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Highly accurate classification methods for multi-task biomedical signal

processing are reported, including neural networks. However, reported works

are computationally expensive and power-hungry. Such bottlenecks make it hard

to deploy existing approaches on edge platforms such as mobile and wearable

devices. Gaining motivation from the good performance and high energy-efficiency

of spiking neural networks (SNNs), a generic neuromorphic framework for edge

healthcare and biomedical applications are proposed and evaluated on various

tasks, including electroencephalography (EEG) based epileptic seizure prediction,

electrocardiography (ECG) based arrhythmia detection, and electromyography

(EMG) based hand gesture recognition. This approach, NeuroCARE, uses a unique

sparse spike encoder to generate spike sequences from raw biomedical signals

and makes classifications using the spike-based computing engine that combines

the advantages of both CNN and SNN. An adaptive weight mapping method

specifically co-designed with the spike encoder can efficiently convert CNN to SNN

without performance deterioration. The evaluation results show that the overall

performance, including the classification accuracy, sensitivity and F1 score, achieve

92.7, 96.7, and 85.7% for seizure prediction, arrhythmia detection and hand gesture

recognition, respectively. In comparison with CNN topologies, the computation

complexity is reduced by over 80.7% while the energy consumption and area

occupation are reduced by over 80% and over 64.8%, respectively, indicating that

the proposed neuromorphic computing approach is energy and area efficient and

of high precision, which paves the way for deployment at edge platforms.

KEYWORDS

epileptic seizure prediction, arrhythmia detection, hand gesture recognition, biomedical
signal processing, neuromorphic computing

1. Introduction

The various biomedical datasets have provided the possibilities for the realization of a wide
spectrum of medical applications. Electroencephalography (EEG) signals could be utilized for
predicting epileptic seizure which is recognized as one of the most severe neurological diseases
(Mirowski et al., 2009), motion recognition (Abiri et al., 2019), and stroke risk prediction which
is ranked as the first leading causes of death and disability worldwide (Chen and Sawan, 2021).
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FIGURE 1

Edge computing scenarios for biomedical applications including four
stages. The bottleneck lies in the realization of energy efficient feature
extraction and classification approach (Stage 2) for deployment at
edge (Stage 3).

Electromyography (EMG) signals could pave the way for hand
gesture recognition systems which have been proven to be
immensely helpful in many human-computer interactive scenarios
like treatment for post-stroke rehabilitation (Chen et al., 2019), and
active prosthesis control (Parajuli et al., 2019). Electrocardiography
(ECG) signals provide potentials for remote arrhythmia detection,
which is one major cause of death nowadays according to World
Health Organization (2017). The healthcare applications mentioned
above always require at edge deployment for the convenience of
patients and the enhancement of physician’s diagnosis. However, the
computation and memory resources of edge devices are extremely
limited. Figure 1 depicts at-edge system scenarios for various
healthcare applications. Such systems consist of four common stages:
biomedical signal acquisition stage, signal feature extraction and
classification approach stage, edge platform deployment stage and
application realization stage. To empower the realization of such
systems, it is of great significance to propose a high-performance,
energy-efficient, and generic feature extraction and classification
approach for edge healthcare.

Recently, several AI-based algorithms have been used for various
kinds of biomedical signals analysis tasks, like convolutional neural
network (CNN) and recurrent neural network (RNN). A Short-Time-
Fourier-Transform (STFT) based 2D-CNN was proposed for EEG
signal processing by Truong et al. (2018a). Eberlein et al. (2018)
designed a CNN with deep layers for seizure onset prediction on the
time domain utilizing raw EEG signals. Xu et al. (2020) designed
channel-wise convolution kernels to deal with seizure prediction
and achieved a sensitivity of 98.2%. Atzori et al. (2016) and Wei
et al. (2019) both applied CNN method to deal with EMG data.

Hu et al. (2018) used a hybrid recurrent-convolution network to
extract the sequential features of EMG signals, while Simão combined
gated recurrent unit (GRU) and long-short term memory (LSTM)
with the same aim (Simão et al., 2019). Kiranyaz et al. (2016)
used 1D CNN to classify two major phases of ECG for arrhythmia
detection and achieved sensitivity of 93.9%. The above methods
all show advantages in classification accuracy. However, they all
require tremendous amounts of computation resources, which proves
to be a challenging task for edge platforms such as wearable and
implantable devices. Recently, researchers have explored hardware
friendly approaches for feature extraction and classification. Truong
et al. (2018b) studied on deploying integer and binary weights in
CNN, managing to achieve an over seven times reduction on weight
size. Zhao et al. (2020) proposed a single dimension CNN with
binary weights to deal with EEG data, which reduces the required
memory for parameters by 86.12%. However, Truong et al. (2018b)
still utilized integer weights of 4-bit width in their CNN and Zhao
et al. (2020) still used fully precise values as dataflow in several layers
of the neural network, which waste both energy consumption and
computation resources. In conclusion, the existing approaches still
face the drawback of balancing task performance with computation
complexity. It remains as a problem to reduce data amount as much
as possible while keeping the performance at a high level for edge
biomedical applications.

