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Background. Human immunodeficiency virus (HIV) infection causes neurocognitive or motor function deficits

in children with advanced disease, but it is unclear whether children with CD4 cell measures above the World Health

Organization (WHO) thresholds for antiretroviral therapy (ART) initiation suffer significant impairment.

Methods. The neurocognitive and motor functions of HIV-infected ART-naive Ugandan children aged

6–12 years with CD4 cell counts of .350 cells/lL and CD4 cell percentage of .15% were compared with those of

HIV-uninfected children, using the Test of Variables of Attention (TOVA), the Kaufman Assessment Battery for

Children, second edition (KABC-2), and the Bruininks-Oseretsky Test of Motor Proficiency, second edition (BOT-2).

Results. Ninety-three HIV-infected children (median CD4 cell count, 655 cells/lL; plasma HIV RNA level,

4.7 log10 copies/mL) were compared to 106 HIV-uninfected children. HIV-infected children performed worse on

TOVA visual reaction times (multivariate analysis of covariance; P 5 .006); KABC-2 sequential processing

(P 5 .005), simultaneous processing (P 5 .039), planning/reasoning (P 5 .023), and global performance

(P 5 .024); and BOT-2 total motor proficiency (P 5 .003). High plasma HIV RNA level was associated with

worse performance in 10 cognitive measures and 3 motor measures. In analysis of only WHO clinical stage 1 or 2

HIV-infected children (n 5 68), significant differences between the HIV-infected and HIV-uninfected groups

(P , .05) remained for KABC-2 sequential processing, KABC-2 planning/reasoning, and BOT-2 motor proficiency.

Conclusions. Significant motor and cognitive deficits were found in HIV-infected ART-naive Ugandan

children with CD4 cell counts of �350 cells/lL and percentages of.15%. Study of whether early initiation of ART

could prevent or reverse such deficits is needed.

Human immunodeficiency virus (HIV) has been shown

to cause both cognitive and motor dysfunction in peri-

natally infected children [1–4]. Severe compromise of

the immune system from HIV is associated with high

rates of neurodevelopmental disability [5], but little is

known about the function of HIV-infected children

before they have experienced a significant decrease in

CD4 lymphocyte cell counts.

Studies of neurodevelopmental function in HIV-

infected African children have been small and have

generated conflicting results [6–9]. One report of 26

Congolese HIV-infected school-aged children demon-

strated cognitive, language, andmotor impairment using

the first-edition Kaufman Assessment Battery for Chil-

dren (KABC), compared with HIV-uninfected exposed

and control children [10]. In contrast, Bagenda et al [11]

reported no significant impairment among 28 HIV-

infected ART-naive Ugandan school children, except

in one KABC subscale of hand movements and in the
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achievement. Neither study was able to investigate the degree of

impairment in relation to quantitative measures of disease stage

such as HIV RNA level or CD4 cell count.

As access to HIV testing and care expands throughout Africa,

increasing numbers of school-age HIV-infected children are

being identified. Many of these children are ineligible for anti-

retroviral therapy (ART) because of high CD4 cell counts. It is

important to know whether these children suffer impairment

of their neurocognitive or motor development.

In this study, we sought to determine whether HIV-infected

ART-naive Ugandan children with CD4 cell measures that were

above World Health Organization (WHO) [12] thresholds for

ART initiation exhibited neurocognitive or motor deficits

compared with HIV-uninfected controls from 2 observational

cohorts in Kampala, Uganda [12]. We also examined the asso-

ciations of WHO clinical stage, CD4 cell count and percentage,

and plasma HIV RNA level with neurodevelopmental deficits.

