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W E have known for more than 50 yr that many older 
adults have neurocognitive dysfunction after cardiac 

surgery,1–5 yet precisely describing this phenomenon has 
remained elusive. Terms used to describe this condition have 
ranged from “encephalopathy”6,7 and “pump-head”8 to “post-
cardiotomy/postoperative delirium,”1,9 and “postoperative 
cognitive dysfunction/decline.”10 Although these disorders 
also occur after noncardiac surgery,11–21 they are a particular 
concern after cardiac surgery due to perturbations such as car-
diopulmonary bypass, median sternotomy, embolic load, and 
long surgical/anesthetic duration (see table 1).21–31 Here, we 
discuss the definitions of delirium and postoperative cogni-
tive dysfunction, similarities between them (including in their 
causes), interventions and novel approaches to study, prevent, 
and treat these important complications after cardiac surgery.

Delirium after Cardiac Surgery
The Diagnostic and Statistical Manual of Mental Disorders, Fifth 
Edition (DSM-5) defines delirium as a fluctuating disturbance 
in attention and awareness that represents an acute change from 
baseline, accompanied by disturbed cognition or perception, and 
not due to a preexisting neurocognitive disorder or occurring in 
context of a severely reduced arousal level (such as coma).32 The 

DSM-5 refers to three delirium subtypes (hyperactive, hypoactive, 
and mixed); hypoactive is the most common subtype after car-
diac surgery.33,34 Post–cardiac surgery delirium rates range from 
14%35 to greater than or equal to 50%,36 perhaps reflecting differ-
ing levels of delirium risk factors (e.g., older vs. younger patients, 
and others) in these study populations and the varied assessment 
tools utilized.37,38 Many administrative databases significantly 
underreport delirium rates, likely due to underdiagnosis of delir-
ium in routine clinical care.39 The most official form of delirium 
diagnosis is a formal psychiatric interview according to DSM-5 
criteria. Additionally, many delirium assessment tools have been 
studied40, and some are more appropriate for detecting delirium 
in intubated patients (such as the Confusion Assessment Method 
for the ICU [CAM-ICU]41) while some are more appropriate 
(i.e., sensitive and specific) for detecting delirium in nonintubated 
patients (such as the 3-Minute Diagnostic Interview for Confu-
sion Assessment Method [3D-CAM]42).43,44 Many of these tools 
are more sensitive than chart review alone,44 though chart review 
can help improve the accuracy of single assessments such as the 
CAM-ICU (or 3D-CAM), which can miss delirium due to its 
fluctuating course.44 Thus when considering post–cardiac surgery 
delirium rates, it is important to consider the methods used and 
whether they were used in intubated or nonintubated patients.
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Postoperative Cognitive Dysfunction after 
Cardiac Surgery
Many studies have used pre- and postoperative neuropsycho-
logic testing to assess neurocognitive dysfunction after cardiac 
surgery, with varying testing deficit thresholds used to define 
postoperative cognitive dysfunction. Postoperative cognitive 
dysfunction incidence at one to three months after cardiac sur-
gery ranged from ~10 to 16% (for a drop of 2 reliable change 
index units)13,45 to 40% (for a 1 SD drop in test scores).46,47 
Most studies show postoperative cognitive dysfunction rates 
decrease over time from three months to one yr after sur-
gery.13,47 Five issues are important for interpreting these stud-
ies. First, for most individuals, scores improve with repeat 
testing during short intervals. Several methods can account for 
this learning effect and intrinsic test-retest variability.48 These 
issues can be partly mitigated by including multiple individual 
tests to assess each cognitive domain, and by using methods 
such as factor analysis to create overall cognitive domain scores 
that have higher test-retest reliability than single tests.10,47 Sec-
ond, some tests have floor or ceiling effects that reduce sensi-
tivity to detect cognitive change in patients with high or low 
baseline cognitive function.49 This issue may be minimized by 
choosing appropriate tests for the baseline cognitive status of 
patients under study. For example, the Trail Making Test (part 
B) has high sensitivity for detecting cognitive impairment in 
patients with high baseline cognition, but has floor effects that 
reduce sensitivity for detecting postoperative cognitive change 
in patients with severe preoperative cognitive impairment. In 
contrast, the Mini-Mental Status Examination50 has a ceiling 
effect in cognitively healthy individuals, but is sensitive to 
cognitive change in patients with mild cognitive impairment 
or mild dementia.51 Thus, an optimal cognitive test battery 
includes assessments that span different cognitive domains 
and cognitive ability ranges.52 Third, postoperative cognitive 
changes in older adults occur superimposed on normal age-
related neurocognitive/neurophysiologic changes,53,54 includ-
ing preexisting neurodegenerative pathology. Since Alzheimer 
disease-associated pathology begins decades prior to observ-
able cognitive deficits (such as memory impairment),55,56 

many older cardiac surgery patients may have undetected, 
clinically silent Alzheimer disease-associated neuropathology; 
these patients are at increased risk for postoperative delir-
ium57 and postoperative cognitive dysfunction.58,59 Thus, it 
is important to compare postoperative cognitive changes to 
those seen over the cognate time interval in nonsurgical con-
trols matched on cognitive decline risk factors (such as pre-
clinical Alzheimer disease-associated pathology and/or genetic 
risk factors, age, vascular disease, and educational level), or by 
adjusting results based on normative test data.60 Fourth, many 
statistical thresholds have been used to define cognitive dys-
function after cardiac surgery. Some incorporate changes in 
one61 or two62 tests, some rely on changes in larger cognitive 
domains, such as attention and verbal memory47, and others 
measure global change across an entire cognitive test battery.63 
Depending on the statistical thresholds and rules used to 
define it, postoperative cognitive dysfunction may represent 
either a single or multidomain deficit, in particular memory, 
executive function or both may be affected. It is unclear how 
long-term cognitive trajectories differ in more detailed domain 
specific (memory vs. executive function) analysis—this is a key 
question for future study (table 2). Fifth, the timing of pre- 
and postoperative testing is important to consider. Cognitive 
dysfunction early after cardiac surgery is likely influenced by 
postoperative pain, medications like opioids, and acute post-
operative recovery.64 Thus, current guidelines consider post-
operative cognitive dysfunction assessments to be free from 
these confounds starting 30 days after surgery.64

For clinical practice, the international postoperative cog-
nitive dysfunction nomenclature recommendations defines 
mild postoperative cognitive dysfunction (i.e., postopera-
tive mild neurocognitive disorder—postoperative cognitive 
dysfunction) as a 1-SD drop in test performance and major 
postoperative cognitive dysfunction (i.e., postoperative 
major neurocognitive disorder—postoperative cognitive 
dysfunction) as a 2-SD drop in test performance, occurring 
between 30 days to 1 yr after surgery.64 These recommenda-
tions help provide clarity on when postoperative cognitive 
dysfunction occurs, and what magnitude of deficits should 

Table 1.  Modifiable, Partly Modifiable, and Nonmodifiable Factors That May Contribute to Postoperative Delirium and/or 
Postoperative Cognitive Dysfunction after Cardiac Surgery*

 Pre-/Postoperative Intraoperative

Modifiable 1.  Preoperative blood pressure control23 1. � Use of cardiopulmonary bypass232–235

2.  Preoperative glycemic control23,76 2. � Temperature management212–217,219,220

3.  Sleep disruption25/sleep apnea24 3. � Surgery duration76

4.  Alcohol abuse21,22 4. � Arterial pressure management191,192,194

5. � Postoperative sedation, analgesia and 
delirium management306–308 

5. � Glycemic control226,228,230,231

6. � Hemodilution73

Partly modifiable 1. � Patient frailty28

2. � Preoperative cognitive function29,47

3. � Preoperative neurocognitive reserve26,27

4. � Depression72,76,77

1. � Surgical approach (i.e., median sternotomy vs. lateral thora-
cotomy),130–134 On vs. Off CPB75,232–235

