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α5 subunit containing GABA type A receptors (GABAARs) have long been an enigmatic

receptor subtype of interest due to their specific brain distribution, unusual surface

localization and key role in synaptic plasticity, cognition and memory. These receptors

are uniquely positioned to sculpt both the developing and mature hippocampal circuitry

due to high overall expression and a distinct peak within the critical synapse formation

period during the second postnatal week. Unlike the majority of other GABAARs,

they exhibit both receptor clustering at extrasynaptic sites via interactions with the

radixin scaffold as well as synaptic sites via gephyrin, thus contributing respectively to

tonic currents and synaptic GABAergic neurotransmission. α5 GABAAR signaling can

be altered in neurodevelopmental disorders including autism and mental retardation

and by inflammation in CNS injury and disease. Due to the unique physiology and

pharmacology of α5 GABAARs, drugs targeting these receptors are being developed

and tested as treatments for neurodevelopmental disorders, depression, schizophrenia,

and mild cognitive impairment. This review article focuses on advances in understanding

how the α5 subunit contributes to GABAAR neurobiology. In particular, I discuss both

recent insights and remaining knowledge gaps for the functional role of these receptors,

pathologies associated with α5 GABAAR dysfunction, and the effects and potential

therapeutic uses of α5 receptor subtype targeted drugs.

Keywords: GABA A receptor, alpha 5 subunit, autism, cognition, memory, development, negative and positive

allosteric modulators

INTRODUCTION

Structure, Distribution and Composition
GABA type A receptors (GABAARs) are heteropentameric ligand-gated chloride (Cl−) ion

channels typically composed of two α (α1–6), two β (β1–3), and one γ (γ1–3) or δ subunit

(Figure 1A). The common structure of individual subunits consists of a large extracellular

N-terminus (NT), four transmembrane α-helices (M1–4) and a barely extruding extracellular

C-terminus (CT). The conserved hydrophobic M domains are connected by small regions with a

larger cytoplasmic domain between M3 and M4 (CD) that mediates interactions with intracellular

proteins critical for receptor trafficking and surface localization (Figure 1B). Receptors can

contain two different α or β subunits that are arranged in a counterclockwise configuration of

γ-β-α-β-α (Figure 1C). The two αβ NT interfaces form GABA binding sites composed of the
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principal (+) side of the β subunit and the complementary

α subunit (−) side, while a single α+(1, 2, 3 or 5)/γ2-

interface generates the primary binding site for benzodiazepines,

which are allosteric positive modulators of the GABAAR

and an important clinical sedative-hypnotic-anxiolytic drug

class. Several recent high resolution cryo-electron microscopy

studies have provided unprecedented structural information

for GABAAR (Phulera et al., 2018; Zhu et al., 2018; Laverty

et al., 2019; Masiulis et al., 2019), advancing understanding

of receptor architecture, principles of assembly, and binding

of various ligands: GABA, bicuculline (antagonist), picrotoxin

(channel blocker), and benzodiazepines. The channel properties,

subcellular localization and pharmacological sensitivity of a

GABAAR are defined by the subunit composition. While

α5 containing GABAARs makeup only approximately 5%

of the total receptor population in the brain, they are

highly expressed in both the hippocampus and olfactory

bulb. They represent close to 25% of all hippocampal

GABAAR (Olsen and Sieghart, 2009) and are particularly

abundant in CA1 and CA3. In the olfactory bulb, over

a third of the neurons in the internal granule cell layer

have α5 GABAARs (Sur et al., 1999), although the function

here is unknown. α5 GABAARs are also expressed in the

spinal cord, where they contribute to presynaptic inhibitory

control over sensory-motor transmission (Lucas-Osma et al.,

2018) and are also implicated in resolution of hyperalgesia

(Perez-Sanchez et al., 2017). Other brain regions where

these receptors are found at lower levels include the cortex,

subiculum, hypothalamus, sympathetic preganglionic neurons,

and amygdala (Martin et al., 2009a).

