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Antidepressants, in addition to being effective therapeutic agents for depression, have also proved to be
multifaceted drugs useful for treating a number of other psychiatric and neurologic disorders. Despite the
widespread use of these drugs, much remains to be understood about their mechanisms of action and
other important aspects, such as their metabolism and potential interactions with other drugs. This article
reviews research conducted in the authors’ laboratories on various aspects of antidepressants, including
trace amines and antidepressants, γ-aminobutyric acid and antidepressants, drug metabolism, development
and application of rapid, sensitive assay procedures for antidepressants and their metabolites; and drug
development based on analogues of the antidepressants phenelzine and tranylcypromine. The significance
of this work to future drug development is also discussed.

Outre qu’ils sont des agents thérapeutiques efficaces contre la dépression, les antidépresseurs ont aussi
prouvé leur utilité contre de nombreux autres troubles psychiatriques et neurologiques. Malgré leur utili-
sation répandue, il reste encore beaucoup à comprendre au sujet du mode d’action et de certains autres
aspects importants de ces médicaments, notamment leur métabolisme et leur interaction possible avec
d’autres médicaments. Cet article traite des recherches effectuées dans les laboratoires des auteurs sur
divers aspects des antidépresseurs, y compris leur effet sur les amines-traces et l’acide γ-aminobutyrique,
le métabolisme des médicaments et la mise au point de méthodes sensibles de dosage des antidépresseurs
et de leurs métabolites, ainsi que du développement de médicaments basés sur deux analogues des anti-
dépresseurs, la phénelzine et la tranylcypromine. Il est aussi question de l’importance de ces travaux pour
la mise au point future de médicaments.
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Antidepressants are obviously of primary interest for
their ability to alleviate the suffering of countless mil-
lions of people whose lives have been disrupted by
depression. However, they are multifaceted drugs that
have proven useful for the treatment of a number of
other disorders, including various anxiety disorders,
eating disorders, premenstrual dysphoric disorder,
some personality disorders, migraine and chronic pain
syndromes. In many cases, they produce a wide array
of side effects due to blockade of receptors for numer-
ous neurotransmitters. Many antidepressants are
metabolized extensively by and/or inhibit cytochrome
P450 enzymes, opening up the possibility of pharmaco-
kinetic drug–drug interactions in patients taking other
drugs concomitantly. In addition, several antidepres-
sants have chiral centres or centres of unsaturation,
resulting in stereo-isomers or geometric isomers, which
may affect the overall profile of the parent drug. Over
the past 20 years, we have been involved in research on
several of the aspects of antidepressants mentioned
above. We hope that this review will provide a concise
overview of some of that work. Although many groups,
including ours, have conducted research on possible
mechanisms of action of antidepressants, it is beyond
the scope of this review to cover such research in detail,
and the reader is referred to several recent excellent
reviews on this topic.1–4 Aspects of antidepressants dis-
cussed in the present review include involvement of
trace amines and γ-aminobutyric acid (GABA) in anti-
depressant action; relevance of drug metabolism to the
actions of antidepressants; development of assay tech-
niques for analysis of antidepressants or their metabo-
lites; and possible future drug development based on
analogues of monoamine oxidase (MAO) inhibitors.

Trace amines and antidepressants

The inhibition of monoamine oxidase (MAO) by drugs
such as phenelzine and tranylcypromine results in an
often-dramatic elevation of a number of brain amines
(2-phenylethylamine [PEA], m- and p-tyramine, octopa-
mine, tryptamine), which are termed “trace amines”
because of their low absolute concentrations in the
brain relative to the classical neurotransmitter amines
such as the catecholamines dopamine (DA) and norep-
inephrine (NE) and the indolealkylamine 5-hydrox-
ytryptamine (5-HT, serotonin).5–7 These trace amines can
have marked effects on uptake or release of the cate-
cholamines or 5-HT at nerve endings8,9 or may act as

neuromodulators through direct actions on receptors
for the catecholamines or 5-HT.7,10 Our interest in the
trace amines was further stimulated by findings in our
laboratories and those of others that PEA is actually a
metabolite of phenelzine.11,12 Since phenelzine has been
shown in receptor binding studies and in behavioural
tests to produce down-regulation of β-adrenergic recep-
tors,13–15 we conducted further experiments, using a
behavioural response (change in locomotor activity) to
salbutamol, to examine the effects on β-adrenergic
activity of conditions that resulted in elevations of PEA.
These studies provided evidence that PEA may con-
tribute to the effects of phenelzine on β-adrenergic
receptor function.16,17