METHODS

Study Participants
HIV-infected participants were enrolled from an observa-

tional cohort of 300 HIV-infected children aged 2–12 years in

Kampala, Uganda [13]. For this study, only children .6 years

old with CD4 cell counts of .350 cells/lL and CD4 cell per-

centages of $15% (the thresholds for ART initiation accord-

ing to contemporaneous Ugandan and 2006 WHO treatment

guidelines) were included [12]. The neuropsychological test-

ing results from some subjects were included in a prior study

investigating differences in neuropsychological function by

HIV subtype [14]. HIV-uninfected children, matched for age,

were enrolled from a separate cohort of 601 children from the

same urban community [15]. Informed written consent was

obtained from parents or guardians with additional assent from

children.7 years of age. Institutional review board approval for

this study was obtained from Makerere University, the Uganda

National Council for Science and Technology, Michigan State

University, and the University of California, San Francisco.

Clinical and Laboratory Data
Clinical and laboratory data were obtained from the respective

study cohort databases, including height and weight. For

HIV-infected children, WHO clinical stage, plasma HIV RNA

level (range of detection, 400–750 000 copies/mL; Amplicor

version 1.5; Roche, Pleasanton, CA), and CD4 cell count and

percentage (FACSCalibur; Becton Dickinson, San Jose, CA)

were also analyzed.

In-Home Assessment
A socioeconomic status (SES) score was calculated for each

child’s household, using a scale that assesses physical features

of the child’s home environment, including the presence of

electricity, shoes, radio, television, bicycle, motorcycle, motor

vehicle, and cows. The middle childhood version of the

Caldwell Home Observation for the Measurement of the En-

vironment (HOME) was also performed to assess the stimu-

lation and learning opportunities in the home [16]. HOME

scores correlate strongly with neurodevelopmental outcomes

in school-age periurban Ugandan children and were included

in analyses to control for the effects of environmental stim-

ulation on neurocognitive outcomes [17].

Neuropsychological Testing
Children were tested using the Test of Variables of Attention

(TOVA), a modified Kaufman Assessment Battery for Children

(KABC-2), and the Bruininks-Oseretsky Test of Motor Pro-

ficiency, second edition (BOT-2). Neuropsychological assess-

ments were conducted in a private room that afforded quiet

and privacy. Native speakers conducted assessments in Luganda,

the children’s primary language. Testing was deferred in chil-

dren experiencing acute illness. Examiners were blinded to the

HIV status of study children.

Test of Variables of Attention

The TOVA (TOVA Company, Los Alamitos, CA) generates 6

visual and 5 auditory performance indices that also capture

dysfunction in attention and impulsivity. The TOVA, per-

formed first in our assessments, also served as a screening test

for children with severe vision and hearing deficits that would

preclude further neuropsychological assessment.

Kaufman Assessment Battery for Children, Second Edition

The KABC-2 (Pearson Assessments, Minneapolis, MN) assesses

cognitive function and has been used to study the cognitive

function of HIV-infected American children [2], HIV-infected

Congolese children [18], and Ugandan school-aged children.

We utilized 15 individual subtests and generated global com-

posite scores in sequential processing (memory), simultaneous

processing (visual-spatial processing and problem solving),

planning (executive reasoning), and learning (immediate and

delayed memory). We did not administer the knowledge

(crystallized intelligence) portion of this test because of

problems in cultural suitability.

Bruininks-Oseretsky Test for Motor Proficiency, Second

Edition

The BOT-2 (Pearson Assessments) is a comprehensive as-

sessment of motor function that generates scores in 8 different

domains of movement and coordination. The test comprises

game-like tasks that are engaging for the child and are easy to

convey in the child’s local language.

Statistical Analyses
Nonparametric tests were used to compare subject charac-

teristics between all HIV-infected children, HIV-infected

WHO stages 1 and 2 children, and HIV-uninfected children.
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Raw scores from neuropsychological testing in the indivi-