2. � Anesthetic dosage30,31 and EEG responses278,279  

Nonmodifiable 1. � Patient chronologic age47,48 1. � Direct myocardial injury134,135

*The degree to which these factors can be modified in a real-world setting is beyond this article’s scope. Selected references are listed in table 1; please see 
the body of the article for additional references and discussion.
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be considered mild versus major postoperative cognitive 
dysfunction. However, these recommendations do not spec-
ify which cognitive tests should be used or whether deficit 
thresholds should be applied to individual tests, multiple 
test scores grouped by factor analysis, or to all tests within 
a battery. Further, these 1- and 2-SD statistical thresholds 
do not imply that patients who don’t meet these thresholds 
don’t have significant cognitive dysfunction that may impair 
their quality of life. Global cognitive dysfunction one year 
after coronary artery bypass graft (CABG), for example, was 
directly correlated with worsened quality of life measures, 
and both global cognitive dysfunction and worsened quality 
of life one year after CABG were associated with increased 
self-reported depressive symptoms (but not increased anxi-
ety symptoms).65 A continuous correlation between over-
all cognitive dysfunction magnitude and declining quality 
of life was also seen more than 5 yr after cardiac surgery, 
with a similar association between both measures and self-
reported depressive symptoms.66 This correlation between 
postoperative cognitive dysfunction severity and quality of 
life impairments was present across the full range of cog-
nitive dysfunction severity at 1 and 5 yr after surgery;65,66 
even relatively minor postoperative cognitive deficits were 
associated with reduced quality of life. Thus, from a patient-
centric perspective, we believe postoperative cognitive 

dysfunction should be conceptualized as a syndrome with 
a continuous severity distribution rather than as a simple 
dichotomous trait, and considered in terms of the degree 
to which it subjectively affects individual patients.48,67 
Although the lack of a specific diagnostic threshold may 
seem vague, it is consistent with the notion in psychiatry 
and from the recent International Nomenclature recom-
mendations for perioperative neurocognitive disorders64 
that neurocognitive disorders should be evaluated in terms 
of both objective signs and subjective symptoms. Further, 
the idea that “subthreshold” postoperative cognitive deficits 
may be significant for patients is consistent with the emerg-
ing view in medicine that many disease processes represent 
a continuous spectrum rather than dichotomous traits. For 
example, in cardiovascular medicine current recommenda-
tions support suppressing cardiovascular risk factors to ever 
lower levels,68–71 rather than believing that there are specific 
low-density lipoprotein or blood pressure thresholds below 
which these processes do not contribute to stroke or myo-
cardial infarction risk.

Similarities in Risks for and Mechanisms of 
Postoperative Delirium and Postoperative 
Cognitive Dysfunction
Although postoperative delirium and postoperative cogni-
tive dysfunction are distinct disorders measured with differ-
ent instruments at differing times, similarities in their likely 
mechanisms, risk factors, and long-term sequelae suggest 
they may be part of an underlying neurobiologic continuum. 
We refer to both delirium and postoperative cognitive dys-
function as types of “neurocognitive dysfunction” because 
the recent International Code of Nomenclature recommen-
dations64 refers to both delirium and postoperative cognitive 
dysfunction as “perioperative neurocognitive disorders,” and 
because of the similarities between them. For example, many 
studies have identified increased age,47,72–76 depression,72,76,77 
and altered baseline neurocognitive function10,36,46,47 as risk 
factors for both delirium and cognitive dysfunction after car-
diac surgery. Overall, the risk for each disorder is associated 
more closely with baseline patient characteristics (such as those  
mentioned in table 1) than procedural factors,78,79 though 
intraoperative management can lower the risks of both post-
operative cognitive dysfunction and delirium.80 Both disor-
ders are also thought to be caused by similar mechanisms such 
as neuroinflammation,48,79,81 and both delirium and postop-
erative cognitive dysfunction are associated with decreased 
quality of life,65,66,82,83 increased mortality,12,84 increased 
economic costs,85,86 long-term cognitive decline,47,87–89 and 
a possible increased risk for developing dementia such as 
Alzheimer disease (discussed at length in subsequent sec-
tions).88,90–92 Many patients with postoperative delirium also 
develop postoperative cognitive dysfunction,93–98 although 
the magnitude of this overlap varies between studies. Indeed, 
several investigators have proposed that delirium and post-
operative cognitive dysfunction primarily differ in when 

Table 2.  Key Questions for Future Research on Delirium and 
Cognitive Dysfunction after Cardiac Surgery

  1. � Are there subtypes of POCD/delirium characterized by 
deficits in specific cognitive processes or neural networks? 
If so, are these subtypes caused by distinct pathophysi-
ologic mechanisms, and do they have different long term 
trajectories?

  2. � What changes in functional brain connectivity are present in 
patients with delirium and/or POCD after cardiac surgery?

  3. � To what extent are POCD and delirium associated with simi-
lar vs. differing brain network connectivity changes?

  4. � What is the long term cognitive trajectory of neuroanatomic 
functional connectivity changes after cardiac surgery?

  5. � Would reversing the brain network connectivity changes 
seen in delirium and/or POCD by neural stimulation 
methods304 or brain training approaches301 improve these 
disorders?

  6. � Are delirium or POCD after cardiac surgery associated with 
a postoperative acceleration of AD pathology, and/or with 
an increased long term risk of developing AD or related 
dementias?

  7. � What specific neuroinflammatory processes are present in 
human delirium and POCD?

  8. � Would blocking or resolving specific neuroinflammatory pro-
cesses improve cognitive function after cardiac surgery?

  9. � How do neuroinflammation, preexisting AD or other neuro-
pathology neurocognitive reserve, intraoperative cerebral 
microembolic load interact with each other and the intra-
operative variables listed in table 1 in increasing the risk of 
delirium and POCD?

10. � Is there an intraoperative management “bundle” to optimize 
multiple intraoperative physiologic variables (temperature, 
hemodynamics, anesthetic dosage and brain responses, 
glycemic control) that would result in a greater reduction in 
POCD/delirium than single interventions?

AD, Alzheimer disease; POCD, postoperative cognitive dysfunction.

D
ow

nloaded from
 http://pubs.asahq.org/anesthesiology/article-pdf/129/4/829/520695/20181000_0-00040.pdf by guest on 16 August 2022



Copyright © 2018, the American Society of Anesthesiologists, Inc. Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

Anesthesiology 2018; 129:829-51	 832	 Berger et al.

Neurocognitive Dysfunction after Cardiac Surgery

they occur, and that both are part of the same spectrum of 
postoperative central nervous system dysfunction (fig. 1).99 
Based on this idea, and because of the overall similarities in 
likely mechanisms of, risk factors for, and long-term sequelae 
of postoperative delirium and cognitive dysfunction, and the 
fact that many patients develop both disorders, here we dis-
cuss potential pathophysiologic mechanisms of and possible 
prevention strategies for both disorders together. Future stud-
ies should measure both delirium and postoperative cognitive 
dysfunction using well-defined instruments to further clarify 
the extent to which their pathology overlaps versus the extent 
to which distinct mechanisms are involved in each disorder. 
Clarifying this question is an important challenge for the 
field, and should help determine whether interventions could 
potentially help prevent or treat both disorders.