The possible involvement of tryptamine in depres-
sion had been postulated some time ago,18 but it was not
until the 1980s that a saturable and specific high-affini-
ty binding site for tryptamine in brain was demonstrat-
ed.19–23 Using radioligand binding studies, we demon-
strated that the MAO inhibitors tranylcypromine,
phenelzine and clorgyline, administered for long peri-
ods and at doses at which they produce a down-regula-
tion of β-adrenergic receptors, produce a decrease in 3H-
tryptamine binding site density in rat brain, without
any effects on the affinity of this site.15 Further studies in
rats receiving low and high doses of tranylcypromine
comparable, on a dose-per-body-weight basis, to usual
therapeutic doses and doses sometimes used to treat
refractory depression in humans, indicated that the
higher doses of tranylcypromine produce a more rapid
down-regulation of tryptamine receptors in the hippo-
campus and a greater reduction of such receptors in
striatum than do low doses.24

Antidepressants and GABA

Since the introduction of the original theories suggest-
ing that depression is the result of a functional deficien-
cy of biogenic amines at central synapses, research on
depressive disorders has concentrated on searching for
biochemical lesions involving biogenic amines, particu-
larly NE and 5-HT, and on investigating the effects of
antidepressant drugs on the reuptake, metabolism and
receptor activity of these amines. However, the biogenic
amine hypothesis as originally stated has not been
entirely satisfactory in explaining the delay in thera-
peutic actions of antidepressants. The possible role of
other neurotransmitters and neuromodulators in the
etiology and pharmacotherapy of depression has
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received considerable attention in recent years. One
such neurotransmitter is GABA. This amino acid has
long been thought to be important in generalized anxi-
ety disorder, since the benzodiazepine anxiolytics are
known to act through the GABAA receptor.25,26 GABA
has also been proposed as being important in the
actions of antipanic drugs,27 which is of particular inter-
est since there is considerable comorbidity of depres-
sion and anxiety disorders, including panic disorder.28,29

There is now a voluminous literature on the possible
involvement of GABA in the pathophysiology of mood
disorders. This literature, which includes studies of ani-
mal models of depression, radioligand binding and
functional studies in rodent brain, measurements of
GABA in cerebrospinal fluid (CSF), plasma and post
mortem brain tissue and neuroendocrine challenge
studies,30–34 is not without conflicting findings, but does
implicate GABA in the pathophysiology of depression.

Antidepressant actions of the GABA agonists pro-
gabide, baclofen, muscimol and fengabine have been
reported in animal models and in human subjects,30,35

although there is controversy in this area.36 The anticon-
vulsants vigabatrin and valproic acid, both GABAergic
drugs, have also been reported to have anxiolytic and
antipanic effects in humans and animal models.37–45

Valproic acid has also recently been proposed as a pos-
sible treatment for major depressive disorder.46 The tri-
azolobenzodiazepines alprazolam and adinazolam
(benzodiazepines are agonists at the benzodiazepine
site of the GABAA receptor) have been reported to be
effective antidepressants.47–49 Long-term administration
of several types of antidepressants as well as repeated
electroshocks have been reported by some workers to
result in an upregulation of GABAB receptors in rat cor-
tex,30,50,51 but these findings have been disputed by oth-
ers,52–54 including researchers in our laboratories.55,56

Suranyi-Cadotte et al57,58 reported that long-term
administration of several types of antidepressants to
rats resulted in a decreased number of 3H-fluni-
trazepam binding sites in rat brain. In contrast, Kimber
et al59 found no such decrease after long-term adminis-
tration of desipramine, tranylcypromine or zimelidine.
Barbaccia et al60 found that maprotiline, when adminis-
tered to rats for 21 days, produced a significant decrease
in the number of 3H-flunitrazepam binding sites. We
found no change in 3H-flunitrazepam binding in rat
cerebral cortex after long-term administration of the
antidepressants phenelzine, clomipramine, desipra-
mine or maprotiline.61 We also found that long-term

administration of phenelzine resulted in no changes in
binding of the GABAA receptor agonist 3H-muscimol in
rat cortical homogenates62 or in GABA-stimulated 36Cl–

flux in synaptoneurosomes,63 but did result in changes
in steady-state levels of some isoforms of GABAA recep-
tor subunits (see the discussion of this aspect later in
this section).

Our interest in GABA and antidepressants was stim-
ulated initially by early reports in the literature indicat-
ing that phenelzine, an MAO-inhibiting antidepressant
and antipanic drug, produces an elevation of rat brain
GABA.64,65 Subsequent experiments in our laboratories
indicated that this is a rather dramatic effect, with
GABA levels remaining elevated for lengthy periods
after a single dose of phenelzine (Fig. 1).66–68

Similar increases of brain alanine (ALA) occurred,69

while under the same conditions levels of glutamine
(GLN) declined markedly (Fig. 2), although this
decrease was briefer that the increases seen with GABA
and ALA.70 Experiments in our laboratories with long-
term administration of phenelzine (14 and 28 days)
have also demonstrated significant elevations of GABA
and ALA and decreases in GLN compared with vehi-
cle-treated control values in rat brains (unpublished
data).71 Plasma GABA levels in humans are also signifi-
cantly elevated after long-term administration of
phenelzine.72 We have also demonstrated recently,
using in vivo microdialysis, that phenelzine increases
extracellular GABA and ALA in various brain areas.73