dual modules were compared using a Student t test and by

multivariate analysis of covariance (ANCOVA) that included

age, sex, SES score, and HOME z score (standardized from the

entire study sample) as covariates. Global composite scores

were then generated using the total of the raw scores of the

individual testing modules, and compared by Student t test

and multivariate ANCOVA that included age, sex, SES score,

and HOME z score as covariates. Correlations of scores with

CD4 cell count, CD4 cell percentage, and plasma HIV RNA

level were assessed using multivariate linear regression that

included age, sex, SES score, and HOME z score. To further

examine whether children with high plasma HIV RNA levels

performed worse than other children, we compared the scores

from the subset of HIV-infected children who had HIV RNA

levels above the median with the scores from HIV-infected

children with HIV RNA levels below the median, using mul-

tivariate ANCOVA. Between-group comparisons were also

repeated, excluding the WHO clinical stage 3 HIV-infected

children who would have been eligible for ART according to the

revised 2010 WHO guidelines [19]. Analyses were performed

with SPSS (version 17.0; (IBM, Chicago, IL) and STATA

(version 10; StataCorp) software.

RESULTS

A total of 93 HIV-infected and 106 HIV-uninfected subjects

with a median age of 8.7 years (interquartile range [IQR],

7.4–10.1 years) were studied (Table 1). HIV-infected chil-

dren were similar to HIV-uninfected children in age and

weight-for-age z scores (standardized using the 2000 Centers

for Disease Control and Prevention [20] norms from Epi

Info), but HIV-infected children were more commonly fe-

male (62% vs 42%). By in-home assessment, HIV-infected

children had comparable Caldwell HOME scores but lower

SES scores. The HIV-infected children had plasma HIV RNA

Table 1. Characteristics of HIV-Infected and HIV-Uninfected Children in Uganda

Characteristic

HIV-Infected

Subjects

N 5 93

HIV-Infected

Subjects at WHO

Stages 1 and 2

N 5 68

HIV-Uninfected

Subjects

N 5 106 P a Pb

Age, years 8.7 (7.4–10.0) 9.1 (7.6–10.5) 8.7 (7.4 to 10.1) .906 .499

Female sex, n (%) 58 (62%) 48 (63%) 44 (42%) .003c .005c

Caldwell HOME z scoree 20.1 (20.7 to 0.6) 0.0 (20.7 to 0.8) 0.0 (20.6 to 0.7) .267 .524

SES scoree 8 (6–12) 8 (6–13) 11 (7–13) .014d .034d

Weight-for-age z score 21.3 (21.9 to 20.6) 21.1 (21.9 to 20.2) 21 (21.5 to 20.2) .028d .324

Height-for-age z score 21.1 (21.7 to 20.4) 20.9 (21.6 to 20.2) 20.7 (21.5 to 0.1) .018d .386

CD4 cell count, cells/lL 655 (507–921) 648 (515–908) . . .

CD4 cell percentage, % 27 (23–34) 27 (23–34) . . .

Plasma HIV RNA level,
log10 copies/mL

4.7 (4.2–5.1) 4.7 (4.1–5.1) . . .

,400 0 0 . . .

400–10 000 16 14 . . .

.10 000–100 000 45 31 . . .

.100 000–750 000 30 21 . . .

.750 000 2 2 . . .

WHO stage

1 18 18 . . .

2 50 50 . . .

3f 25 0 . . .

4 0 0 . . .

Data are median (interquartile range), unless otherwise indicated.

Abbreviations: HIV, human immunodeficiency virus; HOME, Caldwell Home Observation for the Measurement of the Environment; SES, socioeconomic status;

WHO, World Health Organization.
a By v2 or comparison of proportion test between HIV-infected subjects and HIV-uninfected subjects.
b By v2 or comparison of proportion test between HIV-infected subjects (WHO stages 1 and 2 only) and HIV-uninfected subjects.
c P , .01.
d P , .05.
e Based on in-home evaluation of SES indicators [21] and HOME score [16].
f Children that had WHO stage 3 diagnoses (eg, pulmonary tuberculosis) were not considered to be indications for antiretroviral therapy according to 2006 WHO

guidelines.
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levels of 2.7–5.9 log10 copies/mL. Most HIV-infected chil-

dren were at WHO clinical stage 1 or 2 (n 5 68; 73%). The

25 children who were at WHO clinical stage 3 had histories

of pulmonary tuberculosis (n 5 22) and oral candidiasis

(n 5 3), conditions not considered indications for ART in

the 2006 WHO guidelines.

