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Entrainment is defined by a temporal locking process in which one system’s motion or
signal frequency entrains the frequency of another system. This process is a universal
phenomenon that can be observed in physical (e.g., pendulum clocks) and biological
systems (e.g., fire flies). However, entrainment can also be observed between human
sensory and motor systems.The function of rhythmic entrainment in rehabilitative training
and learning was established for the first time by Thaut and colleagues in several research
studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic
patterns could entrain movement patterns in patients with movement disorders (see for
a review: Thaut et al., 1999). Physiological, kinematic, and behavioral movement analysis
showed very quickly that entrainment cues not only changed the timing of movement
but also improved spatial and force parameters. Mathematical models have shown that
anticipatory rhythmic templates as critical time constraints can result in the complete
specification of the dynamics of a movement over the entire movement cycle, thereby
optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment
has been successfully extended into applications in cognitive rehabilitation and speech
and language rehabilitation, and thus become one of the major neurological mechanisms
linking music and rhythm to brain rehabilitation. These findings provided a scientific basis
for the development of neurologic music therapy.
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PRINCIPLES OF ENTRAINMENT
In 1666, the Dutch physicist Christian Huygens discovered that
the pendulum frequencies of two clocks mounted on the same
wall or board became synchronized to each other. He surmised
that the vibrations of air molecules would transmit small amounts
of energy from one pendulum to the other and synchronize
them to a common frequency. However, when set on different
surfaces the effect disappeared. The transmitting medium was
actually the vibrating board or wall. For air molecule vibrations
there would have been too much dampening in the process of
energy transmission, as was later discovered. The effect was sub-
sequently confirmed by many other experiments and was called
entrainment. In entrainment the different amounts of energy
transferred between the moving bodies due to the asynchronous
movement periods cause negative feedback. This feedback drives
an adjustment process in which the different energy amounts
are gradually eliminated to zero until both moving bodies move
in resonant frequency or synchrony. The stronger “oscillator”
locks the weaker into its frequency. When both oscillating bod-
ies have equally strong energy, both systems move toward each
other: the faster system slows down and the slower system
speeds up until they lock into a common movement period
(Pantaleone, 2002).

Technically, entrainment in physics refers to the frequency
locking of two oscillating bodies, i.e., bodies that can move in sta-
ble periodic or rhythmic cycles. They have different frequencies

or movement periods when moving independently, but when
interacting they assume a common period. Incidentally, Huy-
gens’ pendulums actually assumed a common period 180◦out
of phase, which he called “odd sympathy.” It is now known
that entrainment can occur in various phase relationships of
the movement onsets of the oscillating bodies. A stable phase
relationship is achieved when both bodies start and stop their
movement period at the same time. However, this is not a nec-
essary prerequisite for entrainment to occur. The deciding factor
for entrainment is the common period of the oscillating move-
ments of the two bodies. The common period entrainment is of
critical importance for clinical applications of rhythmic entrain-
ment as a temporal cue in motor rehabilitation (Kugler and
Turvey, 1987; Thaut et al., 1998a). Common period entrainment
establishes that the rhythmic cue provides a continuous time
reference during the complete duration of the movement to be
regulated.

AUDITORY SYSTEM AND TIME PERCEPTION
The importance of the auditory system in the control of move-
ment was traditionally given much lesser attention in motor
control theory and research than the visual or propriocep-
tive system. Therefore, auditory rhythm and more complex
auditory time structures associated with musical patterns were
not give much functional value in motor learning or motor
rehabilitation. Consequently, application to motor therapies
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played no role in traditional music therapy. Music was assigned
mostly a motivational role for movement performance (Thaut,
2005).