Early pharmacological analysis indicated rat and human

hippocampal α5 GABAARs have α5β3γ2 characteristics (Sur

et al., 1998). However, sequential immunoprecipitation from

hippocampal tissue identified that α1/α5 heteromers constitute

approximately 9% of the α1 GABAARs and α2/α5 heteromers

constitute about 20% of the α2 population in the hippocampus

(Araujo et al., 1999; del Río et al., 2001). More recent mass

spectrometry analysis of affinity purified α5 GABAARs from

mouse hippocampus supported association of α5 with α1–3,

β1–3 and both γ2S and γ2L isoforms (Ju et al., 2009). A

recent comparison of α5β1–3γ2L GABAARs in HEK cells

co-cultured with neurons revealed robust inhibitory postsynaptic

currents (IPSCs) with slow decay rates and isoform-specific

effects of pharmacological inhibitors (Chen et al., 2017).

Importantly, in mixed alpha subunit GABAARs there appears

to be preferential assembly of α5 and γ2 together, generating

a benzodiazepine binding site with α5 subunit pharmacology

(Araujo et al., 1999; del Río et al., 2001). Thus for a

mixed α5 GABAAR, the other alpha subunit is essentially

pharmacologically inactive for benzodiazepines and other

alpha/gamma subunit interface binding drugs (i.e., the ‘‘Z-drugs’’

for insomnia treatment zolpidem, zopiclone, zaleplon). Mutation

of the α5 subunit H105 residue, a key alpha subunit residue

required for forming the benzodiazepine binding site with the

γ2 subunit, led to repositioning of α5 H105R subunits into

the pharmacologically inactive alpha subunit location (Balic

et al., 2009). Interestingly, our recent mass spectrometry analysis

identified a specific increase in α5βγ2 containing receptors

in the cortex following diazepam injection, consistent with

benzodiazepine exposure leading to modification of GABAAR

composition and potentially drug effects through α5 plasticity

(Lorenz-Guertin et al., 2019).

CELLULAR AND CIRCUIT LOCALIZATION

Subcellular Localization
Controversies regarding α5 GABAAR subcellular localization

in the literature have mirrored debates about its functional

impact on GABAergic neurotransmission. Due to their initial

identification as a key generator of hippocampal tonic current

(Caraiscos et al., 2004; Glykys and Mody, 2006; Bonin et al.,

2007), α5 GABAARs were generally considered extrasynaptic

receptors, despite earlier evidence for synaptic clustering

on dendrites and the axon initial segment (Brünig et al.,

2002; Christie and de Blas, 2002; Serwanski et al., 2006).

α5 GABAARs predominantly mediate tonic inhibition in

hippocampal CA3 and CA1 pyramidal neurons, cortical neurons

(layer 5) and are contributors to tonic inhibition in dentate

gyrus granule cells (Glykys et al., 2008; Herd et al., 2008).

Immunocytochemistry indicates an extensive extrasynaptic

presence of α5 GABAARs (Brünig et al., 2002; Crestani et al.,

2002). However, this receptor subtype is unique in displaying

surface clustering at extrasynaptic locations rather than a

uniformly diffuse extrasynaptic distribution. Regions within

the large cytoplasmic domain between M3 and M4 regulate

subcellular clustering of α5 GABAARs via interactions with

radixin and gephyrin scaffolds (Figure 1D). Extrasynaptic

clustering is mediated by radixin, an ezrin/radixin/moesin

(ERM) family member that links actin to the plasma membrane

(Loebrich et al., 2006). Phosphorylated radixin scaffolds

α5βγ2 receptors to the actin cytoskeleton, ultimately reducing

diffusion rates and concentrating channel activity away

from axon terminals (Hausrat et al., 2015). Treatment with

GABA promotes radixin phosphorylation and retention

of α5 GABAARs extrasynaptically, while AMPA, a ligand

for ionotropic glutamatergic GluA type receptors, leads to

dephosphorylation, an increase in synaptic α5-subunit receptors

and an increase in slowly decaying miniature IPSCs (mIPSCs).