Test of Variables of Attention
HIV-infected children performed comparably to control

children in 9 of 11 visual and auditory TOVA measures, but

HIV-infected children had significantly poorer scores in the

attention deficit (unadjusted t score) and visual signal mod-

ules (Table 2). No child demonstrated vision or hearing def-

icits that would have interfered with other testing. Plasma

HIV RNA levels were correlated with D-prime signal de-

tection (coefficient, 22.2; P 5 .03) but not with other TOVA

scores; neither CD4 cell count nor CD4 cell percentage was

significantly correlated with individual TOVA module scores.

Compared with HIV-infected children with HIV RNA levels

below the median, children with HIV RNA levels above the

median performed worsein the visual TOVA in percentage of

omission errors (inattention; P 5 .023), overall reaction

time (P 5 .001), and attention deficit hyperactivity disorder

score (P 5 .035) as well as in reaction time for the auditory

TOVA (P 5 .002), by multivariate analysis of variance ad-

justing for age, SES score, Caldwell HOME score, and sex.

Kaufman Assessment Battery for Children, Second Edition
HIV-infected children performed significantly worse that HIV-

uninfected children in 5 KABC-2 subscale raw score measures,

including word order, gestalt closure, triangles, rebus, rebus

delay, and pattern reasoning (Figure 1A), with at least a trend

toward poorer performance in 14 of 15 KABC-2 modules.

Among the global raw scores, HIV-infected children perfor-

med worse in sequential processing, simultaneous processing,

planning/reasoning, and total KABC-2 score compared with

HIV-uninfected children with use of an ANCOVA between-

group comparison controlling for age, sex, SES score, and

Caldwell HOME score (Table 2).

In multivariate linear regression, increasing plasma HIV

RNA level was associated with poorer performance in the

global scale of simultaneous processing (coefficient, 24.5;

P 5 .015) as well as its individual modules of gestalt clo-

sure (coefficient,21.3; P 5 .044), triangles (coefficient,21.2;

P 5 .024), and rover (coefficient, 21.7; P 5 .021). Poor

performance was associated with high plasma HIV RNA

level in the learning subscale of Atlantis (coefficient, 25.9;

P 5 .023), with trends toward associations in word order

(coefficient, 20.74; P 5 .058) and pattern reasoning (coeffi-

cient, 21.3; P 5 .064). No individual or composite KABC-2

score was significantly correlated with CD4 cell count or

CD4 cell percentage among HIV-infected children.

The subset of 46 children with HIV RNA levels above the

median (4.73 log10 copies/mL) performed significantly worse

than children with HIV RNA levels below the median in 10 of

the 14 individual KABC-2 measures, including number recall

(P 5 .05), conceptual thinking (P 5 .04), rover (P 5 .038),

word order (P , .001), gestalt closure (P , .001), triangles

(P 5 .004), rebus (P 5 .031), rebus delay (P 5 .012), and

pattern reasoning (P 5 .007) as well as the composite measures

of sequential processing (P 5 .012), simultaneous processing

(P , .001), and planning (P 5 .018).

Bruininks-Oseretsky Test for Motor Proficiency, Second Edition
HIV-infected children demonstrated significantly lower sco-

res in 2 measures—manual dexterity and speed/agility—with

a trend toward poorer performance in fine motor precision,

fine motor integration, balance, upper limb coordination,

and strength (Figure 1B). Bilateral coordination was equivalent

between groups. HIV-infected children had a significantly

lower BOT-2 motor proficiency total score than did HIV-

negative children (Table 2). Among the HIV-infected children

overall, BOT-2 performance measures were not significantly

correlated with HIV RNA level, CD4 cell count, or CD4 cell

percentage. However, the subset of 46 children with HIV

RNA levels above the median performed significantly worse

in 3 of 8 measures—manual dexterity (P , .001), speed/agility

(P 5 .015), and upper limb coordination (P 5 .05)—compared

with children with HIV RNA levels below the median.