Fig. 1: Rat brain levels of GABA (% of controls treated
with vehicle at the same time intervals) at various times
after injection of a single dose of phenelzine (15 mg/kg
intraperitoneally). All values are significantly higher than
controls. Control levels were mean 234 µg/g, standard
deviation (SD) 8 µg/g (n = 30). Adapted from Baker et al.66



GABA is formed in the metabolic pathway referred to
as the GABA shunt,26 and formation of GLN is closely
associated with the GABA shunt through another loop
in which GABA is taken up by glial cells and metabo-
lized by GABA-T. The glial cells lack glutamic acid
decarboxylase (GAD), so the glutamate (GLU) formed
in the transamination reaction is transformed by GLN
synthetase (present only in glia) into GLN, which can be
returned to the nerve ending to be converted back to
GLU by the enzyme glutaminase. It is thus feasible that
phenelzine may also be altering levels of GLU and GLN
through actions on GLN synthetase or glutaminase, but
such actions have not, to our knowledge, been investi-
gated. It is interesting in this regard that Collins et al74

reported that the anticonvulsant valproic acid, which
increases brain levels of GABA, also increases glutami-
nase activity and decreases GLN synthetase activity in
cultures of rat brain astrocytes.

There is relatively little known about the function of
ALA in the central nervous system, but levels are
approximately 25% to 40% of those for GABA. Like

glycine, ALA is a co-agonist of N-methyl-D-aspartate
(NMDA) excitatory amino acid receptors, although it is
weaker than glycine in this regard.75 ALA is also related
metabolically to lactate in the brain. Since sodium lac-
tate is a panicogenic agent,76,77 and since recent magnet-
ic resonance spectroscopy studies have shown that
higher levels of lactate are attained in brains of patients
with panic disorder than in controls after a lactate chal-
lenge,78 it will be interesting to see if the increase in brain
ALA produced by phenelzine is accompanied by a
decrease in plasma, CSF or brain lactate. ALA has also
been reported to be an inhibitor of GLN synthetase,79

which may contribute to the GLN reduction we have
observed in rat brain after phenelzine administration.
The study of the effects of phenelzine on the various
amino acids and their metabolism is made even more
intriguing by reports that GLN serves as a precursor for
GABA,80 GLU81 and ALA.82 Phenelzine is an inhibitor of
the catabolic enzymes GABA transaminase (GABA-T)
and ALA transaminase (ALA-T),64,71,83 presumably
accounting for the increase in brain levels of GABA and
ALA mentioned above, although other factors may be
important, since marked increases in levels of these
amino acids (e.g., 2–4 fold increases) are observed even
when inhibition of the enzymes is 50% or less.64,66 Phen-
elzine is apparently not just a nonspecific inhibitor of
transaminases, since we found no effect of the drug on
brain levels of leucine, isoleucine and valine, which are
also metabolized by pyridoxal phosphate-dependent
transaminases.84

It is of interest that phenelzine is a much more potent
inhibitor, in vitro and in vivo, of GABA-T than is viga-
batrin,85 a GABA-T inhibitor marketed as anticonvul-
sant. Like phenelzine, vigabatrin has been reported to
have anxiolytic properties.40,43 Shuaib et al86 also found
vigabatrin to be a potential anti-ischemic agent,
prompting preliminary studies of phenelzine in this
regard.87 Although neuroprotective effects were evident
at relatively high doses of phenelzine,87 further
dose–response and time–response studies are required.
It would also be of interest to investigate in some detail
the anticonvulsant properties of phenelzine, particular-
ly since several antidepressants actually increase sus-
ceptibility to seizures.88 If anticonvulsant effects are evi-
dent, they could be due to the GABAergic actions of
phenelzine or to inhibition of MAO-A, as has been
demonstrated with other MAO inhibitors.89 Because we
have an analogue of phenelzine (N2-acetylphenelzine —
see Future Directions section of this paper) that retains
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Fig. 2: Effects of administration of phenelzine (P) at 15 and
30 mg/kg-1 intraperitoneally 3 hours previously on gluta-
mine levels in hypothalamus (white bars). The decreases
in glutamate levels were blocked by pretreatment with
another MAO inhibitor, (tranylcypromine [TP], 5 mg/kg–1)
1 hour before phenelzine administration (hatched bars).
Results are expressed as mean percentages (and standard
errors of the mean) of values in vehicle-treated controls.
Values at all time intervals were significantly higher (p <
0.05) in the phenelzine-treated rats than in the corre-
sponding vehicle-treated rats. Reproduced from Progress
in Brain Research, vol. 106, Paslawski TM, Sloley DB, Baker
GB, “Effects of the MAO inhibitor phenelzine on gluta-
mine and GABA concentrations in rat brain,” p. 181-6, 
1995,70 with permission from Elsevier Science.