Further support for the specific contribution of α5 GABAARs

to slowly decaying IPSCs is seen in early neurodevelopment

during the switch from α5 to α1 and α3 subunit expression

(Pangratz-Fuehrer et al., 2016). Important areas of further

investigation include assessment of the level and role of

α5 GABAARs associated with radixin or gephyrin in the

developing and adult brain and plasticity mechanisms regulating

these interactions.

Functional studies indicate the α5 subunit is also important

for phasic events including: spontaneous inhibitory postsynaptic

currents (sIPSCs), evoked IPSCs (eIPSCs) and GABAslow IPSCs

(Collinson et al., 2002; Prenosil et al., 2006; Zarnowska et al.,

2009; Vargas-Caballero et al., 2010). Consistent with a synaptic

role for α5 GABAARs, we demonstrated that the α5 subunit

directly interacts with the gephyrin synaptic scaffold, with

approximately half of surface α5 GABAARs being synaptically
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FIGURE 1 | α5 subunit containing GABA type A receptor (α5 GABAAR) structure and subunit topology. (A) Generic synaptic GABAAR heteropentamer. Binding of

the neurotransmitter GABA (yellow circle) at the αβ interface triggers ion channel opening and allows the rapid Cl− influx and membrane hyperpolarization.

Benzodiazepines (BZ, red box) bind at the interface of an α1/2/3/5 and γ2 subunit. (B) All subunits have a common topology including an extracellular N-terminal

domain (NT), short C-terminal tail (CT), and four transmembrane regions (M1–4) which compose the transmembrane domain. M2 (blue) contributes to formation of

the receptor ion channel pore, while the large cytoplasmic domain between M3 and M4 (CD) contains sites for protein interactions and post translational

modifications that modulate channel function and/or trafficking: amino acid residue alignment of rat and human α5 CD with radixin binding domain (orange

highlighted residues, from Loebrich et al., 2006) and gephyrin interacting region (green highlighted residues, from Brady and Jacob, 2015). (C) α5 GABAAR

extracellular representation with potential subunit combinations. (D) Schematic of α5 GABAAR clustering mechanisms at extrasynaptic and synaptic locations with

radixin and gephyrin. Phosphorylated radixin interacts with receptors and actin, while with dephosphorylation radixin N-terminal FERM and C-terminal F-actin binding

domains interact and form inactive monomers or dimers.

localized throughout the first 3 weeks of circuit development

(Brady and Jacob, 2015). Single particle tracking studies

measured reduced diffusion of surface α5 GABAARs at synapses

(Renner et al., 2012) and similar to other synaptic receptors,

α5 GABAARs showed an increase in diffusion with negative

modulator DMCM treatment (Lévi et al., 2015). Further studies

are needed to determine both acute and prolonged effects of

α5 preferring GABAAR drugs on receptor diffusive properties

and surface stability.

Cell Type and Input-Specific Expression
α5 GABAARs show input-specific synaptic localization and

function in different brain regions both for pyramidal cells

and interneurons. Recent work demonstrates preferential

localization of α5 GABAARs to inhibitory synapses on dendrites

of somatostatin-expressing interneurons in CA1 that are

targeted by vasoactive intestinal peptide and calretinin-positive

interneurons (Magnin et al., 2019). Somatostatin interneurons

and NO-synthase-positive neurogliaform cells target

α5 GABAARs on dendrites of hippocampal CA1 pyramidal

neurons to generate slow IPSCs (Schulz et al., 2018). Importantly,

these outward-rectifying α5-GABAARs generate a greater

hyperpolarizing current at slightly depolarized membrane

potentials, thereby having a large impact on NMDA-receptor-

activation and action potential firing in pyramidal neurons.

