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SUMMARY

Anumberof behaviouralphenomenadistinguish the recognitionof faces andobjects, evenwhenmembers of a
set of objects are highly similar. Because faces have the same parts in approximately the same relations, indi-
viduation of faces typically requires speci¢cation of the metric variation in a holistic and integral
representation of the facial surface. The direct mapping of a hypercolumn-like pattern of activation onto a
representation layer that preserves relative spatial ¢lter values in a two-dimensional (2D) coordinate space,
as proposed by C. von der Malsburg and his associates, may account for many of the phenomena associated
with face recognition. An additional re¢nement, inwhich each columnof ¢lters (termeda`jet') is centred ona
particular facial feature (or ¢ducial point), allows selectivity of the input into the holistic representation to
avoid incorporation of occluding or nearby surfaces. The initial hypercolumn representation also charac-
terizes the ¢rst stage of object perception, but the image variation for objects at a given location in a 2D
coordinate space may be too great to yield su¤cient predictability directly from the output of spatial kernels.
Consequently, objects can be represented by a structural description specifying qualitative (typically, non-
accidental) characterizations of an object's parts, the attributes of the parts, and the relations among the
parts, largely based on orientation and depth discontinuities (as shown by Hummel & Biederman). A series
of experiments on the name priming or physical matching of complementary images (in the Fourier domain)
of objects and faces documents thatwhereas face recognition is stronglydependentonthe original spatial ¢lter
values, evidence fromobject recognition indicates strong invariance to these values, evenwhen distinguishing
among objects that are as similar as faces.

1. INTRODUCTION

We propose a theoretical account of the neural, percep-
tual, and cognitive di¡erences that are apparent in the
individuation of faces and the entry- and subordinate-
level classi¢cation of objects. After a general theoretical
overview, we review some of the behavioural and
neural phenomena by which face and object recogni-
tion can be contrasted, and then present a
neurocomputational account of these di¡erences, with
particular attention to the perceptual representation of
faces. Finally, original experiments testing a key
assumption of this account are described.

2 . A THEORETICAL OVERVIEW: FACE
AND OBJECT RECOGNITION

The basic theoretical di¡erences that we will propose
are diagrammed in ¢gure 1. The object model follows
that of Hummel & Biederman (1992) and only a brief
overview will be presented here. Speci¢cation of the
edges at an object's orientation and depth discontinuities
intermsof non-accidentalproperties (NAPs) is employed
to activate units that represent simple, viewpoint invar-
iant parts (or geons), such as bricks, cones, and wedges.
Other units specify a geon's attributes, such as its approx-
imate orientation (e.g. horizontal) and aspect ratio, and

still other units specify the relative relations of pairs of
geons to each other, such as top-of, larger-than, end-to-
middle-connected. The separate units associated with a
given geon, its attributes, and its relations, are bound
(through correlated ¢ring) to a unit termed a geon
featureassembly (GFA).Aunit representingageon struc-
tural description (GSD) specifying the geons and their
relations in a given view of the object can then self-orga-
nize to the activity froma small set of GFAs.

Di¡erences in GFAs are usually su¤cient to distin-
guish entry level classes and most subordinate level
distinctions that people canmake quickly and accurately
in their everyday lives. Sometimes the GSDs required for
subordinate level distinctions are available at a large-
scale, as in distinguishing a square table from a round
table. Sometimes they are at a small-scale, as when we
use a logo to determine themanufacturer of a car.

Although there are some person individuation tasks
that can be accomplished by the information speci¢ed
by a GSD (`Steve is the guy wearing glasses'), generally
we will focus on cases where such easy information as a
distinctive GSD or texture ¢eld (`Steve is the guy with
freckles') is insu¤cient.We will argue that the informa-
tion required for general purpose face recognition is
holistic, surface-based, and metric, rather than parts-
based, discontinuous, and non-accidental (or qualita-
tive), as it is with objects. A representation that preserves

Phil.Trans. R. Soc. Lond. B (1997) 352, 1203^1219 1203 & 1997 The Royal Society
Printed in Great Britain



the relative scale of the original spatial ¢lter values in a
coordinate space that normalizes scale and position may
allow speci¢cation of the metric variation in that region
fordetermining the surfaceproperties of a face.The coor-
dinate system is preserved because the locations of facial
characteristics arehighly predictable fromagivenpose of
a face. For objects they are not. (What is in the upper,
right hand part of an object?) Relative (cycles/face)
rather than absolute (cycles/degree) allows invariance
over size changes of the face.