Neurochemical and metabolic aspects of antidepressants 

Vol. 25, no 5, 2000 Journal of Psychiatry & Neuroscience 485

the MAO-inhibiting properties of phenelzine but has no
effect on GABA, it should be possible to ascertain which
neurochemical actions of phenelzine are most relevant
to any anticonvulsant effects which may be observed.

Popov and Matthies64 showed many years ago that
the GABA-elevating affect of phenelzine (apparently as
a result of inhibition of GABA-T) in rats could be
reduced dramatically by pretreating rats with other
MAO inhibitors. They said that this result implied that
a metabolite of phenelzine, produced by the action of
MAO on phenelzine, was responsible for the effect on
GABA; this seemed likely since Clineschmidt and
Horita90,91 had demonstrated that not only was phenel-
zine an inhibitor of MAO, but it was also a substrate for
the enzyme, with phenylacetic acid apparently one of
the metabolites. Despite these exciting early reports, the
metabolite of phenelzine responsible for the GABA-ele-
vating action still remains unknown. 1-(2-phenyl-
ethyl)diazine (PhCH2CH2N=NH) and phenylethyli-
denehydrazine (PhCH2CH=N-NH2) have been suggest-
ed as possible metabolites formed by the action of MAO
on phenelzine.92,93 It is doubtful that the former would
exist because of the ease with which it would presum-
ably expel a molecule of nitrogen. The latter proposed
metabolite, phenylethylidenehydrazine (PEH), can be
prepared by the interaction of phenylacetaldehyde and
excess hydrazine. We have now synthesized this com-
pound, and preliminary studies have shown the fol-
lowing: like phenelzine, PEH elevates brain GABA and
ALA and depletes brain GLN; unlike phenelzine, it is
not a potent inhibitor of MAO.94

As can be seen from this literature overview, there is
controversy about the effects of antidepressant drugs
on GABA receptors at the molecular level. However, it
may be that many of the procedures used to date are not
sufficiently precise to pick up subtle changes in GABA
receptors; recent studies with benzodiazepines show
that these drugs, which often fail to cause perceptible
changes in benzodiazepine receptor number in radioli-
gand binding studies, do cause changes in expression of
some of the messenger RNAs for isoforms of GABAA

receptor subunits. The GABAA receptor is an oligomer-
ic structure comprised of 5 binding domains.26 The
GABAA receptor subunits, within the functional recep-
tor oligomer, are from at least 7 distinct classes: α, β, γ,
δ, ε, π and θ.95,96 Some of the classes have a number of
different isoforms, e.g., 6α, 3β and 3γ. The precise sub-
unit isoform composition of any GABAA receptor in
vivo is currently unknown, but transient expression

studies have demonstrated the importance of the sub-
unit isoform composition to the recognition properties
and functional characteristics of the resulting
oligomer.97–99 The effects of anxiolytic and antidepres-
sant drugs may be due, at least in part, to the substitu-
tion of one subunit isoform in a given functional recep-
tor with another. This would change the characteristics
of the drug response without necessarily changing
binding capacity.

Our experiments with imipramine and phenelzine
indicate that they do modulate GABAA receptor subunit
gene expression. The major GABAA receptor subtype in
mammalian brain is believed to be comprised of α1, β2
and γ2 subunits.97–100 In rats, 21-day treatment with either
phenelzine or imipramine caused significant increases
in β2- and γ2-subunit gene expression in brain stem
compared with vehicle controls; in contrast, α1-subunit
mRNA levels were decreased by phenelzine.101 We are
currently examining other GABAA receptor subunit
transcripts to determine the profile of changes in gene
expression produced by these therapeutic agents. We
have preliminary data to suggest that, in other brain
regions, phenelzine causes differential changes in gene
expression to those produced in brain stem. Thus, we
have demonstrated the capacity of phenelzine to induce
changes in GABAA receptor gene expression and have
revealed the need to conduct such experiments on a
brain-regional basis. We have recently also shown that
long-term administration of phenelzine causes an
increase in steady-state levels of mRNA for the GABA
transporter GAT-1 in rat cerebral cortex.102 Thus, long-
term phenelzine treatment modulates the expression of
genes that encode components of GABAergic transmis-
sion. Further, the long-term changes in gene expression
(in contrast to acute pharmacodynamic effects), corre-
late temporally with the known therapeutic latency of
antidepressant/antipanic agents.