Biologically inspired, spiking neural networks (SNNs), which
stand as the most demonstrative form of neuromorphic computing
approaches nowadays, have shown advantages in energy efficiency
and performance in classification tasks (Kasabov, 2014; Srinivasan
et al., 2016; Roy et al., 2019) and are expected to be the next generation
of AI (Ghosh-dastidar and Adeli, 2009). To detect epilepsy seizure
onsets based on EEG, Guo et al. (2017) designed an SNN utilizing
supervised training methods and achieved an accuracy of 92.67%. Ma
et al. (2020) designed an SNN based on reservoir computing for EMG
classification. Amirshahi and Hashemi (2019) proposed an SNN for
cardiac monitoring and achieved a sensitivity of 80.2%. Therefore,
SNNs can provide a possible solution for deploying energy-efficient
edge healthcare applications. Conventional unsupervised training
methods like spike-timing-dependent plasticity (STDP) (Pu and
Cook, 2015), Tempotron (Iyer and Chua, 2020), and SpikeProp
(Shrestha and Song, 2018) are commonly utilized in existing SNNs
(Pu and Cook, 2015; Amirshahi and Hashemi, 2019; Ma et al.,
2020). However, it remains a problem to design and train spike-
based neural networks as deep as CNN based on these methods
(Tavanaei et al., 2019), which leads to limitations in both the
performance and the applications of SNN. Although some work
(Lee et al., 2018) try to improve STDP scheme for training multi-
layer SNN, the performance is still insufficient to handle complicated
signal analysis tasks. Combining the advantages of both CNN and
SNN, Spiking CNNs are proposed to solve the drawbacks described
above (Rueckauer et al., 2017). The weights of a Spiking-CNN are
gained in CNN shadow training via backpropagation. The trained
weights are then restored and correspondingly mapped onto the
designed SNN. A unique spike encoder is required in spike-based
computing methods to generate time-based spike sequences from
the input data, which is specifically adapted to process various
types of signals and tasks. In this way, Spiking-CNN succeeds
to achieve high classification performance while much reduce the
required computation resources compared to CNN. Diehl et al.
(2015) did some primary work in the exploration of Spiking-CNN
and conducted evaluation on MNIST dataset. Cao et al. (2015) also
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explored the potentials of Spiking-CNN in object recognition tasks.
However, the effect of the spike encoder is overlooked in their work.
For conversion based SNNs dealing with classification tasks, the key
of keeping high performance is to rebuild the relative statistical data
distribution of feature maps between layers in the format of spike
sequences. The spike sequences are generated via spike encoder,
which directly affects the data distribution of features.

To solve the existing drawbacks of unbalance among
performance, versatility, and computation efficiency, we propose
the implementation of NeuroCARE, a generic neuromorphic
computing approach which is adaptive for various edge healthcare
and biomedical applications. NeuroCARE first converts raw biologic
signals to spikes through the proposed sparse Gaussian spike encoder,
which rebuilds the relative statistical data distribution of feature
maps in time domain. The dedicated channel-wise network structure
of NeuroCARE manages to extract spatial-temporal features and
stands as the foundation of accurate and efficient processing. The
adaptive weight mapping scheme in NeuroCARE is codesigned
with the spike encoder to achieve high performance. Moreover,
NeuroCARE can be implemented on hardware in a totally multiplier
free fashion which reduces both the hardware cost and power
consumption significantly.

In our experiment, NeuroCARE reduces the computation
complexity by over 80.7%, and the energy consumption and
area occupation are reduced by over 80% and over 64.8%,
respectively, showing advantages when compared to other systems
with CNN topology.

The organization of this paper is as following. Section “2 Module
and architecture designs” describes the proposed system architecture
and design flow, where detailed modules of NeuroCARE are shown.
Implementations, experiments, and relevant results are summarized
in Section “3 Experiments and evaluation results,” respectively.
Section “4 Conclusion” concludes this paper.

2. Module and architecture designs

The processing strategy of NeuroCARE consists of two stages
(Figure 2). The shadow training phase aims to get weights via
backpropagation in the designed CNN topology (Figure 2A), which
then transforms into neuromorphic SNN fashion (Figure 2B).
The trained weights are first adapted and then mapped onto the
Spiking-CNN via the proposed adaptive weight mapping method
(Figure 2C) correspondingly. During the inference phase, a designed
sparse Gaussian encoder is utilized to transform the biomedical
signals to encoded spike sequences on the time domain. Then the
neuromorphic engine operates inference to realize the classifications.

2.1. Sparse Gaussian spike encoder

In this study, we propose a sparse Gaussian spike encoding
algorithm to generate time-dependent spike sequences with adaptive
sparsity from the input continuous biomedical signals into and thus
discrete the input data features in time domain.

Unlike other types of spike encoders such as (Donati et al.,
2019) and (Davidson and Furber, 2021) where the encoder can
only be applied to specific tasks, the proposed method can achieve
better versatility and scalability with the codesign of the proposed

weight mapping scheme. Such co-design scheme also ensures that
the proposed method has the potential to apply on various network
structure and various tasks. Relevant mathematical deduction will
be presented in Part E of Section “2 Module and architecture
designs.” Another priority of the proposed encoder lies in that it has
better sparsity via mimicking the randomness of biological activities.
Compared with prior rate-encoding and delta-encoding scheme, the
proposed spike encoder could rebuild feature distributions in the
time domain using far fewer time steps, thus bringing more efficiency.
Moreover, the proposed spike encoder can be implemented in pure
digital design and has good reconfigurability. Part F of Section “3
Experiments and evaluation results” presents the detail of circuit
design of the spike encoder.

