

on the vertices of single simplexes. The vectors ,i tp  are determined according to (3), 

and ,i tp%  is calculated so: 

, , ,( ) ( ) ,   1..i t i t i t ip j V j V j N % , 

where , , ,( ) ( ) ( )i t i t i tV j p j V j  . 

Direction t  to zero at 1,2,...t   will indicate the convergence of the game method 

to one of the equilibrium points according to Nash in mixed strategies or taking into 

account (19) the achievement of the game solution in pure strategies.  

The order   and value   of the convergence rate of the game method can be 

evaluated using the asymptotic method of Jung's moments [22]: 



   


t
t

Mnlim .                                                 (21) 

The optimization procedure will be better, than greater   and less  . 

In practice, we can use an approximate evaluation to determine  , performing the 

logarithm of the expression (21): 

 lg( )

lg( )

tM

t



 .                                                                (22) 

That is the parameter   can be defined as an angle tangent   of slope of the linear 

approximation of the function  tM   in a logarithmic coordinate system. The 

course of a stochastic non-antagonistic game can be traced also by changing the 

function of average player’s gains: 

 1

,| |t i t

i I

I 



   .                                                            (23)  

5 Kohonen’s Algorithm of Neuroagent Functioning 

1. Set the initial parameters values:  

0t   is the initial time point; 

I  is a multitude of players; 

iN  i I   is a number of decisions options; 

{ [1], [2],..., [ ]}i i i iU u u u N  i I   is a multitude of decisions options; 

[ ]iv  i I   is the matriсes of mathematical expectations of gains; 

[ ]id  i I   is the matrices of dispersions of gains; 
( 1)

,0 [ , ]n

i i iw N N  i I  is the matrix of initial weights of connections among nodes of 

the neural network; 

 ,   is parameters of the transfer function of the neurons; 

0  is parameter of training step;  

(0,1]  is the order of training step; 

0  is parameter of  -simplex;  

  is the order of the speed of expansion of  -simplex;  

maxt is the maximum number of steps of the method; 

  is accuracy of training. 

2. Perform choices of decision variants ,i tu  i I   according to (3) – (4). 

3. Obtain the value of current gains of neuroagents as random variables with normal 

distribution ( ) ~ ( ( ), ( ))i t i t i tu Normal v u d u  i I  .  

4. Calculate the inputs of neuroagents ( 1)

,

n

i tx   i I   according to (5) and the 

corresponding outputs of 
( 1)

,

n

i ty   i I   neurons ( 1)n -th layer according to (7).  



5. Calculate the total inputs of neurons ( )

,

n

i tx  i I   (6) and the corresponding 

outputs 
( )

,

n

i ty i I   (7) for neurons of n -th layer. 

6. Calculate parameter value of t  according to (14). 

7. Define 
*

ik indexes of the winning neurons i I   according to (13). 

8. Calculate the weight of connections to neurons winners ( 1) *

, [ , ]n

i t iw j k  i I  , 

1.. ij N  according to (12). 

9. Calculate the characteristics of the quality of collective decision making t  (23), 

t  (20),   (22). 

10. Set the next point in time : 1t t   . 

11. If the condition (15) of the end of the game is not met, then go to step 2, 

otherwise – the end. 

6 Results of Computer Modeling 

Let's solve the stochastic game of two neuroagents | | 2I   with two clean strategies 

2iN  , 1..2i  . Average gains matrices 2 2[ ]iv   1..2i   such a game is given in 

Table. 1. 

Table. 1. Player gains matrix 

Strategies First Player Second Player 

  2 2( [1])p u

 
2 2( [2])p u

 
2 2( [1])p u

 
2 2( [2])p u

 

1 1( [1])p u  0.1 0.6 0.1 0.9 

1 1( [2])p u  0.9 0.4 0.9 0.1 

The view of slices of functions of average gains of neuroagents (17) with values on 

the unit simplex, corresponding to Table 1, is shown in Fig. 2.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Functions of average gains of neuroagents 



Analysis of average win functions shows that the game has one Nash solution in 

mixed 1 2( [1], [1]) (0.5,0.2)p p   and two solutions in pure strategies 

1 2( [1], [1]) (0,1)p p  , 1 2( [1], [1]) (1,0)p p  . 