Development of assay procedures
for antidepressant drugs

A major research emphasis in the Neurochemical
Research Unit is the development of sensitive proce-
dures for analysis of biogenic amines, amino acids and
psychotropic drugs, including antidepressants. Such
assays for antidepressants permit us to monitor tissue
and body-fluid levels of the drugs of interest and their
major metabolites, and to examine possible pharmaco-
kinetic drug–drug interactions. Although high-pressure



liquid chromatography (HPLC) and combined gas
chromatography-mass spectrometry (GC-MS) have
been used for some of this work in our laboratories, the
emphasis has been on developing gas chromatographic
procedures with electron-capture or nitrogen-phospho-
rus detection, which provide sensitive, economical
assays for routine analyses not only of the antidepres-
sants, but also of various other drugs, biogenic amines
and amino acids.103–113 Several of the assay procedures
developed, e.g., those using reactions with acetic anhy-
dride, pentaflourobenzoyl chloride or pentafluoroben-
zenesulfonyl chloride, have permitted the extractive
derivatization of such drugs under aqueous conditions,
providing relatively rapid assays.104–107,112,113

The availability of such analytical techniques facili-
tates clinical investigations of the metabolism of anti-
depressants. However, we also routinely measure
brain levels of antidepressants under investigation in
laboratory animals, thus ensuring that adequate levels
have been attained in brain;61,101,114 such measurements
are particularly important when using osmotic
minipumps, to ensure that the drugs are being deliv-
ered adequately from the pumps. These routine assay
procedures are also very useful for measuring metabo-
lites of antidepressants and for studying pharmacoki-
netic drug–drug interactions in laboratory animals.
The formation of metabolites is often neglected in such
studies, the assumption being that any behavioural or
neurochemical effects are the result of the parent drug;
however, many drugs used to treat psychiatric disor-
ders are biotransformed extensively in the body into
active metabolites, and the investigator should be
aware of the brain levels of those metabolites. In addi-
tion, some drugs may be metabolized to a much dif-
ferent extent in the laboratory animals than in
humans. It is important to be aware of such differ-
ences, in case behavioural or neurochemical studies
conducted in particular animal species have no rele-
vance to the situation in humans. In addition, many
behavioural studies in animals involve the use of mul-
tiple drugs, with the assumption that the drugs are
interacting pharmacodynamically, when in fact phar-
macokinetic interactions are occurring and possibly
giving misleading results. By applying our analytical
assay procedures to rat brain, we have observed in
recent years several such pharmacokinetic interactions
involving selective serotonin reuptake inhibitors
(SSRIs) in rat brain.114–116

Another factor to consider in analyzing antidepres-

sants is that, like numerous other drugs commercially
available,117 several antidepressants have chiral centres
or centres of unsaturation, and thus enantiomers or
geometric isomers of the same drug may exist. The
individual enantiomers or geometric isomers may dif-
fer in their pharmacological or pharmacokinetic pro-
files,118,119 including metabolic interactions with other
drugs. While some antidepressants (e.g., sertraline and
paroxetine) are marketed as the individual enan-
tiomers, others (e.g., fluoxetine, tranylcypromine,
trimipramine, citalopram) are marketed as racemic
mixtures of the enantiomers. In the latter case, it may
be important to be able to monitor levels of the indi-
vidual enantiomers. We have used reactions with indi-
vidual enantiomers of halogenated derivatizing
reagents followed by GC with electron-capture detec-
tion to investigate the levels of enantiomers of antide-
pressants such as tranylcypromine and fluoxetine (and
of its metabolite, norfluoxetine) in tissues and body
fluids (Fig. 3).110,120,121
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Fig. 3: Gas chromatogram of derivatized extract of rat
brain from a fluoxetine-treated (10 mg/kg) animal killed 3
hours after administration. The gas chromatography
peaks of the stereoisomers are identified as follows: 1 =
(S)-norfluoxetine; 2 = (R)-norfluoxetine; IS = internal stan-
dard (alprenolol); 3 = (R)-fluoxetine; 4 = (S)-fluoxetine.
Reproduced from Journal of Chromatography B, Biomedical
Applications, vol. 579, Torok-Both GA, Baker GB, Coutts
RT, McKenna KF, Aspeslet LJ, “Simultaneous analysis of
fluoxetine and norfluoxetine enantiomers in biological
samples by gas chromatography with electron capture
detection,” p. 99-106,  1992,110 with permission from
Elsevier Science.
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Metabolism of antidepressants

Our interest in the metabolism of antidepressants
stemmed from 3 primary observations or develop-
ments: (1) very little was known about the metabolism
of phenelzine and tranylcypromine, despite the fact that
they had been on the market for considerable lengths of
time; (2) although it had been recognized for many
years that there could be metabolic (pharmacokinetic)
drug–drug interactions between antidepressants and
other drugs that psychiatric patients were taking con-
comitantly, such potential interactions gained increased
attention with the introduction of SSRIs, several of
which are relatively potent inhibitors of enzymes
involved in drug metabolism; and (3) the recent ready
access to human liver microsomes and individual com-
plementary DNA-expressed cytochrome P450 enzymes
has facilitated in vitro studies of drug metabolism.