However, basic neurophysiology and biophysics of sensori-
motor connectivity have always shown intriguing interactions
between the auditory and the motor system. The ability of
the auditory system to rapidly construct stable temporal tem-
plates is well known (see for a review: Thaut and Kenyon,
2003). The auditory system is superbly constructed to detect
temporal patterns in auditory signals with extreme precision
and speed, as required by the nature of sound as only exist-
ing in temporal vibration patterns (Moore, 2003). In those
tasks, the auditory system is faster and more precise than the
visual and tactile systems (Shelton and Kumar, 2010). Since
sound waves that are most important for speech and music
and other perceptual tasks are based on periodic motions that
repeat themselves in regularly recurring cycles, the auditory
system is also perceptually geared toward detecting and con-
structing rhythmic sound patterns. Finally, many studies have
now shown that auditory rhythmic cues can entrain motor
responses. For example, Thaut et al. (1998b) demonstrated that
finger and arm movements instantaneously entrain to the period
of a rhythmic stimulus (e.g., metronome beat) and stay locked
to the metronome frequency even when subtle tempo changes
are induced into the metronome that are consciously not per-
ceived. These findings have been confirmed by other studies (cf,
Large et al., 2002).

NEURAL ENTRAINMENT
The neural basis for auditory-motor entrainment is lesser under-
stood. Two early electrophysiological studies (Paltsev and Elner,
1967; Rossignol and Melvill Jones, 1976) showed how sound
signals and rhythmic music can prime and time muscle acti-
vation via reticulospinal pathways. It is now well-established
that the auditory system has richly distributed fiber connec-
tions to motor centers from the spinal cord upward on brain
stem, subcortical, and cortical levels (Koziol and Budding, 2009;
Schmahmann and Pandya, 2009; Felix et al., 2011). Although the
specific basis of neural entrainment mechanisms remains not fully
explored, several studies have at least been able to link neu-
ral oscillation patterns in the auditory system to the time and
frequency dynamics of rhythmic sound stimuli. Fujioka et al.
(2012) showed modulations in neuromagnetic beta oscillations
related to the rhythmic stimulus frequency in auditory areas,
motor areas (sensorimotor cortex, supplementary motor area)
as well as the inferior frontal gyrus and the cerebellum. Tier-
ney and Kraus (2013) demonstrated consistent neural responses
in the inferior colliculus (IC) synchronized to a rhythmic audi-
tory stimulus (the syllable “da”). The IC is an early auditory
pathway nucleus in the brain stem with rich projections to the
cerebellum via the dorsolateral pontine nuclei. Since the cere-
bellum is activated in sensorimotor synchronization tasks (cf.
Stephan et al., 2002; Grahn et al., 2011) and activations in dis-
tinct cerebellar regions correspond to different aspects of the
temporal dynamics of rhythmic synchronization (Thaut et al.,
2009b; Konoike et al., 2012) – such as pattern detection or track-
ing changes in rhythmic interval duration – the representation

of timing information in the IC may be an important function
in auditory-to-motor transformations during rhythmic entrain-
ment. Finally, an MEG study by Tecchio et al. (2000) showed
amplitude changes in the M100 component of auditory evoked
field potential linearly entrained by changes in the rhythmic inter-
val durations, i.e., longer intervals were associated with higher
M100 intensities and vice versa. This entrainment pattern was
also observable during subliminal duration changes at 2% of the
absolute interval duration. However, the exact neural transmis-
sion mechanisms from auditory to motor centers have not been
fully explored.

Of greatest importance in the context of motor rehabilitation
was the finding that the injured brain can indeed access rhythmic
entrainment mechanisms. Early studies of gait training in hemi-
paretic stroke rehabilitation (Thaut et al., 1993, 1997), Parkinson’s
disease (Thaut et al., 1996; McIntosh et al., 1997), traumatic brain
injury (Hurt et al., 1998), and cerebral palsy (Thaut et al., 1998)
confirmed behaviorally the existence of rhythmic entrainment
processes in clinical populations. Studies extending entrainment
to hemiparetic arm rehabilitation followed closely (Whitall et al.,
2000; Thaut et al., 2002).

Rhythmic entrainment established the first testable motor the-
ory for the role of auditory rhythm and music in therapy. The
subsequent studies led to the need to codify and standardize
rhythmic-musical application for motor rehabilitation (Thaut,
2005; Thaut and Hoemberg, 2014). Theses techniques became the
initial foundation of the clinical repertoire of neurologic music
therapy.

TIMING BASED MOVEMENT OPTIMIZATION
The comprehensive effect of rhythmic entrainment on motor
control raises some important theoretical questions as to the
mechanisms modulating these changes. We know that firing rates
of auditory neurons, triggered by auditory rhythm and music,
entrain the firing patterns of motor neurons, thus driving the
motor system into different frequency levels. There are two addi-
tional mechanisms are of great clinical importance in regard to
entrainment. The first is that auditory stimulation primes the
motor system in a state of readiness to move. Priming increases
subsequent response quality.