Under conditions of uncertainty, the elements of matrices of average winnings 

( )i

u U
v u

 
    are unknown and available for observation in the form of random cur-

rent values ( )i u . To simulate random gains we choose the normal distribution law: 

( ) ( ( ), ( ))i i iu Normal v u d u  , 

where ( )iv u  is a mathematical expectation; ( )id u is a dispersion. Normally-

distributed random variables are calculated using the sum of uniformly distributed 

random real numbers [0,1] :  

12

,

1

( ) ( ) ( ) [ ] 6i t i t i t i t

j

u v u d u j 


 
   

 
 . 

Initial values of link weights 
( 1)

0

nw 
 between neurons are random variables uniformly 

distributed in the interval [0, 1]. The linear dependence of the output on the total in-

puts is chosen as the transfer function of neurons (8).  

The convergence of the gaming neuroagent method is determined by the exact ratio 

of parameters, which in the general case must satisfy the basic conditions of 

stochastic optimization [22–28]. The parameters of the neuroagent training method 

take the following values: 1  ; 0,1  ; 2iN N  ; 0.999/ N  ; 1  .  

The graphs of functions of average gains are shown in logarithmic scale in Fig. 3 

,i t  and the error of achieving an optimal collective solution at one of the equilibri-

um points ,i t  according to Nash. 

 

Fig. 3. Characteristics of neuroagent training 



Increase ,i t  and reduction ,i t  in time indicate the convergence of the neuroagent 

method of decision-making in the sense of fulfilling the condition of complementary 

rigidity (19).  

The trajectories of change of conditional probabilities of collective choice of vari-

ants of decisions within a single simplex are shown in Fig. 2. From the obtained data 

it can be seen that for the given parameter values, the game neuroagent method (12) 

provides the solution of stochastic game on top of a single simplex 

1 2( [1], [1]) (0,1)p p   and has close to1 order ( )tg  of convergence speed. 

For the convergence of the stochastic game of neuroagents to Nash equilibrium 

points with probability 1 or in medium-quadratic, it is necessary that the ratio of pa-

rameters of the recurrent game method primarily satisfies the fundamental conditions 

of stochastic approximation [29, 30]. In conditions of uncertainty the theoretical study 

of convergence is based on the stochastic Robins-Monroe approximation, the results 

of the Robin-Sigmund’s lemma, and depends on both the parameters of the environ-

ment and the values of the parameters of the game method [31]. 

Recurrent game algorithms provide the order degree of convergence rate conver-

gence rate [31] and are easy to program. The low rate of convergence is due to the 

lack of a priori information about players' payment matrices and the lack of direct 

exchange of information between players. In addition, each player does not have in-

formation about the structure of the game (the number of players, the number of strat-

egies, dependence of own payments on the strategies of other players). During the 

multi-step game, each player learns to choose pure strategies so as to optimize own 

function of average payments. 

The learning process is a reorganization of one's own mixed strategies over time – 

by increasing the probability of choosing pure strategies that, on average, produce the 

best results. 

Theoretical evaluations of the conditions of convergence of game algorithms in 

conditions of uncertainty are complex and difficult to analyze in a rigorous analytical 

way. In addition, such convergence conditions are evaluations from above and there-

fore, there is a question about their accuracy. In this regard, the theoretical results will 

not always be satisfactory and require experimental clarification. It is experimentally 

established that scaling the system in the direction of increasing the number of players 

and the number of pure strategies leads to an increase in the entropy of a stochastic 

game, and as a result is a slowing down of its rate of convergence. 