Algorithm 1 depicts the encoding process. The 2D input data
sample is converted into a 3D vector with an extra time dimension.
Meanwhile, key features of the original input are dispersed into
multiple time steps after passing through the Gaussian spike encoder.
The sparsity of the generated spike sequences is configurable utilizing
several hyper-parameters: time-step, Vth-up and Vth-down. Time-
step determines the length of time while Vth-up and Vth-down
set a borderline for the generated Gaussian random values. The
input original data for the spike encoder is raw biomedical sample.
The encoded spikes are generated once at each time step via the
proposed temporal Gaussian random discretization method. To
determine elements of the encoded spikes, a Gaussian random matrix
is generated at each time step. Holding the same shape as the
original input sample, the generated matrix consists of random values
following Gaussian distribution, whose variance is set as 1 and mean
is set as (V th_up + Vth_down)/2. Elements of the generated random
matrix is then one2one compared with the original input data. If the
original element is greater, the corresponding encoded spike value is
set one. Similarly, the spike value is set zero if the generated one is
greater. This process applies to every time step, which means that
the spike encoder generated one spike sample at each time step. If
a vector in the shape of (C, H, W) (C, H, W stand for channel, height,
and width respectively) is given as the input of the spike encoder, the
output shall be (T, C, H, W) (T stands for time step) consisting of
0 or 1 elements.

1 : Input: time_step, original_data, Vth_up,

Vth_down
2 : Output: encoded spike sequences

3 : for t = 1 : time_step do

4 : sample(t) ← Gaussian Random,

mean = Vth_up + Vth_down
2

5 : end for

6 : for t = 1 : time_step do

7 : for data_value in original data do

8 : if sample(t, data_value) <

original_data(datavalue)

9 : encoded_spikes(t) ← 1

10: else

11: encoded_spikes(t) ← 0

12: end if

13: end for

Algorithm 1 | Temporal Gaussian random sparse encoder.
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FIGURE 2

Processing strategies of the proposed NeuroCARE: (A) convolutional neural network (CNN) based processing for training, where “ReLU” stands for
rectified linear activation function and “P” stands for the probability of one output result, (B) Neuromorphic spike-based computing engine for inferring,
where “IF” stands for “integrate and fire”, “O” stands for “output neuron” and “n” stands for the number of output neurons, (C) Weight mapping, where
“Conv” stands for “convolution layer”, “S_Conv” stands for “spiking convolution layer”, “m” stands for the number of “Conv”, “FC” stands for “fully
connected layer” and “n” stands for the number of “FC”.

The key benefits of spike encoder lie in that: (a) it discretized
the information of raw biomedical data onto the time domain with
adaptive sparsity, enabling the accurate and efficient Spiking-CNN
processing method; (b) it helps to reduce the length of dataflow
processed in the network from multi-bit (typically 8b/16b/32b) to
merely 1-bit, and meanwhile still keeps the major features of input
data so that the computation complexity and the required data
memory is greatly reduced. The accumulation of the encoded spike
sequences over all the time steps represents the retained information
of input data. More data information is retained as the time step
is set larger, which meanwhile brings more burden in memory and
computing resources. In this work, different time steps are evaluated
to compare the performance.

2.2. Channel-wise spatial-temporal
network structure

For the processed raw biomedical signals, there always exist
thousands or hundreds of elements in X axis (time axis) while
only a few in Y axis (channel axis). Different channel records
electrophysiological activities in different parts of human bodies.
Thus, it may decrease the classification performance if the time
(X) and channel (Y) axis are mixed up (Xu et al., 2020).
Therefore, a channel-wise neural network structure is proposed
in this work to avoid mixing up data features from different
channels. The channel-wise neural network topology adopts single-
dimension feature extraction kernels in convolution modules and

max-pooling modules, which also brings convenience to edge
hardware implementation.

As shown in Figure 2A, the structure of the CNN-based
processing topology consists of three parts. The input vector matrices
first go through the feature extraction part (FEP) which is composed
of multiple convolution (Conv) layers and max-pooling (MP) layers.
Rectified linear units (ReLU) are also connected after every feature
extraction layer. The data after the feature extraction part is then sent
to the classification part (CP) which is composed of fully connected
(FC) layers. The outputs of FC layers are then processed in the
SoftMax function part. The final outputs stand in the format of
probability ranging in 0∼1 and the greatest one delivers the result
of classification.

Figure 2B shows the structure of the proposed spike-based
computing engine is shown in. Apart from the spike encoder and
the spike counter, the proposed neuromorphic engine is mainly
composed of a Spiking-CNN transformed from the CNN topology,
which consists of a feature extraction block (FEB) and a classification
block (CB). The FEB and CB have the same structure as FEP and
CP of the CNN topology, respectively. The changes lie in that all the
ReLU layers are replaced with IF neuron grids, which is explained
detailly in Part C of Section “2 Module and architecture designs.”
In Spiking-CNN, the data flow between two layers is transformed
into the form of spikes (single-bit 0/1), which also transforms the
“expensive” multiplication and accumulation (MAC) operations in
CNN into the “cheap” adding-only (ADD) operations. Thus, Spiking-
CNN requires far fewer computation resources than CNN, making it
area-friendly and energy-efficient.
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Table 1 shows the comparison of typical metrics between CNN,
typical SNN, and this work. Since Spiking-CNN process data on time
domain, the computing procedure can be executed both sequentially
and parallelly, which depends on the architecture and resource
constraints of the hardware processing element (PE), thus providing
more flexibility for edge implementation.

2.3. Neuromorphic neuron model

In the proposed architecture, neuromorphic neuron grid is used
as activation layer within each block (Figure 2B). As shown in
Figure 3A, a biological neuron uses multiple dendrites to receive and
send information. There exist one axon and many axon terminals at
the end of the axon that connect with the dendrites of other neurons
to transmit information. Neural models in NNs are designed in the
purpose to mimic the function of biological neurons.