Current Understanding of the 
Pathophysiology of Neurocognitive 
Dysfunction after Cardiac Surgery
In general, risk factors and mechanisms that contribute to 
postoperative delirium and postoperative cognitive dys-
function can be categorized in two ways. First, they can be 
defined by processes present before or after surgery (such as 
patient factors), versus those present during surgery (such as 
cardiopulmonary bypass or anesthetic dosage; see table 1). 
These temporal divisions are useful because they clarify 
which processes can be targeted at a given time during peri-
operative care. It is also important to recognize that some 
proposed risk factors and mechanisms may be modifiable 
(such as smoking), some may be partially modifiable (such 
as frailty), and some such as chronologic age may be non-
modifiable (table 1). Further, the inaccuracies of existing risk 
prediction models36,46 suggest that much remains to be dis-
covered about the mechanisms and etiology of postoperative 
delirium79 and postoperative cognitive dysfunction.48

A second way to categorize etiology is by potential patho-
physiologic processes, such as inflammation, neuronal dam-
age, vascular damage/embolism, cerebral autoregulation and 

oxygen delivery, neurodegenerative disease pathology, and 
brain network dysfunction, though these processes likely 
overlap. Here, we discuss the potential role of these pro-
cesses in postoperative delirium and postoperative cognitive 
dysfunction.

Inflammation
Systemic inflammation and the ensuing neuroinflammatory 
response following peripheral surgical trauma are thought 
to play a causal role in delirium100,101 and postoperative 
cognitive dysfunction102–107 (reviewed in Berger et al.48 and 
Terrando et al.108). Sterile tissue injury and trauma during 
cardiac surgery lead to the release of damage-associated 
molecular patterns, chemokines and cytokines.109,110 These 
soluble mediators result in a systemic inflammatory response 
via activation of pattern recognition receptors, which leads 
to further release of interleukins IL-1 and IL-6, tumor necro-
sis factor (TNF)-α, and damage-associated molecular pat-
tern molecules such as high mobility group box-1, and S100 
calcium binding proteins (fig. 2).111 Systemic inflammatory 
mediators may then be able to enter the brain due to post-
surgical breakdown of the blood-brain barrier.103,106,112–115 
Blood-brain barrier dysfunction is frequently seen in older 
adults (even in the absence of surgery),116 and has been seen 
in ~50% of patients after cardiac surgery.117 Further, the mag-
nitude of postoperative blood-brain barrier breakdown cor-
relates with the degree of cognitive dysfunction after cardiac 
surgery.118 Inflammatory cytokines may also be produced 
within the brain itself after surgery, due to peripheral-to-
central signaling via both humoral and neural pathways.119 
In either case, neuroinflammation has detrimental effects on 
the brain, is sufficient to cause deficits in cognition, mem-
ory, and behavior and overall “sickness behavior,”120 and has 
been implicated in conditions ranging from mood disorders 
to neurodegenerative disease and postoperative cognitive 
dysfunction.48,121,122 Further, blocking neuroinflammation 
improves cognition in patients with autoimmune encepha-
litis, suggesting that neuroinflammation can be sufficient to 
cause cognitive dysfunction, and conversely, that blocking 
neuroinflammation can improve cognition.123

Further support for the role of neuroinflammation in 
postoperative cognitive dysfunction comes from studies that 
have demonstrated that genetic polymorphisms that modu-
late inflammation (e.g., in the genes CRP, SELP, GPIIIA, 
and iNOS) are associated with postoperative cognitive dys-
function risk.124–126 Additionally, inflammatory processes 
during cardiac surgery may be augmented by four factors 
during cardiopulmonary bypass (CPB). First, blood contact 
with foreign surfaces of the CPB circuit causes significant 
peripheral inflammation, including multiple-fold eleva-
tions of the proinflammatory cytokines interleukins 6 and 
8 (IL-6, IL-8).127 This effect can be reduced by using CPB 
pumps with biocompatible materials and miniaturized cir-
cuits, which reduce leukocyte aggregation, complement 
and coagulation cascade activation, and proinflammatory 

Fig. 1. One of the principal distinctions between postop-
erative (Post-Op) delirium and postoperative cognitive dys-
function (POCD) is the time frame in which they are found. 
Emergence delirium occurs in the operating room (OR) or 
immediately after in the post–anesthesia care unit (PACU). 
Postoperative delirium occurs 24 to 72 h after surgery. POCD 
is measured at weeks to months after surgery and anesthe-
sia. Pre-Op, preoperative. Reproduced with permission from 
Silverstein et al.99
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cytokine production (reviewed in Shann et al.128). The clas-
sical complement cascade can also be activated by hepa-
rin-protamine complexes after CPB.129 Second, median 
sternotomy (as opposed to smaller lateral thoracotomy 
approaches) increases proinflammatory cytokine levels in 
rats,130 and possibly in humans,131,132 although some studies 
have not replicated these findings.133,134 Third, cardiac isch-
emia/reperfusion injury is also accompanied by significant 
increases in serum inflammatory cytokine/chemokine levels, 
and in recruitment and activation of neutrophils, mono-
cytes, and other leukocytes.135 Fourth, anesthetic drugs 

themselves can modulate inflammation. Inhaled anesthetics 
have proinflammatory effects on microglia in vitro136 and on 
the mouse brain in vivo,137 and opioids and heparin can also 
modulate inflammation and monocyte function in vitro.138 
The drugs given during cardiac surgery may thus have sig-
nificant effects on the overall balance of pro- and antiinflam-
matory cytokine levels, and on patient outcomes.139 Taken 
together, these findings suggest that exposure to anesthetics 
and other drugs during cardiac surgery, together with the 
effects of the bypass circuit, median sternotomy and tissue 
damage, and ischemia reperfusion injury, may contribute to 

Fig. 2. Pathophysiologic mechanisms that may play a role in postoperative cognitive dysfunction (POCD) and/or delirium. Start-
ing from the top, in clockwise order, the pullout boxes represent cellular/molecular and synaptic mechanisms (such as Alzheimer 
disease-related pathology), cerebral oximetry monitoring, anesthetic dosage, resolution of inflammation, vascular mechanisms 
(such as emboli), and blood-brain barrier dysfunction, which may be involved in POCD and delirium. Additional physiologic 
variables that may be involved in POCD and delirium are listed in free text. APP, amyloid precursor protein; BBB, blood-brain 
barrier; IL, interleukin; RBC, red blood cell; TNF, tumor necrosis factor. 
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neuroinflammation and ensuing postoperative delirium and 
postoperative cognitive dysfunction. As a whole these factors 
may also explain why serum IL-6 and other proinflamma-
tory cytokine levels are higher after cardiac versus peripheral 
surgery,133,140 although underlying differences between these 
patient cohorts could also play a role.

In rodent models, cardiac surgery causes more prolonged 
neuroinflammation and a wider spectrum of behavioral 
impairments than abdominal surgery,141 though both sur-
gery types reduced hippocampal neurogenesis rates and 
neurotrophic factor levels (such as brain derived neuro-
trophic factor).142 Terrando et al. have also found similar 
behavioral impairments and neuroinflammation after ortho-
pedic surgery in mice,142 suggesting that common mecha-
nisms involving decreased hippocampal neurogenesis, spinal 
pain signaling, and central neuroinflammation may lead to 
memory dysfunction after both orthopedic and cardiac sur-
gery. Further, mouse orthopedic surgery studies suggest that 
increased brain monocyte chemoattractant protein 1 levels 
recruit peripheral monocyte-derived macrophages into the 
central nervous system, which play a role in postoperative 
explicit memory deficits.103,105,143 Blocking neuroinflamma-
tion104 and microglial activation144 reduced postoperative 
memory deficits in mouse models, though these interven-
tions have yet to be tested in humans. Human studies have 
found postoperative cerebrospinal fluid (CSF) increases in 
monocyte chemoattractant protein 1145 and other inflam-
matory cytokines146,147 after orthopedic surgery, and CSF 
IL-6 and IL-8 increases have been observed after cardiac 
surgery,115 though it is unclear whether CSF monocyte che-
moattractant protein 1 levels increase after cardiac surgery.114 
To our knowledge, no study has ever examined whether 
monocytes or macrophages enter the human central nervous 
system after cardiac surgery, or whether such monocyte/
macrophage influx plays a role in cognitive dysfunction or 
delirium after cardiac surgery (or other types of surgery); 
these are important questions for future research.