In the cortex, pyramidal cells exhibit dendritically localized

α5 GABAARs at sites innervated by bitufted interneurons (an

SST positive neuron class; Ali and Thomson, 2008). A recent

human and mouse prefrontal cortex gene expression study

determined that the majority of α5 GABAARs are in pyramidal
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cells, followed by parvalbumin interneurons (Hu et al., 2018).

Interestingly, α5 GABAAR mRNA was uniquely expressed in

human SST interneurons, albeit at a low level. As deficits in both

GABAergic signaling and SST signaling (Fuchs et al., 2017) have

been identified as contributors to major depressive disorder,

this data suggests positive modulation of α5 GABAAR could be

therapeutic by multiple mechanisms. It is clear that improving

understanding of GABAAR subtype subcellular (extrasynaptic

vs. synaptic) and circuit-specific localization and function are

critical areas of current research and future pharmacological

development (reviewed in Engin et al., 2018).

FUNCTIONAL ROLE OF α5 GABAARs

Neuronal Excitability, Learning
and Memory
Genetic and pharmacological studies in rodents demonstrate

that α5 GABAARs are key in learning and memory processes

(reviewed in Martin et al., 2009a). The two primary mouse

models used in studying the α5 GABAAR contribution

to cognitive processes are the α5 subunit knockout mice

(Gabra5−/−) and the α5H105R point mutation mice. Although

originally generated to render α5 receptors insensitive to

benzodiazepines, α5H105R mice also have a 25% decrease

in hippocampal α5 protein level (Crestani et al., 2002). As

described earlier, Gabra5−/− mice showed a reduction in

diverse types of phasic GABAAR currents and the tonic

current. Behaviorally, the increased excitability of Gabra5−/−

hippocampal pyramidal neurons was correlated with improved

performance in a spatial learning behavior (Collinson et al.,

2002), though later studies were not able to replicate this

result (Cheng et al., 2006; Martin et al., 2009b). However,

both Gabra5−/− and α5H105R mice show enhanced trace fear

conditioning, a hippocampal learning task, while performing

similarly to wild-type mice in a cued fear conditioning

assay, which relies on the amygdala, hippocampus, and cortex

(Crestani et al., 2002; Martin et al., 2009b). Long-term

potentiation (LTP), the cellular correlate of learning and

memory, is constrained by GABAAR-mediated inhibition.

Gabra5−/− mice showed a reduced threshold for LTP induction

with 10–20 Hz stimulation (Martin et al., 2010). In addition,

Gabra5−/− mice showed greater power of kainate-induced

gamma frequency oscillations (Towers et al., 2004), and

knockout of delta and α5 subunits led to spontaneous

gamma oscillations in CA3 (Glykys et al., 2008). Gamma

oscillations occur in a range of cognitive states including

memory processing, are thought to support neural coding

of environmental information and are disturbed in some

psychiatric disorders (reviewed in Lisman and Buzsáki, 2008).

In summary, a reduction in α5 inhibition may improve learning

and memory through enhanced neuronal firing and network

oscillatory activity.

Development
In contrast to their inhibitory role in the mature nervous

system, GABAARs can promote excitation in newly forming

circuits, allowing chloride efflux to produce membrane

depolarization which promotes calcium entry, dendritic

outgrowth, synaptogenesis and unsilencing of glutamatergic

synapses (reviewed in Ben-Ari et al., 2007). α5 GABAARs

are particularly well positioned to sculpt early hippocampal

circuit development due to exceptionally high expression

that peaks in the first two postnatal weeks (Liu et al., 1998;

Ramos et al., 2004; Yu et al., 2014; Bader et al., 2017), and

receptor localization at both extrasynaptic and synaptic sites.

During the first postnatal week, tonic α5 currents enhance cell

excitability and synaptic activity, facilitating the induction of

giant depolarizing potentials, which are important for early

network maturation (Ben-Ari, 2002; Marchionni et al., 2007).