Much is still unknown about the metabolism of
phenelzine and tranylcypromine and the contribution
of metabolites to their overall pharmacological pro-
files.122–127 Numerous studies have been carried out on
the acetylator status of patients and their subsequent
response to treatment with phenelzine. These investiga-
tions were conducted based on the assumption that
phenelzine is acetylated because it is similar in structure
to drugs such as isoniazid, which are known to be
acetylated. In fact, the existence of N-acetylphenelzine
as a metabolite of phenelzine had not been adequately
demonstrated until the 1980s, and indications are that it
is only a minor metabolite.128–130 Phenelzine is an unusu-
al drug that it not only inhibits MAO, but also appar-
ently constitutes a substrate for MAO. Clineschmidt
and Horita,90,91 using radiolabelled phenelzine, suggest-
ed that phenylacetic acid (PAA) is a major metabolite of
phenelzine. In a later study using mass spectrometry to
identify metabolites,128 PAA and 4-hydroxyphenylacetic
acid (4-OH-PAA) were identified in human urine sam-
ples as major metabolites of phenelzine. 4-OH-PAA is
also of interest because it is a metabolite of the endoge-
nous amine p-tyramine (4-OH-PEA). PEA is also a
known metabolite of phenelzine,11,12 and there is now
indirect evidence for the formation of 4-hydrox-
yphenelzine (4-OH-phenelzine) from phenelzine.131

These observations raise the question of the routes of
formation of 4-OH-PAA. Possible routes are as follows:
phenelzine → PAA → 4-OH-PAA; phenelzine → PEA
→ p-tyramine (and/or PAA) → 4-OH-PAA; and
phenelzine → 4-OH-phenelzine → 4-OH-PAA (with or

without a p-tyramine intermediate) (Fig. 4). These
routes have not been studied thoroughly, nor is there
detailed information on the pharmacological activity of
metabolites such as 4-OH-phenelzine. Another possible
route of metabolism of phenelzine is N-methylation,
which was demonstrated by Yu et al132 using enzymes
obtained from bovine and adrenal glands.

Alleva133 reported that hippuric acid is a metabolite of
tranylcypromine, but concluded that amphetamine was
not involved as an intermediate in this metabolism. The
metabolic formation of amphetamine from tranyl-
cypromine continues to be debated. Youdim et al134

reported the presence of amphetamine in the plasma of
a patient who had overdosed on tranylcypromine, but
studies conducted by others did not find amphetamine
in tissues or body fluids from subjects taking tranyl-
cypromine.135–143 Comprehensive studies in our laborato-
ries143 on humans and rats have not revealed ampheta-
mine in human urine or in rat brain, liver or plasma
after the administration of pharmacologically relevant
doses of tranylcypromine. The presence of the N-
acetyl104 and ring hydroxylated144,145 metabolites of
tranylcypromine have been demonstrated in rat brain
after intraperitoneal administration of tranyl-
cypromine. Kang and Chung146 confirmed the formation
of N-acetyltranylcypromine and also identified N-
acetyl-4-hydroxytranylcypromine as a tranylcypromine
metabolite in rat urine.

A better understanding of the metabolism of drugs
such as phenelzine and tranylcypromine may be useful
in future drug design studies. Our investigations of
phenelzine metabolism led us to synthesize and charac-
terize N2-acetylphenelzine and PEH. Although the for-
mer seems to be only a very minor metabolite of
phenelzine and we have not yet demonstrated that the
latter is a metabolite of phenelzine, both drugs have
pharmacological profiles quite different from
phenelzine and from each other and may be potential
therapeutic agents in their own right (see the section on
Future directions: drug development later in this
review). Several analogues of tranylcypromine in which
the 4 position of the phenyl ring is protected from
hydroxylation have been synthesized and investigated
in our laboratories. Two of these analogues, namely 4-
fluorotranylcypromine and 4-methoxytranylcypro-
mine, have proved to be potent MAO inhibitors.148–150

Further studies of 4-fluorotranylcypromine have
revealed that it is a stronger inhibitor of MAO than
tranylcypromine, it has a better pharmacokinetic profile



than tranylcypromine, it has a different pattern of activ-
ity than the parent drug with regard to inhibition of
reuptake of biogenic amines, and it is less likely than
tranylcypromine to interact pharmacokinetically with
inhibitors of cytochrome P450 enzymes.149

Cytochrome P450 and
metabolism of antidepressants

Formation of metabolites or drugs is often ignored, the
assumption being made that the drug itself is the active
factor. However, metabolites may contribute significant-
ly to therapeutic effects and adverse side effects, and

many drugs used to treat psychiatric disorders undergo
extensive metabolism.151–156 While many enzymes may be
involved in drug metabolism reactions, cytochrome
P450 (CYP) enzymes are of particular importance in
oxidative metabolism. There are at least 14 different
gene families (1–5, 7, 8, 11, 17, 19, 21, 24, 27, 51) of CYP
enzymes in humans, and families 1–3 are particulary
implicated in the metabolism of numerous drugs.157