The second, more specific aspect of entrainment refers to
the changes in motor planning and motor execution it cre-
ates. Rhythmic stimuli create stable anticipatory time scales or
templates. Anticipation is a critical element in improving move-
ment quality. Rhythm provides precise anticipatory time cues
for the brain to plan ahead and be ready. Furthermore, suc-
cessful movement anticipation is based on foreknowledge of the
duration of the cue period. During entrainment two movement
oscillators – in our case neurally based – of different peri-
ods entrain to a common period. In auditory entrainment the
motor period entrains to the period of the auditory rhythm.
Entrainment is always driven by frequency or period entrain-
ment – that is, the common periods may or may not be in
perfect phase lock (i.e., the onset of the motor response would
be perfectly synchronized to the auditory beat). Beat entrain-
ment is a commonly misunderstood concept. Entrainment is
not defined by beat or phase entrainment – it is defined by
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period entrainment (Large et al., 2002; Thaut and Kenyon, 2003;
Nozaradan et al., 2011).

Period entrainment offers the solution to why auditory rhythm
also changes the spatial kinematic and dynamic force measures
of muscle activation, e.g., as evidenced by smoothing of velocity
and acceleration profiles. Foreknowledge of the duration of the
movement period changes computationally everything in motor
planning for the brain. Velocity and acceleration are mathematical
time derivatives of movement position. Consider that a move-
ment cycle, e.g., of the wrist joint in reaching movements, consists
of a finite number of position coordinates (x,y,z) each associated
with a particular time (t) value during the movement period. If we
consider, for simplification, the position coordinate x (t) to be con-
tinuous rather than a discrete function of the following statements
can describe mathematically the relationship between position,
velocity, and acceleration without going into the mathematical
equation detail:

• The velocity v(t) at any time t is the first time derivative of
position x(t) and is equal to the numerical value of the slope of
the position curve at the time t.

• The acceleration a(t) at any time t is the second time derivative
of position x(t), the first time derivative of velocity v(t), and is
equal to the numerical value of the slope of the velocity curve
at time t.

• The position x at any time t is numerically equal to the area
under the velocity-time curve between zero and t.

• The velocity v at any time t is numerically equal to the area
under the acceleration-time curve between zero and t.

Given this background information and using an optimiza-
tion criterion, e.g., such as minimization of peak acceleration,
we can now show that the movement trajectory as a function of
time in three-dimensional space is completely determined as a
consequence of the optimization condition, i.e., the entire move-
ment cycle is fixed in time due to period entrainment. The fact
that an anticipatory temporal constraint on the movement period
(given by the stimulus period) results in a kinematically well-
defined optimization problem allows for a mathematical analysis
showing a complete specification of the three-dimensional coordi-
nates of a limb trajectory. In other words, reduction in trajectory
variability of the arm during a reaching movement or the knee
during a step cycle is a natural outcome of the rhythmic time
constraint.

In clinical language, by fixating movement time through a
rhythmic interval the brain’s internal timekeeper now has an
additional externally triggered timekeeper with a precise refer-
ence interval, a continuous time reference (CTR). This time
period presents time information to the brain at any stage of
the movement. The brain knows at any point of the move-
ment how much time has elapsed and how much time is
left, enabling enhanced anticipatory mapping and scaling of
optimal velocity and acceleration parameters across the move-
ment interval. The brain tries to optimize the movement
now by matching it to the given template. This process will
result not only in changes in movement speed but also in
smoother and less variable movement trajectories and mus-
cle recruitment. One can conclude that auditory rhythm, via

physiological period entrainment of the motor system, acts as
a forcing function to optimize all aspects of motor control.
Rhythm not only influences movement timing – time as the
central coordinative unit of motor control – but also modu-
lates patterns of muscle activation and control of movement in
space (Thaut et al., 1999). Rhythmic cues provide comprehen-
sive optimization information to the brain for re-programming
movement.