Importantly, GABAergic activation of circuit formation also

occurs with newborn neurons integrating into networks in the

adult mammalian brain in vivo (Ge et al., 2006). A few in vitro

pharmacological and genetic studies have supported the role of

α5 GABAARs in dendritic development. Cultured hippocampal

neurons treated with an α5-specific negative allosteric modulator

(NAM; RY-80) exhibited decreased dendritic arborization and

reduced expression of the AMPA type glutamate receptor

GluA2 subunit (Giusi et al., 2009). To investigate the role of

α5 GABAARs in emerging circuits, we genetically manipulated

α5 binding to gephyrin, increasing or decreasing the ratio

of extrasynaptic/synaptic α5 GABAARs (Brady and Jacob,

2015). Interestingly, reducing synaptic α5 GABAARs promoted

dendritic outgrowth at the expense of dendritic spine maturation

in hippocampal neurons. Consistent with these findings, recent

work showed that single-cell deletion of Gabra5 in adult-born

dentate gyrus granule cells caused severe alterations of migration

and dendrite development (Deprez et al., 2016). Further research

is needed to elucidate the specific role of the α5 subunit

in dendritic architecture, both during development and in

adult neurogenesis.

Genetic Disorders with Altered α5 GABAAR
Neurotransmission
While acute reduction in α5 GABAARs has shown potential

for improving cognition and memory, further studies both in

mouse models and human patients link long term reduction with

significant pathologies. Reduced α5 GABAAR levels, function

or protein interactions have been observed in patients with

neurodevelopmental disorders including intellectual disability,

epilepsy and autism. Common conditions among these disorders

include cognitive impairments, increased anxiety, autism-

related behaviors, sleep disorders and epilepsy susceptibility.

Analogous behavioral changes and pathologies are observed in

mouse models including Gabra5−/−mice (Zurek et al., 2016;

Mesbah-Oskui et al., 2017), Fragile X syndrome model mice

(Fmr1−/−mice, Bakker and Oostra, 2003), and other mouse

models of ASD (reviewed in Kazdoba et al., 2016). Fmr1−/−

mice show downregulation of α5 GABAAR and a deficit in tonic

inhibition (Curia et al., 2009). Subsequent studies of α5H105R

mice identified behavioral changes including hyperactivity and

impaired encoding of object location memories (Hauser et al.,

2005; Prut et al., 2010), although some behavioral changesmay be

attributed to subunit ordering rearrangements in a mixed alpha

subunit GABAAR (see earlier, Composition).
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The most commonly reported loci of chromosomal

abnormalities in ASD patients are found in the q11.2–13 region

on chromosome 15 (Hogart et al., 2010). Among the genes in this

region are the α5, β3, and γ3 subunits. An autism patient exome

study identified mutations including α5G113A (NT), α5V204I

(NT) and mutations in the extrasynaptic anchor radixin:

T516I, P471T, D197H, A496V (Zurek et al., 2016). Exome

sequencing of sporadic genetic epilepsy patients identified

α5V204I (NT), α5W280R (M1), α5S402A (CD) and α5P453L

(CT) mutations (Hernandez et al., 2016). Recombinant studies

of these mutant α5β3γ2 GABAARs indicated no pronounced

changes in surface or total α5 levels, while functional deficiencies

ranged from reduced currents and gating defects to altered

channel activation and deactivation. A V294L (M2, pore-lining

helix) mutation identified in a patient with severe early-onset

epilepsy and developmental delay showed receptors with

10 times greater GABA sensitivity, although maximal GABA

currents were reduced by increased receptor desensitization

(Butler et al., 2018). An autism patient pilot PET imaging

study with the α5 preferring tracer [11C]Ro15-4513 identified

reduced α5 binding across multiple brain regions (Mendez

et al., 2013), while another recent study showed changes

in a GABA-sensitive perceptual task without differences in

binding (Horder et al., 2018). As both studies were without

genetic information, this suggests further testing with patient

stratification by exome data could provide greater insight.