For common CNNs, the neuron model consists of inputs,
outputs, and computation units (Figure 3B). The input connection
is analogous to the dendrites of the neuron while the output is
analogous to the axon. The computation units of CNN neurons
complete the operations of multiplication and accumulation (MAC).
However, such neurons are utilized only once in one single
computation process.

For Spiking-CNNs, various biology-inspired neuron models have
been explored (Roy et al., 2019). To mimic the behaviors of biological
nerves, the neuromorphic neuron receives multiple spike sequences
as inputs and may produce multiple output spikes as shown in
Figure 3C. V(t) and Vreset stand for the values of membrane potential
and resting potential of such neuron, respectively. When spike inputs
arrive, V(t) increases, and later returns to Vreset after firing an output
spike.

The leaky integrate and fire (LIF) neuron is a typical model to
emulate biology neural behaviors. The behavior of LIF neurons is
depicted in Figure 3D. However, the dynamic leaky process makes
it hard to implement LIF neurons in high-speed digital circuits. In
this study, the integrate and fire (IF) neuron, a simplified model with
an adaptive threshold voltage Vth, is utilized to propose a hardware-
friendly approach. For spike based IF neurons, the membrane
potential Vi(t) is updated with time as shown in Eq. (1)

Vi (t) Vi (t − 1)+ Input (t) −− Leakage (1)

In IF neurons,
∑

δj(t − tj) describes the sum of pre-synaptic
stimulus of each neuron which also stands as the accumulation of
spike inputs (Figure 3C) and leakage of IF neurons is set to be a
constant voltage4V as show in Eq. (2)

Vi (t) Vi (t − 1)+
∑

j
wij

∑
tj ∈ T

δj
(
t − tj

)
−−4V (2)

As shown in Figure 3E, when the neuron membrane potential
Vi(t) exceeds the threshold voltage Vth, a spike is fired at the output.
Then Vi(t) returns to the resting potential Vreset .

2.4. Processing dataflow

To process raw biomedical data in the proposed neuromorphic
engine, the original input data is first encoded into time-
dependent spike sequences as described in Part A of Section “2

Module and architecture designs.” Time Step is first chosen. Other
hyperparameters of spike encoder–Vth_up and Vth_down are set and
adjusted along with the original input data distributions to achieve
an optimal encoding performance.

At each point of time step, the encoded inputs are processed
by the Spiking-CNN, where some of the output neurons may be
activated and fire output spikes. The numbers of output spikes are
recorded by the spike counter over all the time steps (Figure 2B) and
the greatest one produces the result of classification.

In this study, the Vreset of all the IF neurons are set as 0 for
the convenience to implement the whole neuromorphic engine on
edge hardware. Threshold voltages Vth are set the same for each
layer and adjusted along with the Vth_up and Vth_down to improve
the performance.

2.5. Adaptive weight mapping
configuration

As for the weight mapping which is shown in Figure 2C, the
trained CNN weights are mapped on the Spiking-CNN in a way2way
fashion after scaling with an adaptive scaling factor f .

Based on statical data distribution of activations in the
proposed neural networks, we propose an adaptive weight mapping
configuration method to keep high-performance classification for
the conversion from CNN to Spiking-CNN. In the proposed
mapping configuration, the scaling factor f is adaptive with the
hyper parameters determined for the Gaussian spike encoder, i.e.,
time_step, Vth_up, Vth_down.

For the Lth-layer neural network, the weight vector connecting
between the kth neuron of layer l− 1 and the ith neuron of layer l can
be expressed as W l

ik, l ∈ {1, . . . L}. For CNNs using ReLU neurons,
the gained activation of neuron i in l layer is

al
i = Max

(
0,

K l−1∑
k

W l
ik ∗ al−1

k

)
(3)

where K l−1 represents the number of neurons in the l− 1 layer that
are connected to the neuron i of l layer. Thus a0

k represents the
kth value of the input data. Following the Gaussian distribution, the
probability that the encoded spike value is 0 at the time step t is

P
(
S0

kt = 0
)
=

∫ a0
k

Vth_down
1
√

2π
exp

(
−

(x−mean)
2

)
dx (4)

Similarly, the probability that the encoded spike value is 1 at the
time step t is

P
(
S0

kt = 1
)
=

∫ Vth_up
a0

k

1
√

2π
exp

(
−

(x−mean)
2

)
dx (5)

where

mean = Vth_up+Vth_down
2 (6)

Therefore, the accumulated value of the encoded data a0
k through

all the time steps is

Vac0
k =

T∑
t

0∗P
(
S0

kt = 0
)
+ 1 ∗ P

(
S0

kt = 1
)

= T
∫ Vth_up

a0
k

1
√

2π
exp

(
−

(x−mean)
2

)
dx

(7)
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TABLE 1 Overall comparison between convolutional neural network (CNN), spiking neural network (SNN), and this work.