Knowledge of which CYP enzyme is involved in a
metabolic process is important. If 2 or more drugs sig-
nificantly metabolized by or inhibiting the same CYP
enzyme are administered concomitantly to a patient,
there may be competition for the enzyme, and the phar-
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Fig. 4: Some identified and potential (p-TA and p-OH-phenelzine) metabolites of phenelzine.
Formation of N2-acetylphenelzine appears to be a very minor pathway. Ethylbenzene has also been
shown to be a metabolite. Phenylethylidene hydrazine (PhCH2CH = NNH2), 1-(2-phenylethyl)diazene
(PhCH2CH2N=NH), and N-methylphenelzine have also been proposed as metabolites. PLZ =
phenelzine; MAO = monoamine oxidase; p-OH-phenelzine = p-hydroxyphenelzine; PEA = 2-
phenylethylamine; p-TA = p-tyramine; PAA = phenylacetic acid; p-OH-PAA = p-hydroxyphenylacetic
acid. Reproduced from Baker GB, Urichuk LJ, McKenna KF, Kennedy SH,122 with permission.
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macokinetic properties of each drug may differ from
those observed when each drug is administered indi-
vidually. If the pharmacological activity of a drug
resides primarily in the parent compound rather than
its metabolites, the active drug may accumulate in this
situation and could demonstrate exaggerated effects.
However, the parent compound might be a prodrug,
and the metabolic bioactivation necessary for drug
effects may proceed via the CYP enzyme inhibited by
the coadministered drug. In this case, smaller amounts
of the active metabolite will be formed, and there will
be diminished therapeutic effects.

For many years, researchers have been aware of the
possibility of metabolic (pharmacokinetic) drug–drug
interactions involving psychiatric drugs (e.g., phenoth-
iazine antipsychotic drugs and tricyclic antidepres-
sants), but there has been a marked increase in research
in this area and increased awareness by physicians
since the introduction of the SSRI antidepressants.
Several developments have enhanced research on drug
metabolism involving antidepressants and increased
awareness of the potential for pharmacokinetic
drug–drug interactions:152–156,158 the popularity of the
SSRIs, the knowledge that several are quite potent
inhibitors of CYP enzymes, and advances in CYP
research (e.g., the increased availability of human liver
microsomes and the use of molecular biological tech-
niques to express CYP enzymes from human sources in
various cell lines easily accessible to researchers). SSRIs
(which are substrates for or inhibitors of several CYP
enzymes) are often administered in combination with
other neuropsychiatric drugs, such as benzodiazepines,
antipsychotics, anticonvulsants and even other antide-
pressants, which are substrates for one or more CYP
enzymes. Thus, the possibility of drug–drug interac-
tions is a serious consideration.

For the past several years, we have used gas chro-
matographic techniques developed in our laborato-
ries104–113 and HPLC techniques to investigate metabo-
lism and metabolic drug–drug interactions involving
the following antidepressants: imipramine, amitripty-
line, trimipramine, iprindole, fluoxetine, trany-
cypromine, phenelzine, trazodone and nefazodone. In
studies of urine samples obtained from rats treated with
antidepressants, the existence of several heretofore
unidentified hydroxylated metabolites of imipramine,
trimipramine and iprindole were demonstrated.159–163 In
studies with cDNA-expressed CYP enzymes from
human sources, CYP2D6 was demonstrated to be

involved in a wider range of metabolic reactions than
had been previously thought.164–167 Levels of fluoxetine
and norfluoxetine in rat brain were shown to be
increased by coadministration of desipramine or
iprindole,120,121 known inhibitors of CYP2D6 in humans.
An assay procedure for p-trifluoromethylphenol was
developed, and this compound was shown to be pre-
sent in substantial amounts in rat brain, urine and liver
and in human plasma and urine from subjects treated
with fluoxetine.168 More recent experiments, using
human liver microsomes and individual cDNA-
expressed CYP enzymes, have demonstrated that (1)
formation of m-chlorophenylpiperazine (mCPP) from
nefazodone and trazodone (Fig. 5) and of hydroxynefa-
zodone and triazoledione (TD) from nefazodone are
mediated principally by CYP3A4;169,170 and (2) hydroxy-
lation of mCPP is largely under the control of
CYP2D6.171 These experiments were also conducted in
the presence and absence of inhibitors of CYPs 3A4 and
2D6 (ketoconazole and quinidine, respectively).