Comparisons Including WHO Clinical Stage 1 or 2 HIV-Infected
Children
Compared with HIV-uninfected children, HIV-infected

children of WHO stages 1 or 2 (n 5 68) had worse mean

scores in composite measures of TOVA auditory, KABC-2

cognitive, and BOT-2 motor testing (Table 2). In multivariate

ANCOVA, statistically significant (P , .05) impairment

among HIV-infected WHO stages 1 and 2 children was noted

in the measures of KABC-2 sequential processing, KABC-2

planning/reasoning, and BOT-2 motor proficiency total scores.

Within KABC-2 subscales, HIV-infected WHO stages 1 and 2

children had worse performance in triangles (P 5 .005), word

order (P 5 .003), pattern reasoning (P 5 .005), and rebus

delayed recall (P 5 .046). The overall TOVA performance

measure (D-prime signal detection) did not differ signifi-

cantly between the HIV-infected and HIV-uninfected children

on either the visual or auditory tests in multivariate ANCOVA

analysis (Table 2).

DISCUSSION

In this study, we found that HIV-infected Ugandan school-age

children with CD4 cell counts and percentages above WHO

thresholds for ART had significant cognitive and motor deficits
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Table 2. Comparison of Composite Global Neuropsychological Raw Score Measures for HIV-Infected and HIV-Uninfected Children in Uganda

Neuropsychological Testa

HIV-Infected

Subjects

(N 5 93)

HIV-Infected Subjects

at WHO Stages

1 and 2 (N 5 68)

HIV-Uninfected

Subjects

(N 5 106) P b P c
Adjusted

Pd
Adjusted

P e
Observed

Powerf
Effect

Size (SE)g

TOVA visual D-prime
score—attention

2.62 (0.91) 2.74 (0.90) 2.63 (0.93) .96 .446 .838 .757 0.061 0.04 (0.13)

ADHD score—visual 24.55 (2.92) 24.40 (3.15) 23.60 (2.64) .021h .090 .084 .283 0.188 0.5 (0.5)

Omission errors—visual, % 17.5 (16.7) 15.9 (15.9) 15.0 (13.8) .261 .728 .378 .734 0.063 0.7 (2.1)

Commission errors—visual, % 9.2 (7.7) 8.5 (6.8) 9.9 (5.8) .463 .159 .710 .387 0.147 0.9 (0.9)

Reaction time—visual, msec 658 (144) 637 (147) 604 (130) .006i .129 .006i .085 0.407 29 (17)

TOVA auditory D-prime
score—attention

1.03 (1.78) 1.06 (1.81) 0.82 (2.04) .442 .419 .611 .771 0.060 0.1 (0.3)

Omission errors—auditory, % 36.8 (29.3) 36.6 (29.6) 39.8 (28.9) .463 .488 .597 .760 0.061 1.4 (4.6)

Commission errors—auditory, % 35.0 (31.5) 34.9 (31.7) 38.6 (33.5) .442 .476 .667 .849 0.054 1.0 (5.1)

Reaction time—auditory, msec 775 (200) 766 (209) 746 (183) .297 .521 .283 .308 0.174 30 (29)

KABC-2 cognitive raw score total 184.7 (63.7) 193.6 (64.4) 200.6 (68.7) .093 .198 .024h .113 0.354 12.5 (7.8)

Sequential processing score 29.6 (6.4) 30.3 (6.7) 31.5 (5.3) .023h .196 .005i .029h 0.591 1.6 (0.7)

Simultaneous processing score 41.0 (15.6) 42.8 (15.8) 45.9 (18.2) .043h .241 .039h .110 0.359 3.0 (1.9)

Planning and reasoning score 11.5 (8.0) 12.4 (8.2) 13.8 (9.6) .068 .294 .023h .049h 0.505 2.1 (1.1)