Comparison metrics CNN SNN This work

Network structure No. of FE Layer Mc Ms M′s ( = Mc)

Function layer Softmax, ReLU Delta/rate encoder, spike counter Sparse Gaussian encoder, spike
counter

Input 2-D vector Spike sequence (long time steps
>100)

Spike sequence (few time steps
∼10/25)

Output Probability (multi-bit FP) Number of spikes (INT) Number of spikes (INT)

Neuron model Activation function ReLU function LIF activation IF activation

Weight wij wij w′ij (Adaptive mapping)

Bias Vary between deff. layers Vary between deff. layers Constant4V

Spike-based – X X

Dynamic leakage Not required Required Not required

FE domain Spatial Temporal Spatial-temporal

Operation Multiplication and accumulation
(MAC)

Accumulation (ADD), dynamic
leakage

Accumulation only (ADD)

Dataflow Multi-bit value Single-bit 0 or 1 Single-bit 0 or 1

Weight resolution Multi-bit value

FIGURE 3

Various neuron models including (A) biological neuron, (B) artificial neuron, and (C) neuromorphic neuron. Two kinds of behaviors in panel (C) are (D)
leaky-integrate-fire (LIF) function and (E) integrate and fire (IF) function.
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Then we can get the scaling factor of the first layer

f1 = 1
K0

K0∑
k

a0
k

Vac0
k
=

1
K0

N∑
k

a0
k

T
∫ Vth_up

a0
k

1
√

2π
exp
(
−

(x−mean)
2

)
dx

(8)

For the following layers of Spiking-CNN, considering the
integrate-and-fire function of IF neurons, the accumulated value of
the neuron i of l layer through all the time steps is

Vacl
i =

T∑
t

(
K l−1∑

k
f l
i W l

ik ∗ Sl−1
kt − rl

∗ Vth + Vreset

)
∼= T ∗

(
K l−1∑

k
f l
i W l

ik ∗ rl
− rl
∗ Vth + Vreset

) (9)

where f l
i stands for the scaling factor for neuron i in l layer and rl

stands for the firing rate of the l layer which is defined as

rl
= 0.5 ∗

(
1− l

L

)
(10)

Combining Eq. (3), Eq. (9), and Eq. (10), we can get the scaling
factor of the l-th layer in Eq. (11)

fl = 1
K l−1

K l∑
i

1
T ∗

Kl−1∑
k

W l
ik∗a

l−1
k +0.5∗

(
1− l

L

)
∗Vth−Vreset

Kl−1∑
k

W l
ik∗a

l−1
k

(11)

3. Experiments and evaluation results

Evaluations of NeuroCARE are conducted in terms of
classification performance, energy consumption, and resource
expenses in this study. We deploy this framework on a simulator
based on Eyeriss architecture (Chen et al., 2017) and conduct
three edge healthcare applications to demonstrate its advantages
and versatilities: (1) epileptic seizure prediction based on EEG,
(2) arrhythmia detection based on ECG, and (3) hand gesture
classification based on EMG. Therefore, three different benchmark
datasets are utilized to evaluate the performance of the proposed
approach.

3.1. EEG based seizure prediction

The CHB-MIT EEG dataset is used to evaluate the performance
of NeuroCARE on EEG-based seizure prediction tasks. The CHB-
MIT dataset contains 23 measurements of scalp EEG data recorded
from 22 patients at 256 Hz sampling rate (Shoeb, 2009). Among the
total 23 measurements, 15 are recorded under the same fixed signal
acquisition configuration using 23 electrodes, while the remaining 8
have some changes.

For seizure prediction tasks based on EEG signals, a tiny time
window between the end of preictal interval and the beginning of
seizure onset is defined as the seizure prediction horizon (SPH).
The intervals chosen for the experiments are determined by SPH
and the preictal interval length (PIL). In this experiment, we choose
to use 30 min PIL and 5 min SPH. Using a fixed time window
of 20 s, two categorized samples of the interictal intervals and the
preictal intervals are extracted from the CHB-MIT dataset. For every
extracted sample, the data height (H) is the number of recording
channels, and the data width (W) is sampling-rate ∗ 20 s, where each

element is the recorded voltage value. Thus, the input vector shape
(H, W) is 23 ∗ 5,120 for this experiment. However, the interictal
intervals contained in CHB-MIT dataset are much more than preictal
intervals causing the problem of sample imbalance in training,
which may lead to poor performances (Japkowicz and Stephen, 2002;
Barandela et al., 2004). To overcome this barrier, samples of preictal
intervals are extracted using 5 s overlapping (Tian et al., 2021).

In this study, only lead seizures occurring at least 4 h after the
previous ones are taken into consideration (Hussein et al., 2019).
Therefore, there are totally seven subjects suitable for the experiment.
In this work, the results of evaluated metrics are the mean values of
all the seven subjects.

With the ratio of 4:1, we separate the EEG dataset into training
dataset and testing dataset randomly. The training dataset is used
to gain the trained weights in CNN-based topology. The trained
weights are first restored, then scaled, and finally mapped on the
spike-based computing engine correspondingly. The performance
of NeuroCARE is recorded on the testing dataset. When operating
predictions, the raw EEG data is first transformed into spike
sequences via the Gaussian spike encoder. The Spiking-CNN mapped
with the scaled weights processes the encoded spike sequences and
then produces results of prediction. Thus, the performance can be
evaluated by comparing the results and the labels.

The neural network structure for EEG processing is detailed
in Figure 4A. The proposed network is composed of five spiking
convolution and max-pooling (SC and MP) layers, two spiking fully
connected (SFC) layers, and two extra layers of spike encoder and
spike counter.

FIGURE 4

Model structures of (A) electroencephalography (EEG) network, (B)
electrocardiography (ECG) network, and (C) electromyography (EMG)
network. “SC” stands for “spiking convolution”, “MP” stands for “max
pooling”, “SFC” stands for “spiking fully connected” and “C” stands for
“channel”.
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3.2. ECG based arrhythmia detection

Evaluations on the performance of ECG-based arrhythmia
detection tasks are conducted using MIT-BIH dataset in this work,
which are obtained from total 47 subjects studied by the MIT-
BIH Arrhythmia Laboratory. The MIT-BIH dataset contains forty-
eight 30-min excerpts of two-channel ambulatory ECG recordings.
Among the total 48 recordings, 23 are chosen randomly from 4k
24-h ambulatory ECG samples. These samples were recorded from
a mixed collection of inpatients and outpatients with the ration of
about 3:2 at Boston’s Beth Israel Hospital. The left 25 recordings
include less common but clinically significant arrhythmia samples
that cannot be well-represented in randomly chosen datasets, which
are selected from the same set (Goldberger et al., 2000).