Several antiinflammatory drug trials have failed to pre-
vent delirium or cognitive dysfunction after cardiac surgery, 
including lidocaine,10 magnesium,46 complement cascade 
inhibitors,148 and postoperative acetylcholinesterase treat-
ment149,150 (which may increase vagal antiinflammatory 
pathways in addition to boosting brain acetylcholine lev-
els). However, lidocaine or magnesium may have cognitive 
benefits in specific patient subgroups,10,46 and acetylcholin-
esterase treatment improved postoperative memory.149 Intra-
operative high dose steroids were also ineffective,35,45,151,152 
perhaps because steroids can also cause delirium and halluci-
nations153 that may counterbalance their theorized cognitive-
improving antineuroinflammatory effects. Intraoperative 
ketamine treatment reduced delirium154 and cognitive dys-
function155 after cardiac surgery in small pilot studies, but 
did not reduce delirium in a large multicenter random-
ized trial (which included approximately one third cardiac 
surgery patients).156 Dexmedetomidine also had no effect 

on delirium incidence after cardiac157 surgery in a recent 
multicenter randomized trial, though it had mixed effects 
on delirium after noncardiac surgery158,159; these divergent 
results may be due to differing dexmedetomidine infusion 
rates and durations between these studies.157–159

These generally negative study findings may reflect the 
pathophysiologic complexity of delirium and postoperative 
cognitive dysfunction, which may also underlie the relatively 
greater success of multimodal interventions.160 Alterna-
tive strategies to more specifically modulate postoperative 
inflammation may better help prevent postoperative delir-
ium and postoperative cognitive dysfunction. For example, 
resolution of inflammation is an active process orchestrated 
by specialized proresolving mediators,161 including omega-3 
fatty acid-derived lipid mediators (i.e., resolvins) that have 
potent postoperative antiinflammatory and proresolving 
effects.162–164 Administration of the omega-3 derived resol-
vin D1 reduced memory impairments after orthopedic sur-
gery in mice.164 Other resolution agonists, including annexin 
a1 peptide mimetics, also reduced neuroinflammation and 
improved cognitive outcomes after CPB and deep hypother-
mic circulatory arrest in a rat cardiac surgery model.165 Pro-
resolving mediators can also reduce inflammatory pain,166 
lower antibiotic requirements,167 and reduce mortality from 
microbial sepsis.168 Thus, understanding the role of resolvins 
and other antiinflammatory lipids in cognitive function 
after cardiac surgery, and whether manipulating them can 
improve it, are important future research goals.

Embolic Load and Clinically Covert Stroke
Embolic load may also play a role in neurocognitive dys-
function after cardiac surgery. The direct manipulation of 
the aorta during cardiac surgery often disrupts atheromatous 
plaques. Aortic atheroma burden can be measured intraoper-
atively by epiaortic ultrasound, and increased intraoperative 
atheroma burden has been seen in patients with postopera-
tive cognitive dysfunction (vs. those without postoperative 
cognitive dysfunction) at 1 week, but not at 3 or 12 weeks, 
after cardiac surgery.62 Current guidelines recommend epi-
aortic ultrasound evaluation of aortic plaque in patients with 
increased stroke risk, including those with a vascular disease 
history, and those with other evidence of aortic atherosclero-
sis or calcification.169

Aortic plaque disruption can liberate microemboli that 
can travel to the brain. These microemboli can be detected 
by transcranial Doppler ultrasound,170 although the major-
ity of transcranial Doppler signals actually represent small 
gas emboli.171 Gaseous microemboli occur frequently in 
open chamber cardiac valve cases, which has led many cen-
ters to flood the open cardiac chamber with carbon dioxide, 
since carbon dioxide is more soluble than air and thus pro-
motes the resorption of gas emboli (potentially before they 
enter the cerebral vasculature).172 However, a randomized 
trial found that field flooding with carbon dioxide versus 
medical air had no effect on cognitive function 6 weeks after 
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surgery.173 Rather than intracardiac gas volume, the main 
predictor of cognitive decline in this study was atheromatous 
vascular disease.173

Microemboli can also be detected by postoperative 
diffusion-weighted magnetic resonance imaging (MRI)174 
though preoperative MRI scans are needed to differenti-
ate new microemboli from prior lesions. The percentage of 
cardiac surgery patients with detectable microemboli vastly 
outnumber the percentage with clear postoperative stroke(s). 
Many experts refer to these emboli and diffusion-weighted 
MRI abnormalities as “clinically covert strokes,”78 because 
they are not associated with neurologic abnormalities detect-
able in routine clinical examination. Although it seems intui-
tive that embolic load to the brain and resulting T2-weighted 
MRI white matter hyperintensities would have detrimental 
neurocognitive effects, correlations between embolic load 
and postoperative cognitive changes have been inconsistent 
(particularly after open chamber valve cases).174–177 This is a 
paradox, because large observational studies have found these 
“clinically covert strokes” are associated with future risk of 
stroke, cognitive decline, and Alzheimer disease.178–181 One 
explanation may be that the location at which microembolic 
“covert strokes” occur may matter in addition to their total 
volume, since neurovascular coupling and neuronal cir-
cuitry can be disrupted beyond injury site(s) themselves,182 
and small lesions at critical node locations can thus cause 
wider brain network dysfunction and impair neurocognitive 
processing.182 Future studies should examine this idea, and 
evaluate interactions between embolic load, central neuro-
inflammation, preexisting neurodegenerative disease pathol-
ogy, and other variables that may interact in synergistic ways 
to produce postoperative neurocognitive dysfunction.

Cerebral Blood Flow, Autoregulation, and 
Oxygen Delivery and Utilization
Many cardiac surgery patients have hypertension, which can 
shift the normal autoregulatory range of cerebral blood flow 
(classically thought to be 60 to 160 mmHg). Thus, the actual 
autoregulation range for any given patient is unknown, and 
the lower limit of autoregulation during CPB may vary from 
45 to 80 mmHg.183 Newman et al. found significant cerebral 
autoregulation impairments in 215 patients during cardiac 
surgery, but no correlation with postoperative cognitive dys-
function.74,184 Similarly, Ono et al. found that up to 20% of 
cardiac surgery patients have impaired autoregulation, and 
these patients with “pressure passive” cerebral blood flow185 
had increased perioperative stroke rates.186 Further, intraop-
erative cerebral autoregulation can dynamically change in 
response to intraoperative physiologic changes,187,188 suggest-
ing the need for real-time cerebral autoregulation measure-
ment. Hori et al. found that ultrasound-tagged near infrared 
spectroscopy can identify cerebral autoregulation limits, and 
showed (in a secondary analysis) that patients with delirium 
had higher blood pressure excursions above this range.189 
Thus, an ongoing study is investigating whether cerebral 

oximetry-guided blood pressure management can decrease 
postoperative delirium after cardiac surgery.190

These findings then led to studies examining the relation-
ship between mean arterial pressure (MAP) management 
and postoperative cognitive changes. For example, main-
taining intraoperative MAP within 80 to 90 mmHg, rather 
than 60 to 70 mmHg, was associated with less postopera-
tive delirium and a smaller postoperative decrease in mini 
mental status exam scores.191 Gold et al. found that higher 
MAP targets (i.e., 80 to 100 mmHg vs. 50 to 60 mmHg) 
were associated with lower cardiac and neurologic complica-
tion rates (i.e., stroke),192 though they found no difference in 
postoperative cognition between groups. Postoperative MAP 
values below the lower limit of autoregulation have also been 
associated with increased levels of the glial injury biomarker 
glial fibrillary acidic protein, emphasizing the importance 
of maintaining MAP within the autoregulatory range after 
as well as during cardiac surgery.193 However, observational 
studies have found that maintaining blood pressure above 
the upper limit of cerebral autoregulation is associated with 
increased postoperative delirium rates,189,194 suggesting that 
it may be important to avoid MAPs above, as well as below, 
each patient’s autoregulatory range.