Learning score 102.1 (41.7) 108.1 (42.6) 109.1 (45.2) .258 .878 .106 .326 0.165 5.9 (6.0)

BOT-2 motor proficiency
raw score total

187.8 (34.3) 191.6 (34.3) 198.3 (33.9) .026h .215 .003i .020h 0.648 9.6 (4.1)

Abbreviations: ADHD, attention deficit hyperactivity disorder; BOT-2, Bruininks-Oseretsky Test of Motor Proficiency (second edition); HIV, human immunodeficiency virus; KABC-2, Kaufman Assessment Battery

for Children (second edition); SE, standard error; TOVA, Test of Variables of Attention; WHO, World Health Organization.
a Mean and standard deviation of raw scores for TOVA visual and auditory exams, KABC-2, and BOT-2 for motor proficiency.
b Student t test for 2 independent samples comparing HIV-infected subjects and HIV-uninfected subjects.
c Student t test for 2 independent samples comparing HIV-infected subjects (WHO stages 1 and 2 only) and HIV-uninfected subjects.
d Significance for analysis of covariance (ANCOVA) of HIV-infected and HIV-uninfected between-group differences in age, sex, total socioeconomic status (SES) score [21], and Caldwell Home Observation for the

Measurement of the Environment (HOME) score [16].
e Significance for ANCOVA HIV-infected (WHO stages 1 and 2 only) and HIV-uninfected between-group difference in age, sex, total SES score [21], and HOME score [16].
f Observed power for between-group differences of HIV-infected subjects (WHO stages 1 and 2 only) and HIV-uninfected subjects.
g Effect size in raw-score units for HIV-infected (WHO stages 1 and 2 only) and HIV-uninfected groups.
h P , .05.
i P , .01.
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Figure 1. Mean raw scores of Kaufman Assessment Battery for Children (second edition; KABC-2) (A) and Bruininks-Oseretsky Test of Motor Proficiency
(second edition) (B ) of human immunodeficiency virus (HIV)–positive (HIV1) and HIV-negative (HIV2) children in Uganda, compared by analysis of covariance
with age, sex, total socioeconomic status score, and Caldwell Home Observation for the Measurement of the Environment (HOME) score [16]. Error bars
represent standard deviation. KABC-2 rebus and Atlantis scores were divided by 4 to fit in the figure scale. *P , .05; **P , .01; ***P , .001.
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compared with HIV-uninfected control children. Higher

plasma HIV RNA level was associated with poorer cognitive

and motor functioning among these children with CD4 cell

counts of.350 cells/lL and percentages of.15%. This result

suggests that in children, HIV infection has direct neuro-

pathogenic effects that operate independently of the severe

immunocompromise or inflammation associated with ad-

vanced HIV disease. Some data from studies of dementia in

HIV-infected adults also support mediation of neuropathol-

ogy by direct viral effects. HIV-1 replication in the central

nervous system of adults correlates with gliosis and neuronal

loss in a region-specific manner [22]. Progressive encephalopa-

thy in adults seems to be driven by HIV glycoprotein gp120-

mediated decreases in neural progenitor cell proliferation and

neurogenesis [23]. However, there have been few data from

HIV-infected children who demonstrate distinct motor and

cognitive dysfunction while they progress through key stages of

neurocognitive development [1].

The mechanisms of HIV neuropathogenesis may differ bet-

ween residents of Africa and those of the United States and

Europe, where different viral strains are in circulation. Although

HIV subtype B predominates in the United States and Europe,

HIV subtypes A, D, and C predominate in East Africa. Even

small genetic differences between HIV variants can alter neu-

rotoxic potential [24–28]. There is evidence that different HIV

subtypes are associated with different rates of HIV-associated

dementia in adults [29–31]; differences in neuropsychological

impairment by HIV subtype among the same cohort of ART-

naive HIV-infected Ugandan children were recently docu-

mented [32]. These results suggest that clinical guidelines

for the management of neurodevelopmental impairment in

African children must not solely rely on results from the

United States and Europe but should be based on data from

children in Africa.