Space does not permit further detailed discussion of
these metabolism studies, but similar techniques were
also extended in our laboratories to investigations of the
involvement of various CYP enzymes in the metabo-
lism of the antipsychotic drugs haloperidol,172 clozap-
ine173 and risperidone.174

The availability of information on the effect of CYP
enzymes from human sources on in vitro metabolism of
antidepressants is important not only for a better
understanding of the therapeutic and side effects of
these drugs but as a warning for potential pharmacoki-
netic drug–drug interactions involving these agents.
Ultimately, such interactions must be investigated in
vivo to assess their practical clinical relevance, but the
in vitro studies represent a relatively economical and
rapid method of determining potential hazards and
aiding in more effectively conducting future clinical
investigations.

Future directions: drug development

Although much of the research described above began
as basic studies on the metabolism or mechanisms of
action of antidepressants, the resulting findings, partic-
ularly with phenelzine, have led us into other areas of
research into neuropsychiatric disorders and have pro-
vided important clues for future drug development. As
part of our investigations of phenelzine metabolism, we
synthesized N2-acetylphenelzine and PEH (Fig. 6), each



of which differs importantly from the parent drug with
regard to pharmacological properties. While phenelzine
inhibits both MAO and GABA-T, N2-acetylphenelzine
inhibits MAO but not GABA-T (175) and PEH inhibits
GABA-T but has minimal effects on MAO. The use of
all 3 drugs as pharmacological tools should allow us to
tease out the involvement of GABA and biogenic
amines in individual neuropsychiatric disorders such

as depression, anxiety, epilepsy and stroke. For exam-
ple, N2-acetylphenelzine has demonstrated antidepres-
sant activity in the forced swimming test,175 but not anx-
iolytic properties in the elevated plus maze test.176 In the
same tests, phenelzine demonstrated both antidepres-
sant and anxiolytic actions.175,176 PEH has now been test-
ed, using a global ischemia model in gerbils, for poten-
tial neuroprotective and anti-ischemic (antistroke)
activity, since several other GABAergic agents have
previously been shown to be protective in such models
of ischemia (stroke).86,177,178 When given just before induc-
tion of ischemia, PEH provides extensive neuroprotec-
tion.179 Studies are now under way to determine effec-
tive “windows” (times after induction of ischemia)
when PEH is effective in providing neuroprotection;
such experiments will also include comparisons with
phenelzine itself. Since GABAergic agents have also
been shown to be effective mood stabilizers, anticon-
vulsants and anxiolytics, comprehensive comparisons
of phenelzine and PEH in animal models for screening
for such drugs are planned.

As mentioned in the introduction to this review,
many antidepressants are multifaceted drugs with a
wide array of uses. Although phenelzine is known to be
effective in treatment of depression, panic disorder and
social phobia, it may also be useful in epilepsy and
stroke or, through its analogues, give important clues to
development of future drugs effective in these condi-
tions.

Conclusions

For many years, research in our laboratories has
focused on antidepressants. This research included
extensive studies on the involvement of trace amines
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Fig. 5: Production of m-chlorophenylpiperazine (mCPP)
from trazodone (100 µmol/L), expressed as a % of pro-
duction in controls, in (A) human liver microsomes in the
presence of the CYP3A4 inhibitor ketoconazole; (B)
microsomes from cells expressing human liver CYP3A4
and in the presence of ketoconozole; and (C) in human
liver microsomes in the presence of the CYP2D6
inhibitor quinidine. Each point represents the average of
3 separate experiments (mean and standard error of the
mean). Reproduced from Rotzinger S, Fang J, Baker
GB,169 with permission. A study of the correlation of
mCPP formation from trazodone with activity of
CYP3A4 in individual samples of human liver microsomes
is also included in this paper.169
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and GABA in the action of antidepressants. The work
on trace amines necessitated the development of sensi-
tive gas chromatographic assay procedures for these
substances in the brain. These methods were subse-
quently modified to provide sensitive, relatively rapid
assays for numerous antidepressants and their metabo-
lites, which were applied to measurements in tissues
and body fluids and to studies on drug metabolism
using CYP enzymes. The studies of GABA have result-
ed in a greater understanding of the possible role of this
neurotransmitter amino acid in the actions of antide-
pressants, particularly phenelzine. Extensions of the
GABA research and of the work on metabolism of
MAO inhibitors have resulted in the development of
several new drugs with considerable potential as useful
pharmacological tools and therapeutic agents, not only
for depression but also for other neuropsychiatric dis-
orders. The findings on the effects of phenelzine on
GABA have suggested that this drug, which is already
useful in treatment of a number of depressive and anx-
iety disorders, should also be investigated for its use-
fulness as a neuroprotective agent. Thus, studies on the
mechanisms of action and metabolism of antidepres-
sants, as multifaceted drugs, have provided not only
useful information about the etiology of depression and
about possible pharmacokinetic interactions involving
these drugs, but also important clues about the treat-
ment of other neuropsychiatric disorders and the future

development of potentially useful drugs for these dis-
orders.
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