We consider two recent proposals by C. von derMals-
burg and his associates for face representation.The ¢rst
(see ¢gure 1a), is described by Lades et al. (1993). This
system maps columns (or `jets') of V1-like spatial ¢lter
activation values to images of faces or objects. The jets
are arranged in a hypercolumn-like lattice where they
are stored. This stored lattice serves as a representation
layer, and is then matched against probe faces or objects
by correlating the ¢lter values of the original lattice
against a new lattice that has been allowed to deform to
achieve its ownbestmatch.The secondmodel (¢gure1b),
proposedbyWiskott et al. (1997), positions each of the jets
not on the vertices of a rectangular lattice but to assigned
`¢ducial points' on a face, such as the left corner of the
mouth. These face models will be considered in more
detail in a later section.

3. DISTINGUISHING FACE AND OBJECT
RECOGNITION: EMPIRICAL RESULTS

One problem in distinguishing face and object recog-
nition is that there are a large number of tasks that can
be loosely described as `recognition'.Wewill consider the
identi¢cationof an image of a face to the criterionof indi-
viduation, and that of an object with its assignment to its
basic level or common subordinate level class.

(a) Behavioural di¡erences

Table 1 lists eight behavioural di¡erences between
face and object recognition. See Bruce (1988) and
Bruce & Humphreys (1994) for more extensive
reviews. These will be considered in turn with respect
to the di¡erent properties that should be captured by a
particular representation.

(i) Con¢gural e¡ects
Tanaka & Farah (1993) trained their subjects to

recognize a set of Identikit faces, each of which had a
di¡erent pair of eyes, nose, and mouth. In testing, they
presented pairs of images that di¡ered in the shape of a
single face part, the eyes, nose, or mouth (¢gure 2). In
one condition, only a pair of face parts was shown, for
example, two slightly di¡erent noses. In the other, the
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Figure 1. Relations between presumed models of object and face recognition. Both start with a lattice of columns of spatial
¢lters characteristics of six hypercolumns. The object pathway is modelled after Biederman (1987) and Hummel &
Biederman (1992) and computes a geon structural description (GSA) which represents the parts and their relations in a
view of an object. Both face pathways retain aspects of the original spatial ¢lter activation patterns. In the (a) pathway,
modelled after Lades et al. (1993), the default position of the columns (termed `jets') of ¢lters is a lattice similar to that of
the input layer, but which can be deformed to provide a best match to a probe image. In the (b) pathway, modelled after
Wiskott et al. (1997), the jets are centred on a particular facial feature, termed a ¢ducial point.



stimuli were part of a context of a whole face; one with
one of the noses, the other with the other nose. The
subjects did not know which face part might di¡er
when they viewed a complete face. Remarkably, the
context of the face facilitated detection of the di¡er-
ence. The facilitation from the presence of the context
was not found for non-face objects, such as a house, or
when the faces were inverted.

(ii) Expertise
Good face-recognizers use the whole face, although

with unfamiliar faces the overall external shape and
hairline receive extremely high weight (Young et al.
1985). When asked to describe a picture of a person's
face, these individuals will often refer to a famous
person, perhaps with some modi¢cation in the descrip-
tions (Cesa 1994). Poor recognizers tend to pick a single
feature or small set of distinctive features. As people
age, face recognition performance declines. This
decline is marked by a qualitative shift in the represen-
tation such that older people, like poor face-
recognizers in general, search for distinctive features.
Prosopagnosics often report a distinctive feature
strategy as well (Davido¡ 1988).