Let's study the dependence of the learning time of stochastic game of neuroagents 

on the basic parameters of the algorithm. We define training time as the minimum 

number of steps required to train neuroagents with a given accuracy 0  : 

 

min( | )out tt t t     , 

where the current training accuracy t  is calculated according to (15). 

Due to the random choice of solutions, we need to average the training time of neu-

roagents for different sequences of random variables: 

 



exp

1exp

1
[ ]

k

out

j

t t j
k 

  , 

where expk  is a number of experiments. 

The average number of training steps t  depends on the parameters of the training 

algorithm of neuroagents and the parameters of the decision-making environment. 

Graph of average time dependence t  of neuroagents training from the parameter 

  is shown in Fig. 4. The results obtained for dispersion value of current gains 

0.01d  . The parameter (0,1]  determines the order of monotonic decrease of 

the value 0t   (14), which regulates the speed of training of neuroagents. As the 

value  increases, the t  value decreases. 

 

 

Fig. 4. The influence of   parameter on the training time of neuroagents 

The accuracy of neuroagents training of game is 
310  . The data are averaged by 

exp 100k   experiments. In all experiments, the choice of pure decision strategies for 

which condition (19) is met is provided with high probability. 

As can be seen from the simulation results, the increase of   parameter, leads to a 

decrease in the average number of training steps t  of neuroagent training with accu-

racy  .  

The dependence of the average number of steps t  of training neuroagents on the 

dispersion d  of the stochastic environment (dispersion of evaluations of variants of 

solutions) is presented in Fig. 5. The results are obtained for the value of order of step 

of the neuroagent training 0.5  . 

 



 

Fig. 5. The influence of dispersion of the estimates of variants of decisions for training of neu-

roagents. 

As dispersion increases, the average number of steps required for training neuroagents 

increases. A significant increase in dispersion may lead to an incorrect determination 

of the optimal decision. Modeling of stochastic game with other matrices of average 

gains of neuroagents can show a different result, preserving the obtained dependen-

cies among the parameters, required to optimize the payment functions of the players. 

Conclusions 

The neuroagent game model of collective decision making in conditions of stochastic 

uncertainty is proposed in this article. Neuroagents are based on artificial neural net-

works with feedback and learning without a teacher. The current collective decision is 

obtained after the independent choice of their own decision by all players. Each play-

er generates a current version of decision according to values of the neural network 

outputs. The choice of decisions is carried out by neuroagents in a random way, re-

gardless of time and other agents. Random choice involves calculation of the proba-

bilities of choosing decisions by optimal design of neural network outputs for a single 

simplex. After choosing a collective decision, the reaction of decision making envi-

ronment is determined as a set of values of current neuroagents’ gains. The current 

gain of each neuroagent is transmitted to the inputs of the appropriate two-layer neu-

ral network. Then, the training of neuroagents is carried out by changing the weights 

of neuronal relationships by one of the learning algorithms without a teacher. The 

learning process is repeated until the weights of the neurons relationships are stabi-

lized with a given accuracy. The course of training is aimed at maximizing the aver-

age gains of neuroagents. The decision of the game is achieved in one of the points of 

the collective optimum or equilibrium, depending on the values of the parameters of 

the chosen method of neuroagents training. 



The developed software model confirms the convergence of the game neuroagent 

method (12) of decision making. The efficiency of the method is estimated by means 

of characteristic functions of average gains and errors of collective choice of the op-

timal decision making variant. The convergence of the neuroagent game method de-

pends on the number of players, decisions, and relationships among the method pa-

rameters and decision making environment parameters.  

The reliability of the obtained results has been confirmed by the repetition of the 

values of the calculated characteristics of the game neuroagent decision making 

method for different sequences of random variables. 

The results of this work can be used to construct distributed control and decision 

making systems in conditions of uncertainty. 

The conducted researches can be continued in the direction of applying of another 

configuration of neuroagents and other methods of their training, information ex-

change between agents of the stochastic game, growth of the number of players and 

the number of their pure strategies, definition of theoretical conditions of convergence 

of the game neuroagent method. 
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