One major caveat to the interventional MAP manage-
ment studies discussed above is that many of these stud-
ies191,192 did not measure cerebral autoregulation limits in 
individual patients. The cerebral autoregulation range varies 
substantially among patients,195 especially during cardiopul-
monary bypass.196 Thus, it is possible that the higher MAP 
targets in these studies191,192 may have been outside the cere-
bral autoregulation limits in some patients, particularly in 
patients with hypertension.195 Future studies should thus 
measure individualized cerebral autoregulation limits and 
study MAP management algorithms based on them.

Maintaining blood pressure within each individual’s cere-
bral autoregulation range may help ensure adequate brain 
oxygen delivery. Lower MAP values are associated with 
cerebral venous oxygen desaturations, which are themselves 
associated with postoperative cognitive dysfunction.197 In 
other words, inadequate mean arterial pressure management 
during cardiac surgery may cause postoperative cognitive 
dysfunction by impairing cerebral oxygen delivery, which 
can be detected as a cerebral venous oxygen desaturation.197 
Brain oxygen delivery and usage can be inferred from cere-
bral oximetry, which can help guide real-time intraoperative 
blood pressure management. Cardiac surgery patients who 
have intraoperative cerebral oxygen desaturations are more 
likely to develop postoperative delirium198 and postopera-
tive cognitive dysfunction (measured 1 week199,200 and 1 
month200 after surgery). This is consistent with the finding 
that cerebral venous oxygen desaturations are associated 
with postoperative cognitive dysfunction at hospital dis-
charge.197 However, at least two other studies did not find 
a correlation between intraoperative cerebral oxygen desatu-
rations and postoperative cognitive dysfunction.201,202 These 
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divergent findings could reflect differences in postoperative 
cognitive assessment methods and/or different patient char-
acteristics.199–202 Indeed, the de Tournay-Jette et al.200 study 
patients were ~10 to 20 yr older and had more comorbid dis-
ease processes than patients in the Reents et al.201 and Hong 
et al.202 studies, suggesting cerebral oximetry may be better 
able to identify postoperative cognitive dysfunction and 
delirium risk in older/sicker patients. Additionally, hyper-
oxia has been associated with postoperative delirium,203 
although we found no association between hyperoxia during 
CPB and postoperative cognitive dysfunction.204 A multi-
modal perioperative management intervention, including 
cerebral oximetry, reduced delirium after cardiac surgery160 
and postoperative cognitive dysfunction after noncardiac 
surgery,205 raising the possibility that similar interventions 
may help improve cognition after cardiac surgery.

These intraoperative cerebral oximetry monitoring stud-
ies are also consistent with the effect of intraoperative hemo-
dilution on cognitive dysfunction after cardiac surgery. In a 
randomized trial of extreme (hematocrit of 15 to 18) versus 
moderate (hematocrit of 27), there was a statistically sig-
nificant interaction between age and extreme hemodilution: 
older patients who underwent extreme hemodilution had 
higher postoperative cognitive dysfunction rates.73 Taken 
together, these data suggest that ensuring adequate cerebral 
oxygen delivery may help reduce postoperative cognitive 
dysfunction.

Temperature Management during Cardiac 
Surgery
The cerebral metabolic rate of oxygen utilization is closely 
regulated by temperature, which led to the idea that lower-
ing cerebral metabolic rate of oxygen utilization by induc-
ing hypothermia could reduce brain oxygen deprivation and 
neurocognitive injury during reduced oxygen delivery peri-
ods (e.g., during CPB). Indeed, hypothermia reduces neuro-
logic injury in animal models of focal cerebral ischemia and 
cardiopulmonary resuscitation.206,207 Conversely, hyperther-
mia increases cerebral metabolic rate of oxygen utilization 
and is associated with worse neurocognitive outcomes and 
increased mortality risk in numerous clinical situations.208–210 
Thus, studies have examined whether lowering cerebral met-
abolic rate of oxygen utilization by inducing hypothermia 
during CPB would improve postoperative neurocognitive 
function. Early work showed that patients who underwent 
normothermic (i.e., “warm” or greater than 35°C) CPB had 
a threefold higher stroke incidence than those who under-
went hypothermic (i.e., “cold” or less than 28°C) CPB.211 
Yet, one randomized trial found no benefit of hypothermia 
(i.e., 28 to 30°C) versus normothermia (35.5 to 36.5°C) dur-
ing CPB on cognitive change from before to 6 weeks after 
cardiac surgery.212 Nonetheless, the maximum postoperative 
temperature after cardiac surgery was associated with cogni-
tive dysfunction severity 6 weeks after surgery,213 emphasiz-
ing the importance of avoiding postoperative hyperthermia. 

This concept may help explain data showing that rewarm-
ing to a lower temperature (34 vs. 37°C) was associated 
with lower cognitive dysfunction rates 1 week after surgery 
and improved performance on the grooved pegboard test (a 
manual dexterity and visuomotor processing speed task) at 3 
months after surgery,214 although there was no overall cog-
nitive benefit at 3 months after surgery.215 In essence, the 
early cognitive benefits of rewarming to a slightly lower tar-
get in this trial214 may have been due to the prevention of 
postoperative hyperthermia. This group also found no neu-
rocognitive difference among CABG patients randomized to 
undergo normothermic (37°C) CPB or hypothermic (34°C) 
CPB without operating room rewarming in either group; 
thus, avoiding central hyperthermia during rewarming may 
help optimize postoperative cognitive function.215 Similarly, 
another recent randomized trial found that achieving a lower 
core body temperature (via external head cooling) during 
CPB was associated with less cognitive dysfunction 10 days 
after cardiac surgery.216 Nonetheless, despite numerous stud-
ies (reviewed in Grigore et al.217 and Hogan et al.218), there 
is still debate about temperature management during cardiac 
surgery.219,220 Current clinical recommendations simply call 
for avoiding hyperthermia (arterial outlet blood temperature 
greater than or equal to 37°C) during cardiac surgery, and for 
a rewarming rate less than or equal to 0.5°C/min once tem-
perature exceeds 30°C.221 Slow rewarming may help avoid 
cerebral ischemia, since rapid rewarming has been shown to 
cause cerebral metabolic rate of oxygen utilization increases 
prior to corresponding increases in CBF.222

Glucose Homeostasis during Cardiac 
Surgery
Aside from oxygen delivery and perfusion pressure, neuro-
cognitive function is also influenced by serum glucose lev-
els (discussed in Berger et al.37). Similar to cerebral blood 
flow autoregulation, neurocognitive function is typically 
unaltered by glucose changes within normal physiologic 
limits.223–225 Since many cardiac surgery patients have dia-
betes, and the surgical stress response can decrease periph-
eral insulin sensitivity and cause hyperglycemia, studies have 
investigated the relationship between intraoperative glucose 
management and postoperative neurocognitive outcomes. 
One retrospective study found that intraoperative hyper-
glycemia (i.e., glucose levels greater than 200 mg/dL) was 
associated with worsened postoperative cognitive function 
in nondiabetic patients, but not in diabetic patients.226 This 
is not surprising because diabetic patients are often exposed 
to hyperglycemia, which causes physiologic compensatory 
responses (such as glucose transporter downregulation on 
brain capillaries) to reduce excessive glucose influx into the 
brain.227 This adaptation helps explain why intraoperative 
hyperglycemia may be more detrimental to the brains of 
nondiabetic patients. However, this interpretation is chal-
lenged by the results of Butterworth et al.,228 who found 
in a large randomized trial (N = 381) that intraoperative 
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insulin infusion (up to 4 U/h) in nondiabetic patients did 
not improve neurocognitive outcomes. This lack of effect 
may have been due to residual hyperglycemia secondary to 
insufficient insulin administration (possibly due to hypo-
thermia-induced insulin resistance229) in the insulin treat-
ment arm, though, as the authors discussed.228