Despite being a genetically heterogeneous disorder, the potential

utility for mechanism-based GABAAR pharmacologic treatment

with ASDs is supported by shared pathologies both in patients

and related mouse models.

α5 GABAAR THERAPEUTICS

NAMs that selectively reduce α5 GABAAR function have been

heavily pursued for the potential development of cognitive

enhancing or ‘‘smart’’ drugs. The following are a selection of

α5 GABAAR NAMs: L-655,708, α5IA, Ro15-4513, MRK-016,

RO4938581, and RY-80 (reviewed in Clayton et al., 2015;

Sieghart and Savic, 2018). Importantly, α5 NAMs did not exhibit

the convulsant or pro-convulsant activity of more general

alpha subunit NAMs, had good oral bioavailability and easily

crossed the blood brain barrier (reviewed in Atack, 2011). In

contrast to NAMs which act via the GABAAR benzodiazepine

binding site, S44819 was recently identified as a competitive

antagonist of GABA at α5 GABAAR and showed similar

pro-cognitive effects as NAMs: blocking α5-GABAAR tonic

current, enhancing LTP, reversing scopolamine-induced

impairment of spatial working memory and enhancing

object recognition memory (Ling et al., 2015; Etherington

et al., 2017). Finally, recent evidence for beneficial effects

of positive allosteric modulators (PAMs) in aged brain

cognition, autism, depression and schizophrenia has bolstered

α5 PAM drug development. A selection of α5 preferring

PAMs includes SH-053-R-CH3-2′F, MP-III-022, and GL-II-

73 (Sieghart and Savic, 2018; Prevot et al., 2019). Potential

therapeutic applications for α5 preferring NAMs and PAMs are

discussed below with a focus on CNS specific uses (Table 1),

TABLE 1 | Summary table of α5 subunit containing GABA type A receptor

(α5 GABAAR) targeted drugs and potential utility.

Drug type Reduce α5 GABAAR

activity (NAM or

competetive antagonist)

Increase α5 GABAAR activity

(PAM)

Compound L-655, 708, α5IA,

Ro15-4513, MRK-016,

RO4938581, RY-80, S44819

(competetive antagonist)

SH-053-R-CH3-2′F, MP-III-022,

Compound 44, GL-II-73

Therapeutic

potential

Procognition/smart drugs Mild cognitive impairment in

aging

Neurodevelopmental

disorders with excessive

GABAergic

neurotransmission

Neurodevelopmental disorders

with insufficient inhibitory tone

Inflammation induced mild

cognitive impairment

Depression

Post-anesthesia memory

blockade

Schizophrenia

This includes drugs that can reduce α5 GABAAR activity [negative allosteric modulators

(NAMs) and the competitive antagonist S44819] and positive allosteric modulators

(PAMs) that enhance α5 GABAAR activity. Representative compounds and therapeutic

potential are listed.

although important remaining questions exist for both in vivo

specificity and receptor subtype selectivity as recently reviewed

(Sieghart and Savic, 2018).

NAM α5 GABAAR Therapeutic Applications

Pro-cognition
The ability of α5 preferring NAMs to enhance learning and

memory in rodents provided crucial evidence for the importance

of α5 GABAARs in these processes (Chambers et al., 2002,

2003; Street et al., 2004). The α5 NAM L-655,708, which

shows approximately 50–100-fold selectivity for α5 GABAARs,

reduced tonic inhibition, enhanced LTP, improved performance

in the Morris water maze and generated spontaneous gamma

oscillations in the CA3 region of the hippocampus (Caraiscos

et al., 2004; Atack et al., 2006; Glykys et al., 2008). However

anxiogenic activity and pharmacokinetics (reviewed in Atack,

2011) prevented its use in humans. Although α5IA was non-

anxiogenic and reduced ethanol-induced learning impairment

in young volunteers, prolonged use was prevented by high dose

renal toxicity (Atack, 2010). MRK-016 showed pro-cognitive

efficacy and was non-anxiogenic; poor compound tolerance

in the elderly stopped further clinical development (Atack

et al., 2009). Efforts to develop clinically successful α5 NAM

are ongoing.