In contrast to the holistic processing of faces, exper-
tise in the identi¢cation of an object from a highly
similar set of objects is most often a process of discovery
or instruction as to the location and nature of small
di¡erences that reliably distinguish the classes (Gibson
1947; Biederman & Shi¡rar 1988). If such features are
not present, then performance is often slow and error
prone (Biederman & Subramaniam 1997). Gibson
(1947) described the consequences of attempting to
teach aircraft identi¢cation during World War II by
`total form' versus distinctive features of the parts:

`Two principal observations made by the instructors
who took part in the experiment are of some bearing on
the question of the two methods under consideration.
The impression was obtained by all three of the instruc-
tors, at about the time the course was two-thirds
completed, that the group taught by emphasis on total

form was de¢nitely `̀ slipping'' in comparison with the
other group. The second observation was that a single
question was insistently and repeatedly asked by the
cadets in the group taught by emphasis on total form.
This question was `̀ How can I distinguish between this
plane and the one which resembles it closely (e.g. the C-
46 and the C-47)?''' (Gibson 1947, p. 120.)
Whether still more extensive training on non-face

stimuli can lead to face-like processing is an open issue.
Gauthier & Tarr (1997) provided extensive training to
some of their subjects in distinguishing among a family
of g̀reebles' a set of stimuli composed of three rounded
partsöa base, body, and headöone on top of the other,
with protrusions that are readily labelled penis, nose,
and ears. Unfortunately, these rounded, bilaterally
symmetrical creatures closely resemble humanoid char-
acters, such as the Yoda (in Return of the Jedi). This
characteristic of the stimuli is termed unfortunate
because even if face- or body-like results were obtained
from the training, it would be unclear whether the
stimuli engaged face or body processing because of
their physical resemblance to people. In the other direc-
tion, some of the di¡erences in body parts distinguishing
groups or sex of the greebles appeared to be non-acci-
dental, the presence of a brick at the base of a body
part, for example, a characteristic that would not distin-
guish faces in general. Despite Gauthier & Tarr's
conclusion that they were able to mimic face processing
with their training, their results were clearly inconsistent
with face-like processing. For example, there were no
e¡ects of inverting the greebles or testing for the identity
of a part outside of its greeble context. Gauthier & Tarr's
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Table 1. Some di¡erences in the recognition of faces and
objects

faces objects

con¢gural e¡ects? yes no
basis of expertise holistic

representation
feature
discovery

di¡erences verbalizable? no yes
sensitive to contrast
polarity?

yes no

sensitive to illumination
direction?

yes no

sensitive to metric
variation?

yes slightly

sensitive to rotation in
depth?

yes no, within part
aspects (ca. 608)

sensitive to rotation in
the plane?

yes slightly

Which is Larry's nose?

Which is Larry?

Figure 2. Sample stimuli from Tanaka & Farah's (1993)
single feature and whole face conditions. In the single
feature condition, subjects were presented with, for
example, the upper pair of noses and were to judge,
`Which is Jim's nose?'. In the whole face condition, the
subjects were presented with a pair of faces whose members
were identical but for a single feature, the one shown in the
feature condition, and they had to judge, `Which is Jim?'.
Used with permission.



results are, perhaps, more consistent with the viewpoint-
invariant recognition of objects by geons than they are to
face recognition.

(iii) Di¡erences verbalizable?
People ¢nd it exceedingly di¤cult to express verbally

the di¡erencesbetween two similar faces.This fact iswell
known to the chagrin of police investigators interviewing
witnesses. When asked to describe an object, however,
people readily name its parts andprovide a characteriza-
tion of the shape of these parts in terms of NAPs (Tversky
& Hemenway 1984; Biederman 1987). Within highly
similar shape classes, such as Western American male
Quail, people will spontaneously employ local shape
features that closelycorrespond to those speci¢edöverb-
allyöby the bird guides (Biederman et al. 1997). Gibson
(1947) concluded that the problem of training aircraft
spotters was best solved by informing them of the non-
accidental di¡erences in the shapes of parts. It was a
simple matter for Gibson to construct an outlineöin
wordsöproviding this information.