Neurocognitive deficits in HIV-infected African children

likely relate not only to the pathophysiology of HIV infection

but also to poor nutrition and alterations in the home en-

vironment that result from HIV illness among providers and

caregivers [10, 33]. We included measures of home envi-

ronment in terms of physical resources (SES) and caregiving

(HOME) in our analyses, but these may not have captured

all the ways in which HIV illness can affect families. Malaria

can also lead to neurocognitive impairment [34], but the

HIV-infected and HIV-uninfected children in this study

experienced low and comparable malaria incidence in the

year prior to testing (data not shown).

Our results have potential implications for the decision of

when to initiate ART in HIV-infected children. Because the

children in this study had relatively high CD4 cell counts and

percentages, they were ineligible for ART according to current

Ugandan and 2006 WHO guidelines [12]. HIV encephalopathy

is a WHO stage 4 event that is considered to be an indication

for the initiation of ART. But the WHO definition of enceph-

alopathy requires progressive change over at least 2 months

in 1 of the following areas: (1) failure to attain, or loss of,

developmental milestones, or loss of intellectual ability;

(2) progressive impaired brain growth demonstrated by

stagnation of head circumference; or (3) acquired symmetric

motor deficit accompanied by 2 or more of the following:

paresis, pathological reflexes, ataxia, or gait disturbances.

Thus, for children to be recognized as having HIV enceph-

alopathy, they must either have severe disability or have had

sophisticated serial neurodevelopmental testing, which is

not possible in most of Africa. Of note, none of the children

in the current study had been considered to be encephalo-

pathic by their physicians. According to the more recent

2010 WHO guidelines [19], the 25 children in our study who

were at WHO clinical stage 3 would have been eligible for

ART. However, when we restricted the analysis to only WHO

stages 1 and 2 HIV-infected children, we still found a sig-

nificant pattern of impairment, suggesting that even under

the new guidelines, many children with impairment will

remain off ART (Table 2).

There are additional issues worth considering in assessing

whether these observations of neurodevelopmental impair-

ment support the initiation of ART at higher CD4 cell counts

in HIV-infected children. First, although statistically signifi-

cant impairment among HIV-infected children was observed

in this and prior studies, data that translate performance in

these testing modules to measures of daily function such as

school or work performance are limited. Second, the extent to

which ART can interrupt or reverse the neuropathologic ef-

fects of HIV infection in children remains unclear. Some

studies from the United States showed modest improvements

in motor and cognitive function in HIV-infected children

following therapy [35–37], but other studies described per-

sistent behavioral and cognitive impairment [38]. One study

of 35 Congolese infants and children showed that initiation

of ART led to significant cognitive improvement only in

children .30 months old [18]. It may be that ART must be

initiated soon after infection and before CD4 cell counts de-

crease to prevent irreversible impairment at critical stages in

neurodevelopment. In a recent randomized trial of Thai and

Cambodian children aged 1–12 years, the initiation of ART at

CD4 cell percentages of 15%–25% compared with ,15% was

not associated with improved neurodevelopment outcomes

in the Berry visual-motor integration test [39]. Additional

research including African children with longer follow-up

time is indicated. It may also be that the use of ART with

excellent penetration into the central nervous system is

important; recent data from adults showed differences in

neurocognitive recovery that were associated with the ability
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of particular ART medications to penetrate the central

nervous system [40].

In summary, we report that HIV-infected Ugandan chil-

dren with CD4 cell counts of .350 cells/lL demonstrate

significant cognitive and motor deficits that correlate with

HIV plasma RNA levels. Given the lifelong implications of

neurodevelopmental impairment for HIV-infected children,

further studies investigating the mechanisms of HIV neu-

ropathogenesis as well as treatment strategies to prevent or

reverse impairment are needed.
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