All the recordings are digitally sampled with a 11-bit resolution
over a 10-mV range at 360 Hz per channel. As defined in standards
from Association for the Advancement of Medical Instrumentation
(AAMI), ECG recordings can be divided into five classes: ventricular
ectopic beats (VEB), supraventricular ectopic beats (SVEB), fusion
beats (F), non-ectopic beats (N), and unknown beats (Q). In
total, MIT-BIH dataset contains 90,081 N samples, 7,008 VEB
samples, 2,781 SVEB samples, 802 F samples, and 15 Q samples.
In this experiment, to overcome the problem of data unbalance,
we randomly selected 800 samples from N, VEB, SVEB, and
F, respectively. Q samples are excluded in this experiment for
there are too few to use for training. The total 3,200 samples
are further separated into training dataset and testing dataset
randomly in a 4:1 ratio.

The proposed ECG network structure is detailed in Figure 4B,
which is composed of five spiking convolution (SC) layers, two max-
pooling (MP) layers, and two spiking full-connected (SFC) layers.
A spike encoder layer and a spike counter layer are also needed.
The shadow weights of the CNN-based topology are first trained on
the training data and then scaled and mapped on the spike-based
computing engine correspondingly. The classification performance
of the spike-based ECG network is then tested. The method of
data processing in the inference procedure remains the same as the
way mentioned in Part A of Section “3 Experiments and evaluation
results.”

3.3. EMG based hand gesture recognition

To evaluate the performance on EMG based hand gesture
recognition task, Nina Pro DB1 benchmark is used in this
experiment. Nina Pro DB1 contains surface EMG (sEMG) data
collection of 10 electrodes of measurements from 27 subjects (Atzori
et al., 2014). All the data is collected with a sampling rate of 100 Hz.
When collecting data, each type of hand gesture is repeated 10 times
in a row. Every movement of hand gesture lasts for 5 s, and there exists
a 3 s resting time between every two movements. Recordings of three
kinds of commonly used hand gestures are utilized for evaluation of
performance in this experiment, including the resting position, the
thumb up position and the index flexion position. With the ratio
of 4:1, the recorded samples are randomly separated into training
dataset and testing dataset, respectively.

Input data is first encoded into spike sequences, and then
processed by the proposed SNN. The size of the input sEMG samples
during training and inference is 12× 10 with a batch size of 32. Before

converting into spike sequences in the time domain, the original
samples are also min-max normalized into the range of (0,1).

Figure 4C shows the network structure. The proposed neural
network consists of five spiking convolution (SC) layers, two max-
pooling (MP) layers, and two spiking full-connected (SFC) layers
with a spike encoder and a spike counter. In the training procedure,
the training data is used to train the proposed CNN-based topology
to get weights which are then scaled and mapped on the spike-based
computing engine for inferring. The testing data is used to evaluate
the performance of the spike-based engine.

3.4. Performance evaluations

In this study, to evaluate the classification performance of
the proposed neuromorphic approach, we choose the standard
evaluation metrics including accuracy, precision, recall, sensitivity,
F1 score, and an overall score for the above-described multi-class (N
classes) classification tasks, which are defined as follows:

Accuracy (Acc) =

N−1∑
i = 0

Classi,correct

N−1∑
i = 0

Classi,total

(12)

Precision = 1
N−1

N−1∑
i = 1

Classi,correct
Classi,crorrect+Class0,false

(13)

Recall = 1
N−1

N−1∑
i = 1

Classi,correct
Classi,crorrect+Class0,correct

(14)

Sensitivity (Sen)
Class0,correct
Class0,total

(15)

F1 Score 2 ∗ Precision∗Recall
Precision+Recall (16)

Overall Score Acc+Sen+F1 Score
3 (17)

where Class0,total stands for the number of the normal state or the
resting state and Classi,total stands for the number of the ith class of
the processed biomedical data.

The effect of the set number of time step (TS) of the proposed
spike encoder is shown in Figure 5, where the larger TS is, the higher
accuracy is gained.

For the evaluation of computation efficiency of the proposed
approach, the number of computing operations (ADD and MUL)
and the required weight memory are estimated. The metric of
computation complexity (TC) is also calculated to quantize the
reduction of computation costs brought by the proposed approach.
The calculation of TC of CNN and the proposed Spiking-CNN are
presented in Eq. (18) and Eq. (19), respectively

TCCNN =
∑

all layers
MHMW (KHKW + KH + KW − 1) CinCout ×

Ops × bit +
∑

all layers
NinNout × Ops × bit

(18)

TCSCNN =
∑

all layers
MHMW (KH + KW − 1) CinCout ×

Ops × bit × TS+
∑

all layers
NinNout × Ops × bit × TS

(19)
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FIGURE 5

Classification accuracies for electroencephalography (EEG), electromyography (EMG), and electrocardiography (ECG) utilizing convolutional neural
network (CNN) and Spiking-CNN with different configurations in time step, where “TS” stands for “the number of time steps” for Spiking-CNN. The larger
TS is set, the higher accuracies are gained.