Developmental Disorders
Down syndrome mice (Ts65Dn) show cognitive impairment

due to excessive GABAergic inhibition. Acute treatment with

α5IA reversed deficits in novel object recognition and spatial

learning and was able to restore deficits of immediate early

genes expression during memory processing (Braudeau et al.,

2011). Although Ts65Dn mice show no major changes in

α5 GABAAR levels (Deidda et al., 2015), growing evidence

indicates increased α5 GABAAR activity is an important
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pathological component, as genetic ablation of α5 GABAARs

partially rescues learning, LTP and neuromorphological changes

(Vidal et al., 2018). Furthermore, a recent study revealed a

specific increase in GABAAR dendritic inhibition in Ts65Dn

mice that led to reduced NMDAR activation and impaired

LTP that could be restored with α5 NAM treatment (Schulz

et al., 2019). Rdx−/−mice have increased GABAergic inhibition

via enhanced α5 synaptic levels, impaired short-term memory

and a reversal learning deficit, with the latter being improved

with α5IA treatment (Hausrat et al., 2015). The subsequently

identified α5 NAM RO4938581, with high affinity and efficacy

at α5 GABAARs vs. α1–3 GABAARs (Ballard et al., 2009),

demonstrated efficacy in Ts65Dn mice at improving spatial

memory, reversing LTP deficits, and restoring neurogenesis

while reducing both hyperactivity and the enhanced density of

hippocampal GABAergic boutons (Martínez-Cué et al., 2013).

Although these pharmacological successes led to a Phase II

clinical trial for a related compound RG1662 (Hoffman-La

Roche) in Down syndrome patients, the trial did not meet

the primary and secondary endpoints of improved cognition

and function.

Inflammation Induced Mild Cognitive Impairment and

Post Anesthesia Memory Blockade
Increased systemic inflammation caused by pathological

events such as stroke, infection, and traumatic brain injury

is associated with memory problems during recovery from

the initial insult. In an acute inflammation model, increased

tonic α5 GABAAR current and surface levels via P38 MAPK

signaling was central to generating inflammation induced

memory deficits (Wang et al., 2012). Importantly, these

inflammation induced memory impairments were absent in

Gabra5−/− mice and could be blocked by treatment with the

α5 NAMs L-655,708 or MRK-016. Similarly, following stroke

injury, tonic inhibition is increased in the peri-infarct zone,

and L-655,708 treatment from 3-days post-stroke increases

functional recovery (Clarkson et al., 2010). Gabra5−/−

mice also exhibited improved motor recovery post-stroke.

Sustained upregulation of α5 GABAARs is also indicated

in memory blockade following anesthesia (Zurek et al.,

2014). Both the injectable anesthetic etomidate and the

inhaled anesthetic isoflurane increase α5 GABAAR tonic

conductance, promoting the amnesic properties of these

drugs (Cheng et al., 2006; Martin et al., 2009b; Saab et al.,

2010). Pharmacological inhibition of α5 GABAARs reduces

anesthetic potentiation of GABAARs (Lecker et al., 2013) and

restores recognition memory in mice after anesthesia. Recent

investigation of age-dependent efficacy of L-655,708 showed

that α5 NAM treatment prior or following anesthesia restored

spatial learning and memory in young rats, while aged rats

only showed improvement with α5 NAM treatment prior

to anesthesia (Zhao et al., 2019). Importantly, low dose

isoflurane downregulated α5 mRNA in aging hippocampal

neurons but upregulated α5 mRNA in neurons from young

animals. This suggests different approaches will be needed

to improve post anesthesia memory blockade in young vs.

aged populations.