With this understanding of the underlying mechanisms of
entrainment it is clinically less important if the patients synchro-
nize their motor response exactly to the beat – it is important
that they entrain to the rhythmic period because the period tem-
plate contains the critical information to optimize motor planning
and motor execution. Research has indeed shown that the timing
of the motor response relative to the beat can fluctuate whereas
the movement period entrains very quickly and precisely to the
rhythmic period and the period entrainment is maintained dur-
ing frequency changes in the rhythmic stimulus interval (Thaut
et al., 1998b).

CLINICAL APPLICATIONS OF ENTRAINMENT
The insights from rhythmic auditory-motor studies led to a
complete re-conceptualization of the role of complex auditory
stimuli such as music for therapy and rehabilitation. Tradition-
ally, the role of music in therapy had been considered from
social science models as a stimulus for personal interpretation
in regard to well-being, emotional response, and social relation-
ship. Although these properties of music are also important for
therapeutic functions the new discoveries re-focused the role of
music as therapeutic stimulus on its structural properties shap-
ing sensory perception linked to motor function (de l’Etoile, 2010;
Altenmueller and Schlaug, 2013).

The early clinical findings have been replicated and extended
by a number of other research groups substantiating the existence
of rhythmic auditory-motor circuitry for entrainment in hemi-
paretic gait rehabilitation (Ford et al., 2007; Roerdink et al., 2007,
2011; Thaut et al., 2007; Spaulding et al., 2013). A large num-
ber of RAS-Studies have replicated and extended the beneficial
use of RAS for mobility in Parkinson’s disease (see for review:
deDreu et al., 2012).

After successful experiments entraining endogenous biologi-
cal rhythms of neural gait oscillators a new question emerged.
Can rhythmic entrainment also be applied to entrain whole body
movements, especially arm and hand movements that are not
driven by underlying biological rhythms? The answer was found
by turning functional upper extremity movements, which are usu-
ally discrete and non-rhythmic, into repetitive cyclical movement
units which now could be matched to rhythmic time cues. Several
clinical research studies have successfully investigated rhythmic
cuing for upper extremity for full body coordination, especially
in hemiparetic stroke rehabilitation (Luft et al., 2004; McCombe-
Waller et al., 2006; Schneider et al., 2007; Altenmueller et al., 2009;
Malcolm et al., 2009; Grau-Sanchez et al., 2013) and in children
with cerebral palsy (Peng et al., 2010; Wang et al., 2013).

The improvements in stroke arm rehabilitation were compa-
rable in size to data from research in constraint induced therapy
(CIT; Massie et al., 2009).
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MORE CLINICAL APPLICATIONS OF ENTRAINMENT
Rhythmic entrainment extends beyond motor control. Emerg-
ing research shows that speech rate control affecting intelli-
gibility, oral motor control, articulation, voice quality, and
respiratory strength may greatly benefit from rhythmic entrain-
ment using rhythm and music (Pilon et al., 1998; Wambaugh
and Martinez, 2000; Thaut et al., 2001; Natke et al., 2003;
Lim et al., 2013). Recent findings in aphasia rehabilitation
suggest that the rhythmic component in melodic intona-
tion therapy may be equally as important as the activation
of intact right hemispheric speech circuitry through singing
(Stahl et al., 2011).

Lastly, the potential of temporal entrainment of cognitive
function has only recently emerged as an important driver of
therapeutic change. The recognition that timing and sequenc-
ing also have a critical function in cognitive abilities (Conway
et al., 2009) has led to research investigating the potential role of
music and rhythm as cognitive rehabilitation technique. Sound
in music is inherently temporal and sequential and may serve as
a “scaffold” to bootstrap the representation of temporal sequen-
tial patterns in cognitive functions such as memory (Conway
et al., 2009). Bootstrapping non-musical information to the
rhythmic-melodic patterns of a musical “scaffold” may offer sev-
eral advantages to enhance deep encoding during acquisition
and retrieval in memory training. Music may cue the tempo-
ral order and sequencing of information. The rhythmic-melodic
contour may create a pattern structure unto which information
units can be mapped. The phrase structure of music patterns
may segment the total information units into a smaller set of
large chunks or overarching units thus reducing memory load
(Wallace, 1994). This last point may constitute a particular
advantage in music since musical mnemonics, such as short
songs, are usually composed by a small alphabet of pitches and
rhythmic motifs (Snyder, 2000). Large information units con-
structed of large alphabets (e.g., word lists, number tables) can
be mapped on a small pitch and rhythm alphabet which is
organized into redundant, repetitive, and anticipatory “mem-
ory units” reducing memory load and increasing deep encoding
(Thaut et al., 2009a).