FIGURE 6

Overall system architecture design of NeuroCARE, consisting of encoding phase, processing phase and decoding phase.

where M, N, K, W, H, and C stand for Feature Map Size
in Conv Layers, Neuron Number in FC Layers, Kernel, Width,
Height, and Number of Channels; Ops is the number of required
cycles to finish one computing operation [conditional branching:
1, ADD: 1, MUL: 3, and MAC: 4 based on edge deployment
(Hennessy and Patterson, 2011)]; bit stands for needed bits of
activation buffer between two NN layers in hardware. In SNN,

the required operations are ADD and conditional branch (used
to judge if the output spike should be fired). In the contrast,
CNN needs more complicated MAC (MUL plus ADD operations).
SNN processes single-bit activations while multi-bit (8b/16b/32b)
activations are typically used in CNN implementations. To make a
conservative evaluation of our design, we choose 8b for CNN in the
calculation.
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FIGURE 7

Module design of (A) Gaussian spike encoder, (B) output spike counter, (C) conventional CNN-based PE, and (D) proposed spike-based PE.
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In the EEG experiment, our approach achieves an accuracy of
91.5% with a 96.1% reduction in computation complexity when
the time step of spike-encoder is set 25. In the ECG experiment,
with the same setting of time step, the proposed approach achieves
an accuracy of 86.5% with an 80.5% reduction in computation
complexity. In the EMG experiment, with the time step of 25, the
proposed Spiking-CNN achieves an accuracy of 92.5% with an 80.7%
reduction in computation complexity.

3.5. System implementation

Figure 6 shows the baseline architecture used to implement the
proposed framework. Various kinds of bio-signals are first encoded
into spike sequences by the Gaussian spike encoder. The encoded
spike data are then sent to the processing hardware and stored in the
input spike data buffer. The architecture proposed in Eyeriss (Chen
et al., 2017) is adopted in our work. It is optimized for CNN topology,
hence suitable for the implementation of NeuroCARE. The output
spike activations from the processing hardware are then sent to the
spike counter to produce the result of classification. The proposed
algorithm can be processed in the same way as demonstrated in
Eyeriss (Chen et al., 2017). A global controller is used to control
the data fetching and processing. All the processing is done in the
processing cluster (PCL) arrays. Each PCL consists of a register bank,
a router bank, and a processing element (PE) array. A memory bank
is also connected with each PCL, which stores weights of the neural
network and the spike activations between different network layers.
Detailed designs of PEs are shown in Figure 7. Compared to other
state-of-art works, our proposed method has two main advantages:
(1) No multiplexer is required in the PCL of NeuroCARE, which
greatly reduces the energy consumption in processing phase; (2) The
bit resolution of activation data buffers in NeuroCARE is single-bit
while conventional CNN-based implementations use multi-bit, thus
our design requires much less energy consumption in data access.

3.6. Efficiency evaluations

To evaluate the implementation and energy efficiency of the
proposed approach, key modules in NeuroCARE are designed and
verified in the register-transfer level (RTL) level.

As presented in Figure 7A, the proposed Gaussian spike encoder
is composed of a data buffer that stores the random Gaussian
matrixes, a comparator and a control module. The controller fetches
data from the buffer while the comparator compares the Gaussian
value with the raw bio-signal to generate spike sequences. The
proposed Gaussian spike encoder is practical with a very simple
structure.

The design of spike counter is described in Figure 7B, which
also has a simple structure. As mentioned in Part E of Section “3
Experiments and evaluation results,” the output spike activations are
sent to the spike counter and stored in the output spike data buffer.
When the whole processing procedures are completed through all
the time steps, the total firing times of all the output neurons are
calculated by the spike counter and the greatest one produces the
result of classification.

Figures 7C, D present the detailed design of conventional CNN-
based PE (CPE) and the proposed spike-based PE (SPE), respectively.
As presented, the SPE has 1 adder, 2 mux, and 1 comparator, while
the CPE requires 1 adder, 1 mux, 1 comparator, and 1 multiplexer.
Compared to CPE, SPE shows advantages in two aspects: (1) the
resolution of input and output buffers in SPE is single bit, thus
brining reduction in memory assess and energy consumption; (2) the
structure of SPE is much simpler and requires no multiplexer, thus
further reduce the hardware cost and resource budget.

Evaluations on the energy consumption and area occupation of
NeuroCARE system are conducted based on statistics from Horowitz
(2014). The technology is assumed to be 45 nm and the voltage
supply is assumed as 0.9 V. Thus, we get the comparison of
energy consumption and area occupation between SPE and CPE
under different data resolutions, which is shown in Table 2. The
results demonstrate that using the same configuration, spike-based
processing could achieve over 80% reduction in energy consumption
and over 64.8% reduction in area occupation.

3.7. Overall evaluation

To evaluate the overall performance with considerations of both
classification performance and resource expenses, we define a figure-
of-merit (FOM) in this work as given in Eq. (20)

FOM = Overall Score∗EA factor
(MUL+ADD+MEM)

(20)

TABLE 2 Comparison of energy and area consumption between CNN-based PE (CPE) and spike-based PE (SPE).