The idea that hyperglycemia is detrimental to the brain led 
to additional interventional studies examining whether tighter 
glucose control (i.e., to avoid hyperglycemia) would improve 
postoperative cognition. Yet, tight intraoperative glucose con-
trol with a hyperinsulinemic-normoglycemic clamp (glucose 
target 80 to 110 mg/dL) versus standard therapy (glucose tar-
get less than 150 mg/dL) during cardiac surgery was associated 
with increased delirium rates,230 perhaps due to the increased 
hypoglycemia in the intensive glucose control arm of this 
study.37 However, this study did not assess delirium before 
surgery,230 so it is unclear how many of these cases of postop-
erative delirium might have reflected preexisting cognitive def-
icits or delirium before surgery.37 Another recent pilot study 
found that the use of glucose and insulin infusions to maintain 
serum glucose at ~64 to 110 mg/dL preserved auditory learn-
ing and executive function after cardiac surgery,231 suggesting 
that avoiding hyperglycemia may result in improved postop-
erative cognitive function. Thus, as with oxygen delivery and 
cerebral perfusion management (discussed in aforementioned 
section, “Cerebral Blood Flow, Autoregulation, and Oxygen 
Delivery and Utilization”), these data suggest that it may be 
equally important to avoid hypoglycemia and hyperglycemia 
in order to avoid postoperative delirium and postoperative 
cognitive dysfunction. Further, the physiologic adaptions to 
chronic hyperglycemia in diabetic patients suggests that, as in 
the case of cerebral autoregulation and intraoperative blood 
pressure management, intraoperative glycemic control may 
need to be individualized for particular patients.

Effects of On-pump versus Off-pump 
Cardiac Surgery, and Medical versus 
Surgical Management for Coronary Artery 
Disease, on Delirium and Postoperative 
Cognitive Dysfunction Rates
Given the concern that cardiopulmonary bypass alone may 
contribute to postoperative delirium and postoperative cog-
nitive dysfunction, several studies have examined delirium 
and cognitive dysfunction rates after on-pump versus off-
pump cardiac surgery. A recent retrospective analysis found 
that patients who underwent off-pump cardiac surgery had 
significantly lower delirium rates compared to on-pump 
patients,75 although residual confounding could explain 
these observational findings. In the Octopus study, patients 
who underwent off-pump cardiac surgery, as opposed to 
those who underwent on-pump cardiac surgery, had a trend 
toward less cognitive dysfunction 3 months after surgery, 
but this small difference disappeared by 1 yr after surgery.232 
The Randomized On/Off Bypass (ROOBY) trial found no 

difference in overall cognitive outcomes between on- versus 
off-pump cardiac surgery, although they did detect a signifi-
cantly greater postoperative cognitive improvement in the 
clock drawing test in patients who underwent off-pump 
versus on-pump cardiac surgery.233 Since this difference was 
seen only in one of eleven tests within a larger cognitive test 
battery, it is difficult to ascertain whether this difference 
represents a true neurocognitive improvement effect of off-
pump CABG versus a false positive due to performance of 
multiple tests. Similarly, Kok et al. found that patients who 
underwent off-pump cardiac surgery, as compared to those 
who underwent on-pump cardiac surgery, had similar cogni-
tive dysfunction rates at 4 days after surgery but had lower 
cognitive dysfunction rates 1 month after surgery.234 Finally, 
Selnes et al. found no difference in 6-yr cognitive outcomes 
between patients with coronary artery disease who were 
managed medically, and patients who underwent on-pump 
or off-pump coronary artery bypass grafting. However, the 
Selnes study was not randomized; thus, residual confounding 
could explain the lack of differences between patients who 
underwent CABG versus medical management, and between 
those who underwent on- versus off-pump CABG.235 Fur-
ther, the Selnes study used group averaged data, which may 
have obscured more severe long term cognitive decline in 
individual cardiac surgery patients.218

These findings are compatible with two different interpre-
tations. The first, and perhaps simplest, interpretation is that 
cardiopulmonary bypass does not contribute to postoperative 
delirium or cognitive dysfunction.236 The second interpreta-
tion is that other aspects of off-pump cardiac surgery, such as 
steep Trendelenburg positioning,237 which results in cerebral 
venous engorgement and possible cerebral oxygen desatura-
tion,238 may be equally detrimental to postoperative cognition 
as cardiopulmonary bypass. Additionally, surgical manipula-
tion of the heart in off-pump cases (i.e., to expose the cir-
cumflex and right coronary arteries) may cause both increased 
central venous pressure and arterial hypotension, thus reduc-
ing cerebral perfusion pressure and possibly also worsening 
postoperative brain function. According to this interpretation, 
there is no advantage to avoiding cardiopulmonary bypass 
during cardiac surgery if current “off-pump” cardiac surgery 
techniques are used, but this does not mean that cardiopul-
monary bypass is cognitively benign, and suggests that further 
advances in bypass technology may improve postoperative 
cognitive outcomes. Nonetheless, in other studies, off-pump 
cardiac surgery has been associated with worsened 1 yr com-
posite outcomes (including mortality),233 so there is currently 
little enthusiasm for performing off-pump cardiac surgery.

Studies have also examined the relative cognitive effects 
of cardiac surgery versus medical or percutaneous therapy 
for patients with cardiac disease. As discussed, Selnes et al. 
found no difference in long-term cognitive outcomes 
between medical and surgical management for coronary 
artery disease.235 Similar to the discussion of cardiopulmo-
nary bypass, these data can be interpreted in at least three 
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ways. The first, and simplest, interpretation is that cardiac 
surgery has no long-term detrimental effect on cognition. 
A second interpretation, which is also compatible with the 
data, is that operative management (CABG or valve surgery) 
and medical management have similar cognitive effects in 
patients with cardiac disease, who often have cerebrovas-
cular disease processes that predispose them to long-term 
detrimental cognitive effects. For example, the detrimental 
cognitive effects of cardiac surgery (including anesthesia, 
possible cardiopulmonary bypass, postoperative pain, and 
sleep disruption, among others), may be counterbalanced 
by the beneficial cognitive effects of coronary revasculariza-
tion (such as improved overall cardiovascular and physical 
function). These mixed cognitive effects of cardiac surgery 
may roughly approximate the overall mixture of beneficial 
and adverse effects of medical management for cardiac dis-
ease. For example, medical management for cardiac disease 
may help patients avoid the detrimental cognitive effects of 
operative management (as discussed at the beginning of this 
section), but would also likely deprive patients of the poten-
tial cognitive benefits of successful revascularization, and 
may leave patients with residual angina and related physi-
cal limitations. A third interpretation is that since postop-
erative cognitive dysfunction is associated with increased 
postoperative mortality, a long-term comparison of cogni-
tive outcomes after surgical versus medical management may 
underestimate the long-term detrimental cognitive effects of 
cardiac surgery, since an increased fraction of the most cog-
nitively impaired surgical patients may have died and not 
been included in longer-term assessments.235

Cardiac Surgery, Neurotoxicity, and 
Alzheimer Disease Pathology
Up to 30% of patients may develop dementia within 7.5 yr 
after cardiac surgery,87 which has raised concern that both 
surgical stress and excessive exposure to volatile anesthet-
ics and/or propofol may contribute to neurocognitive dys-
function. This would not be surprising since both volatile 
anesthetics and propofol increase GABA-A receptor func-
tion, and GABA-A agonist usage has been associated with 
increased risk of delirium,239 cognitive dysfunction240 and 
dementia241 outside perioperative care. Mechanism(s) that 
could underlie a detrimental effect of anesthetic drugs on 
postoperative cognition could include: (a) GABAergic anes-
thetic-induced acceleration of Alzheimer disease processes 
such as amyloid-β and tau pathology,90,243; (b) anesthetic-
induced disruption of gamma oscillation patterns involved 
in amyloid beta clearance244–247; (c) direct neuronal or glial 
cell damage (reviewed in Zheng et al. 248 and Vutskits and 
Xie249); or (d) anesthetic-induced increases in neuroinflam-
mation.136,137,250,251 Further, neuroinflammation can increase 
neuronal sensitivity to anesthetic drugs;252 thus, anesthetic-
induced neuroinflammation could potentially promote a 
positive feedback loop that further amplifies initial neuroin-
flammatory responses to anesthesia and surgery.