PAM α5 GABAAR Therapeutic Applications

Neurodevelopmental Disorders
Mouse models of neurodevelopmental disorders that present

with insufficient inhibitory tone show improvement with

positive modulators of GABAAR signaling. In the Scn1a+/−

mouse model of Dravet syndrome, a severe childhood epileptic

encephalopathy syndrome with hyperactivity and autism

behaviors, abnormal social behaviors and fear memory deficits

were rescued following treatment with a benzodiazepine,

clonazepam (Han et al., 2014). In an ASD mouse model

with reduced GABAAR-mediated inhibition, the BTBR T+tf/J

mouse, the α2,3 and 5 PAM L-838,417, improved deficits in

social interaction, repetitive behaviors, and spatial learning

(Han et al., 2014).

Mild Cognitive Impairment in Aging
Although α5 GABAAR NAMs enhance memory in young

rodents, it appears positive modulation may be more therapeutic

in aging brains impaired by excess activity. Particularly

in disorders such as Alzheimer’s which are hallmarked by

overexcitation (Ambrad Giovannetti and Fuhrmann, 2019),

enhanced cognition may be achieved with reducing pathological

excitability, as observed with the FDA approved NMDAR

antagonist memantine. Furthermore, there is growing evidence

for a general decline in GABAergic inhibitory tone in aging

humans, monkeys and rodents (Rozycka and Liguz-Lecznar,

2017; Lissemore et al., 2018). From this newer perspective, an

α5 GABAAR PAM focused approach (Compound 44) identified

improved hippocampal-dependent memory in aged rats with

cognitive impairment (Koh et al., 2013).

Depression and Schizophrenia
Another important unmet need where α5 GABAARs PAM

pharmacotherapymay be applicable is in the development of new

fast-acting anti-depressant drugs. Most current antidepressants

act on the monoaminergic systems, and are only moderately

therapeutically efficacious after dosing for several weeks.

Significant evidence links GABAergic deficits with major

depressive disorders (MDD) (Luscher et al., 2011). Investigation

of anti-depressant activity of the α5 PAM SH-053-2′F-

R-CH3 showed stress reduction in female mice both as

an acute and chronic treatment (Piantadosi et al., 2016).

Although male mice did not respond to PAM treatment,

they also failed to show the upregulation of Gabra5 gene

expression following unpredictable chronic mild stress seen

in female mice. This particular PAM was also able to

reverse pathological increases in dopaminergic activity in the

MAM-model of schizophrenia (Gill et al., 2011). GL-II-73 a

recently developed α5 preferring PAM showed anxiolytic and

antidepressant efficacy, reversing stress-induced and age-related

working memory deficits both in male and female mice

(Prevot et al., 2019). Somewhat contradictory to this data and

the GABA deficit hypothesis of MDD, α5 NAM have also

shown rapid antidepressant actions in mice, potentially via

ketamine like mechanisms of disinhibition (Fischell et al., 2015;

Zanos et al., 2017).
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CONCLUSION

Due to the unique physiology and pharmacology of

α5 GABAARs, these receptors are being targeted and tested

as treatments for neurodevelopmental disorders, mild cognitive

impairment, depression and schizophrenia. The recent cryo-EM

studies of heteropentameric synaptic GABAARs and binding

of GABA, antagonists, and benzodiazepines should further

advance α5 subtype specific structure-based drug design. Despite

the progress in understanding of α5 GABAAR neurobiology,

comparatively little is understood regarding mechanisms that

regulate α5 GABAAR trafficking, stability, and both synaptic

and extrasynaptic clustering. Furthermore, understanding of

α5 GABAAR plasticity occurring from endogenous signaling

mechanisms and from drug treatments in the developing,

mature and aging brain will be needed to effectively and

safely advance therapeutic application of α5 GABAAR

preferring drugs.
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