FROM ENTRAINMENT TO COMPLEXITY
Neurologic music therapy techniques in cognitive and
speech/language rehabilitation are relying to a large extent on
the role of timing in music and rhythm. However, the dis-
covery that a musical element such as rhythm can be a very
effective driver of therapeutic learning and training, has led to
a new look to consider the therapeutic potential of all musical
elements within a framework of music perception and music
playing. In other words, rhythmic entrainment opened the
doors to shifting from predominantly interpretative models of
music in therapy to perceptual based models. Interpretative
applications of music in therapy remain important, especially
when psychosocial, affective/expressive, or associative long-term
memory goals become a functional focus of therapy. However,
research has now shown how the whole complexity of musi-
cal elements can be shaped into functional therapy. Perceptual
exercises built on melodic and harmonic patterns in music may

be applied to train sustained, selective, divided, focused, and
alternating attention in clinical settings (Gardiner and Thaut,
2014). Music as a complex auditory language has been applied
to re-training auditory perception deficits and enhance speech
perception (Tierney and Kraus, 2013; Mertel, 2014). Special appli-
cations of music-based auditory perception training have been
used with cochlear-implant users (Mertel, 2014). In patients
with hemi-spatial visual neglect therapeutic exercises using music
listening and instrument playing that emphasize auditory and
visual focus on the neglect side have been shown to be success-
ful in reducing neglect (Hommel et al., 1990; Abiru et al., 2007;
Soto et al., 2009; Bodak et al., 2014). Finally, guided elementary
composition and improvisation exercises in music emphasizing
complexity thinking, decision making, problem solving, reason-
ing, affective evaluation, self-organization, comprehension, etc.
have been shown to be successful in improving executive func-
tion in persons with traumatic brain injury (Thaut et al., 2009b;
Hegde, 2014).

FRONTIERS FOR NEUROLOGIC MUSIC THERAPY
The discovery of entrainment for therapeutic purposes in the
early 1990s has led to a strong body of research evidence that
the periodicity of auditory rhythmic patterns could improve
movement patterns in patients with movement disorders. Motor
control theory and motor neurophysiology propose that changes
in motor patterns are due to priming of the motor system
and anticipatory rhythmic templates in the brain that allow for
optimal anticipation, motor planning, and execution with an
external rhythmic cue. The ability for the brain to use entrain-
ment to re-program the execution of a motor pattern has made
rhythmic entrainment an important tool in motor rehabilita-
tion (Thaut and Abiru, 2010; Thaut and McIntosh, 2014). More
recently, temporal rhythmic entrainment has been extended
into applications in cognitive rehabilitation and speech and lan-
guage rehabilitation, with emerging evidence that mechanisms
of rhythmic entrainment may be an essential tool for reha-
bilitation in all domains of neurologic music therapy (Thaut,
2010; Thaut and Hoemberg, 2014). The temporal structure
of music remains a central element in therapy and rehabilita-
tion. However, the discovery of rhythmic entrainment has also
opened the door to exploring the therapeutic mechanisms in
other elements of music such as melody and harmony, and
finally in the pattern structure of music as a complex audi-
tory language to stimulate and (re)-train complex cognitive
functions. Neurologic music therapy as a codified and stan-
dardized treatment model, currently comprising 20 techniques
in motor, speech/language, and cognitive rehabilitation, has
emerged and has been medically been accepted quite rapidly
over the past 15 years. However, since NMT was built on exist-
ing research data, the future shape of NMT will be dynamically
driven by continued research. One of the largest areas of ther-
apeutic need is in psychiatric rehabilitation. Emerging views
on the nature of mental illness, driven by new insights from
neuropsychiatric research, may allow a more focused exten-
sion of NMT techniques in the areas executive and psychosocial
function, attention, and memory to contribute to psychiatric
treatment.
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