The notion that postoperative cognitive dysfunction and 
delirium may involve mechanisms similar to those involved 
in Alzheimer disease (reviewed in Palop et al.253 and Jack and 
Holtzman254) has led to studies of whether Alzheimer dis-
ease-associated genetic polymorphisms, such as ApoE4, also 
increase risk for postoperative delirium or postoperative cogni-
tive dysfunction. However, the interpretation of these studies 
is complex, because aside from its association with Alzheimer 
disease risk, ApoE4 has pleiotropic neurologic effects (includ-
ing cerebrovascular dysfunction and decreased cerebral blood 
flow).255 These studies have found conflicting results; overall 
it appears that ApoE4 carriers are not more likely to develop 
early postoperative delirium or postoperative cognitive dys-
function, but do have worse long-term cognitive trajectories  
after cardiac surgery. 88,256–260 This finding could be related to 
the known long term detrimental effects of the ApoE4 allele 
on cognition,88 and/or to the increased aortic arch atheroma 
burden seen in ApoE4 carriers261 and thus a possible increase 
in cerebral microemboli during cardiac surgery. Several other 
genetic polymorphisms have recently been found that are 
associated with Alzheimer disease risk,262–266 and it will be 
important to examine whether these Alzheimer disease risk 
polymorphisms are also associated with postoperative cogni-
tive dysfunction or delirium risk after cardiac surgery.

Changes in Alzheimer disease biomarkers (such as 
changes in CSF amyloid-β and tau levels) occur after cardiac 
surgery in humans,114,243 and both mouse model and in vitro 
data suggest that isoflurane may accelerate Alzheimer disease 
pathology to a greater extent than propofol.267,268 However, 
there is no human data demonstrating that any particular 
anesthetic agent is associated with greater (or smaller) CSF 
Alzheimer disease biomarker changes after cardiac surgery. A 
recent randomized trial in neurosurgery patients showed that 
propofol and isoflurane treatment were each associated with 
similar increases in CSF tau levels, and minimal changes in 
amyloid-β or phospho-tau.269 Thus, there is currently no 
human evidence to favor one anesthetic type versus another 
for avoiding changes in CSF Alzheimer disease biomarkers 
or Alzheimer disease pathogenesis.

Further, it is unclear whether postoperative CSF 
Alzheimer disease biomarker changes are associated with or 
play a cause role in delirium or postoperative cognitive dys-
function after cardiac surgery, or whether they merely rep-
resent an acute-phase response to cardiac surgery. To clarify 
these issues, future studies will need to: (1) examine whether 
there is a correlation between the magnitude of these patho-
logic processes and the magnitude of cognitive dysfunction 
after cardiac surgery; (2) determine whether these pathologic 
processes advance to a greater extent after cardiac surgery 
than after the same period in matched nonsurgical controls 
with similar comorbidities that predispose to neurocognitive 
dysfunction (i.e., neurovascular and Alzheimer disease risk 
factors, among others); and (3) determine whether blocking 
postoperative changes in these pathways abrogates delirium 
or postoperative cognitive dysfunction after cardiac surgery.
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Anesthetic Dosage and Potential 
Neurotoxicity
Several lines of evidence suggest that anesthetic adminis-
tration during cardiac surgery may modulate postoperative 
neurocognitive function via effects on the Alzheimer’s disease 
pathways discussed above or by modulating inflammation or 
synaptic function (reviewed in Berger et al.90 and Vutskits 
and Xie249). General anesthesia is a drug-induced coma270; 
and observational studies have found both direct271-273 and 
inverse274 associations between the duration of electroen-
cephalogram (EEG) burst suppression, and postoperative 
delirium and/or postoperative cognitive dysfunction. Fur-
ther, several interventional studies in noncardiac surgery 
have shown that bispectral index (BIS)-titrated anesthetic 
administration results in lower levels of postoperative delir-
ium.80,275,276 In the Cognitive Dysfunction after Anesthesia 
(CODA) trial, a ~30% decrease in mean end-tidal inhaled 
anesthetic was associated with a 40% reduced incidence of 
cognitive dysfunction 3 months after surgery.80 However, 
this reduction in postoperative cognitive dysfunction due to 
BIS-guided anesthetic administration was not observed by 
Radtke and colleagues, likely because BIS monitor usage was 
not associated with a significant reduction in anesthetic dos-
age in their study.275 Similarly, a secondary analysis of car-
diac surgery patients in the BIS or Anesthetic Gas to Reduce 
Explicit Recall (BAG-RECALL) study showed that BIS-
titrated anesthetic administration was associated with a trend 
(which narrowly missed statistical significance) toward lower 
postoperative delirium rates.277 This lack of significance may 
also partly be due to the use of the CAM-ICU instrument 
for all delirium assessments in this study,277 an instrument 
with limited sensitivity in nonintubated patients.43

Based on these data, we and others have called for appro-
priately powered prospective studies to definitively determine 
whether EEG-guided anesthetic delivery during cardiac sur-
gery lowers postoperative delirium rates.277,278 An impor-
tant challenge for these future studies will be to determine 
whether using raw EEG measures instead of or in addition 
to the BIS (or other proprietary processed EEG anesthetic 
depth indices) reduces delirium or postoperative cognitive 
dysfunction rates. Although a simple anesthetic depth index 
is easy to use, the BIS index has a nonlinear relationship with 
inhaled anesthetic dose.279 Both theoretical work280 and ret-
rospective analyses281 demonstrate that the BIS index may 
be unreliable in older adults, perhaps because it does not 
account for age-dependent changes in the EEG spectrogram 
and total EEG power.280 Nonetheless, the findings described 
above suggest that processed EEG-guided anesthetic titra-
tion can lower postoperative cognitive dysfunction rates if it 
results in reduced anesthetic dosage. Similar to pulmonary 
artery catheter use in cardiac surgery (in which outcomes 
likely depend not on whether a pulmonary artery cath-
eter was placed, but rather on how the information from 
it was used to manage patients282), patient outcomes are 
likely impacted not by whether an EEG monitor was used, 

but rather by how the data from it was used (i.e., to titrate 
anesthetic dosage). Thus, differences between how clinicians 
used EEG monitor data to make anesthetic titration deci-
sions may explain some of the outcome differences between 
the studies discussed above.80,275 Ongoing observational283 
and interventional240,284 studies are examining these issues 
in more detail to determine whether raw or processed EEG-
titrated anesthetic administration protocols can reduce the 
incidence of postoperative delirium and postoperative cogni-
tive dysfunction and even reduce postoperative mortality.285

Systems/Cognitive Neuroscience-level 
Mechanisms of Post–cardiac Surgery 
Cognitive Dysfunction
Significant neuroimaging advances have been made over the 
past 20 yr, and several studies have used structural and func-
tional neuroimaging to examine the neuroanatomic basis of 
cognitive dysfunction after cardiac surgery. For example, car-
diac surgery patients with structural MRI evidence of increased 
ventricular size (a likely neural correlate of cortical atrophy), 
have an increased odds of developing postoperative delirium.9

Functional MRI can also measure activity within specific 
brain regions via the blood oxygen level dependent signal, a 
hemodynamic correlate of neuronal activity, and can be used 
to measure postoperative brain activity changes. For example, 
Abu Omar et al.286 performed blood oxygen level dependent 
functional MRI scans before and 4 weeks after surgery in 12 
on-pump and 13 off-pump cardiac surgery patients, while 
they completed a working memory task (i.e., the N-back 
task, in which subjects see a series of letters or numbers and 
are asked to press a button whenever the letter or number 
was seen N times beforehand48). Patients who underwent 
on-pump, but not those who underwent off-pump, cardiac 
surgery showed a postoperative decrease in prefrontal cor-
tex activation during the most demanding attention task, 
the 3-back condition.286 Interestingly, the postoperative 
decrease in prefrontal cortex activation during 3-back task 
performance in on-pump cardiac surgery patients correlated 
with transcranial Doppler-detected intraoperative emboli 
number, though no differences in N-back task performance 
were observed in on-pump versus off-pump groups, or before 
versus after surgery.286 These data suggest that intraoperative 
embolic load may be associated with altered brain activity 
during cognitive task performance, although these changes 
may not be sufficient to impede task performance/accuracy. 
Future studies will be necessary to determine whether these 
changes in prefrontal cortex activity are associated with sub-
jective cognitive complaints after on-pump cardiac surgery.