Metrics CPE SPE

Technology 45 nm

Voltage supply 0.9 V

Weight data width 8b int / 32b int / 16b fp / 32b fp 8b int / 32b int / 16b fp / 32b fp

Activation data width 8b int / 32b int / 16b fp / 32b fp 1 bit

Energy per op. 0.25 pJ / 3.3 pJ / 2.0 pJ / 5.5 pJ 0.03 pJ / 0.1 pJ / 0.4 pJ / 0.9 pJ

Area 349 µm2 / 3,632 µm2 / 5,824 µm2 / 11,884 µm2 36 µm2 / 137 µm2 / 1,360 µm2 / 4,184 µm2

Energy reduction ration 88% / 96.7% / 80% / 83.6%

Area reduction ratio 89% / 96.2% / 77% / 64.8%

Efficiency acceleration 7.58× / 79.7× / 2.17× / 1.79×

Energy reduction ration (ER) = 1−SPE energy / CPE energy. Area reduction ration (AR) = 1−SPE area / CPE area. Efficiency acceleration (EA) = 1 / [time step * (1−ER) * (1−AR)]. Bold values
represent the advantages of the proposed method.
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TABLE 3 Comparison of performance with other works.

Classification
task type

References Model
type

Dataset No. of
classes

Data
type

Network
depth

Channel
wise

Overall
score

(%)

Accuracy
(%)

F1 score Number
of ADD

Number
of MUL

Memory
occupied

FOM
(%/M)

EEG based
epileptic seizure
prediction

NN2018
(Truong et al.,
2018a)

STFT-CNN MIT-CHB 2 class Pre-
processed

9 layers No 91.7 81.2 81.4 1.17M 1.45M 3.81M 11.6

BIBM2018
(Eberlein et al., 2018)

Wavelet-CNN iEEG data 2 class Pre-
processed

21 layers No 74.5 77.0 73.7 1.74M 2.20M 1.70M 16.26

JBHI2020
(Zhang et al., 2020)

CSP-CNN MIT-CHB 2 class Pre-
processed

7 layers No 90.0 90.0 91.0 1.43M 1.97M 2.27M 15.9

ISCAS2020
(Zhao et al., 2020)

BSD-CNN MIT-CHB 2 class Raw data 13 layers Yes 94.33 97.0 94.69 5.54M 0.61M 0.067M 15.18

This work CNN MIT-CHB 2 class Raw data 13 layers Yes 95.2 93.3 97.0 2.39M 2.84M 0.33M 17.12

Spiking-CNN* 92.7 91.4 95.1 2.39M 0 61.0

ECG based
arrhythmia
detection

TBME2016
(Kiranyaz et al.,
2016)

CNN MIT-BIH
(20 records)

5 class Raw data 5 layers No 87.6 98.3 76.4 0.25M 0.34M 0.64M 71.2

ICHI2018
(Kachuee et al.,
2018)

Residual CNN PTB 5 class Pre-
processed

19 layers No 95.4 95.9 95.1 4.83M 5.03M 1.33M 8.5

BDAI2018
(Zhang et al., 2018)

LSTM MIT-BIH 5 class Pre-
processed

12 layers No 97.6 97.7 97.6 3.05M 2.71M 1.29M 13.8

This work CNN MIT-BIH 4 class Raw Data 10 layers Yes 98.4 98.9 97.4 0.42M 0.61M 0.26M 77.1

Spiking-CNN* 96.7 86.5 98.2 0.42M 0 254.5

EMG based
Hand Gesture
Recognition

IJCAI2017
(Du et al., 2017)

3D-CNN Nina Pro 52 class Pre-
processed

8 layers No 79.5 79.4 79.6 0.528M 0.530M 4.8M 13.6

Sci. Rep.2016
(Geng et al., 2016)

Filter + CNN Nina Pro 52 class Pre-
processed

9 layers No 92.5 96.7 88.9 0.522M 0.524M 2.4M 18.9

Frontiers2016
(Atzori et al., 2016)

Filter + CNN Nina Pro 52 class Pre-
processed

7 layers No 66.6 75.32 58.0 4.3M 4.3M 0.091 7.7

This work CNN Nina Pro 3 class Raw data 10 layers Yes 95.5 96.1 94.9 0.57M 0.78M 0.51M 51.3

Spiking-CNN* 85.7 92.5 82.7 0.57M 0 142.0

*The TS for spiking-CNN is set as 25 for comparison.
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According to Table 2, the efficiency acceleration (EA) factor ranges
in 1.79 ∼ 79.7. To make a conservative evaluation of our design, we
choose this scaling factor as 1.79.

The comparison between achieved results in this work and prior-
art publications on metrics mentioned above is shown in Table 3. As
reported, the proposed NeuroCARE shows advantages in both overall
performance and energy efficiency compared to reported works. This
approach stands as a channel-wise method without utilizing any extra
feature extraction techniques, achieving high overall scores evaluated
on three benchmarks. It also requires no MUL operations and
little occupied memory, which makes it energy efficient. Therefore,
NeuroCARE manages to achieve the highest FOM compared among
all the other works.

4. Conclusion

In this study, we propose NeuroCARE, a generic edge
neuromorphic framework for healthcare applications. Modules
include Gaussian spike encoder, neuromorphic neuron model,
processing strategies, and the adaptive weight mapping method.
To achieve high performance and reduce the required hardware
resources, we first implemented CNN topologies, then scale and
map the trained weights on Spiking-CNN correspondingly. Raw
biomedical signals are processed in neuromorphic fashion on the
time domain which significantly reduces the required memory and
computation complexity.

As demonstrated by the implementation results, NeuroCARE
achieves state-of-the-art classification results in epileptic seizure
prediction, arrhythmia detection, and hand gesture recognition tasks,
while managing to reduce the computation complexity by over 80.7%,
reduce the computation energy consumption by over 80%, and
reduce the area occupation by over 64.8% compared to CNN based
methods, which greatly empowers the ultra-efficient neuromorphic
intelligence for edge biomedical applications.
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