In addition to measuring activity within specific brain 
regions, functional MRI can also measure correlated activ-
ity patterns between brain regions, known as functional 
connectivity, even in regions that are not directly ana-
tomically connected. Multiple “functionally connected” 
human brain networks play important roles in specific 
cognitive processes (fig. 3).287 Recent studies have begun 

D
ow

nloaded from
 http://pubs.asahq.org/anesthesiology/article-pdf/129/4/829/520695/20181000_0-00040.pdf by guest on 16 August 2022



Copyright © 2018, the American Society of Anesthesiologists, Inc. Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

Anesthesiology 2018; 129:829-51	 840	 Berger et al.

Neurocognitive Dysfunction after Cardiac Surgery

to examine the function of these networks in patients 
before and after cardiac surgery. For example, Brown-
dyke et al. recently examined cognitive and functional 
connectivity changes in 12 patients before and 6 weeks 
after cardiac surgery, and over the same time interval, in 

12 nonsurgical “controls” with cardiac disease.63 There was 
a larger drop in cognition after cardiac surgery than over 
the same interval in nonsurgical controls. Further, in car-
diac surgery patients, the degree of postoperative global 
cognitive dysfunction correlated with the magnitude of 
decreased functional connectivity in the posterior cingu-
late cortex and the right superior frontal gyrus,63 two key 
regions of the brain’s default mode network.288,289 Simi-
larly, Huang et al. also recently observed decreased default 
mode network functional connectivity in older adults after 
orthopedic surgery.290 The default mode network is a set of 
brain regions that show temporally correlated blood oxy-
gen level dependent signal activation patterns while sub-
jects are at rest and not performing cognitive tasks288,289 
and thus, could be viewed as an “idling state network” 
that is not important for cognition. Yet, these findings 
support the emerging view that default mode network 
functional connectivity is important for cognition,291 and 
suggest that resting-state default mode network dysfunc-
tion may be a correlate of post–cardiac surgery cognitive 
dysfunction. Similar altered connectivity between the pos-
terior cingulate (a default mode network hub region) and 
the prefrontal cortex has been observed in patients with 
delirium,292 which raises the possibility that default mode 
network functional connectivity disruptions may underlie 
both postoperative delirium and postoperative cognitive 
dysfunction.

Studies have also used EEG recordings to identify 
changes in underlying brain connectivity patterns that 
may be associated with postoperative delirium and/or 
postoperative cognitive dysfunction. For example, post-
cardiac surgery patients with delirium, as compared to 
those without delirium, had decreased postoperative EEG 
alpha band (8 to 13 Hz) power and connectivity.293 These 
findings are interesting because alpha band power under 
general anesthesia significantly decreases in patients older 
than age 65,280 who are at increased risk for postopera-
tive delirium and cognitive dysfunction. Low intraop-
erative alpha band power has also been correlated with 
lower preoperative baseline cognitive function,294 which 
is a risk factor for postoperative delirium and postopera-
tive cognitive dysfunction. Together, these findings sug-
gest that low intra- and postoperative alpha band power 
and connectivity may be EEG correlates of delirium, and 
raise the possibility that deficits in the thalamocortical 
circuitry thought to produce alpha band power295 may 
play a role in postoperative delirium. These findings also 
support Sanders’ hypothesis that delirium represents an 
acute breakdown in brain network connectivity.296 Future 
studies combining multi-electrode EEG recordings with 
resting-state and task-based functional MRI and other 
modern cognitive neuroscience techniques297 should help 
clarify functional connectivity and activity changes that 
may underlie delirium and postoperative cognitive dys-
function after cardiac surgery.

Fig. 3. Functionally connected networks in the human brain. 
These functional brain network region of interest maps were 
derived from independent components analysis of low-fre-
quency blood oxygen dependent signal functional magnetic 
resonance imaging data from the Human Connectome Proj-
ect dataset (N = 497).287 (A) default mode network regions of 
interest (blue), salience network regions of interest (red); (B) 
dorsal attention network regions of interest (black), frontopa-
rietal network regions of interest (light green); (C) language 
network regions of interest (purple), visual network regions of 
interest (pink); and (D) cerebellar network regions of interest 
(yellow), sensorimotor network regions of interest (green).
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Future Interventions to Prevent or Treat 
Postoperative Cognitive Dysfunction and/or 
Delirium
A number of novel approaches have been developed or proposed 
to improve neurocognitive function in older adults, ranging from 
video game-based brain training298 to vagal nerve stimulation299 
to noninvasive transcranial magnetic300,301 and electrical302 brain 
stimulation to diet interventions,303 physical exercise,304,305 and 
early postoperative ambulation.306–308 Many of these approaches 
share the common theme that they target entire brain regions 
and/or networks (or multiorgan systems, as in the case of 
vagal nerve stimulation), rather than single neurotransmitters 
or neuronal subtypes. Further, many of these approaches can 
be targeted and/or titrated in response to specific pathophysi-
ologic brain activity patterns and/or cognitive deficits present 
in individual patients. Similarly, many of the best established 
nonpharmacologic delirium prevention interventions (such as 
the Hospital Elder Life Program) involve interdisciplinary, mul-
ticomponent approaches that likely target multiple underlying 
brain mechanisms involved in delirium.309 To the best of our 
knowledge, though, none of the novel approaches discussed 
above have been used to prevent or treat postoperative cognitive 
dysfunction or delirium in cardiac surgical patients; thus, such 
studies will be important to conduct in the future.

Conclusions
The brain is widely viewed as the most complex organ in the 
human body, and there are significant anatomical and func-
tional differences between the brains of individual cardiac 
surgery patients.9,63 Thus, optimizing post–cardiac surgery 
neurocognitive function will likely require an individualized, 
patient-centered approach to managing multiple determinants 
of brain function ranging from oxygen and glucose delivery, to 
cerebral perfusion pressure management, to the careful phar-
macologic modulation of neural network activity, the surgical 
stress response, and the ensuing inflammatory response (fig. 2). 
This suggests that improving cognitive function after cardiac 
surgery will be complex and challenging. An additional chal-
lenge for future interventional studies will be to track each of 
the variables discussed above that may influence postoperative 
cognitive function and/or delirium (table 1), because interven-
tions designed to reduce postoperative cognitive dysfunction 
or delirium by targeting a single risk factor may have coun-
terbalancing effects if they distract from other intraoperative 
tasks (i.e., a fixation error310). Thus, an important goal will be 
to develop “bundle” protocols designed to simultaneously and 
practically optimize multiple intra- and postoperative variables 
to promote postoperative cognitive function for older patients. 
The significant ongoing progress in these areas and the poten-
tial of modern cognitive neuroscience approaches to study63 
and to treat298,300,301 these problems provides optimism that we 
will succeed in improving neurocognitive outcomes for future 
older cardiac surgery patients, an important American Society 
of Anesthesiologists Brain Health Initiative goal.311
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