(iv) Sensitivity to contrast polarity and illumination direction?
Whereas people have great di¤culty in identifying a

face from a photographic negative or when illuminated
from below (Johnston et al. 1992), there is little, if any,
e¡ect of reversing the polarity of contrast of a picture of
an object (Subramaniam & Biederman 1997). Viewing
an object at one polarity provides essentially the same
information about the structure of the object as does the
other polarity. A major reason for this di¡erence
between faces and objects is that, as noted previously,
object recognition is largely based on distinguishable
parts based on di¡erences in NAPs of edges marking
orientation and depth discontinuities. The position of
these edges and their non-accidental values (e.g. straight
or curved) are una¡ected by contrast reversal. Individu-
ating faces typically requires metric di¡erences thatmay
be speci¢ed in terms of the convexities and concavities
that characterize a facial structure. A change in contrast
polarity would reverse the interpretation of the lumi-
nance and shadow gradients that are employed to
determine the convexity or concavity of a smooth
surface. A similar explanation may account for some of
the increaseddi¤culty in identifying faceswhen theyare
illuminated from below as this would violate the strong
assumption that illumination is from above.

(v) Metric variation?
Metric properties are those such as aspect ratio or

degree of curvature that vary with the orientation of
the object in depth. Such properties are to be contrasted
withNAPs, such aswhether an edge is straight or curved,
which are only rarely a¡ected by slight changes in the
viewpoint of an object. Other NAPs are the vertices that
are formed by coterminating lines and whether pairs of
edges are approximately parallel or not, given that the
edges that are not greatly extended in depth.
Before looking at ¢gure 3 (from Cooper & Wojan

1996), please cover the left and center columns. In
looking at the right column, the reader can assess for

himself or herself how modest variation in the metrics
of a face can result in marked interference in the recog-
nition of that face (see also Hosie et al. 1988). In these
images of celebrities, the eyes have been raised. A
similar variation in the length (and, hence, aspect
ratio) of an object part, as illustrated in ¢gure 4, has
little or no e¡ect in the assignment of objects to classes.
As long as the relative relations, such as larger-then or
above, between parts are not changed by altering a
part's length, the e¡ects of the variation appear to be
con¢ned to that part, rather than a¡ecting the object
as a whole. Unlike what occurs with the holistic e¡ects
with faces, there is little e¡ect of the variation on a
metric attribute of a part in the recognition of objects.
Cooper & Biederman (1993) presented two images of
simple, two-part objects (illustrated in ¢gure 4) sequen-
tially. Subjects had to judge whether the two objects had
the same name.When the objects di¡ered in the aspect
ratio of a part, reaction times (RTs) and error rates
were only slightly elevated compared to when the
images were identical. A change in a NAP produced a
much larger interference e¡ect on the matching.

(vi) Rotation in depth
If objects di¡er in NAPs, then little or no cost is

apparent when they are rotated in depth, as long as the
same surfaces are in view (Biederman & Gerhardstein
1993). In contrast, when the di¡erences are in metric
properties, such as aspect ratio or degree of curvature,
then marked rotation costs are observed (e.g. Edelman
1995). The robustness of the detection of non-accidental
di¡erences under depth rotation is not simply a function
of greater discriminability of NAPs compared to metric
properties. Biederman & Bar (1995) equated the detect-
ability of metric and non-accidental part di¡erences in a
sequential same^di¡erent matching task with novel
objects. Presenting the objects at di¡erent orientations in
depth had no e¡ect on the detectability of non-accidental
di¡erences. When easy non-accidental cues are elimi-
nated, such as glasses, facial hair, and the hairline, even
modest rotationsof faces, from208 left to 408 right, as illu-
strated in ¢gure 7 (middle row), can result in marked
increases in RTs and error rates in their matching
(Kalocsai et al.1994).

(vii) Rotation in the plane
Recognizinganupside-down face is extremelydi¤cult

relative to identifying an upside-down object, such as a
chair (e.g.Yin 1969; Johnston et al. 1992; Jolicoeur 1985).
According to theHummel&Biederman (1992) network,
turning an object upside down would leave most of the
units coding the structural description intact, a¡ecting
only the relations top-of and below. Consequently, only a
small e¡ect for objects would be expected. Some of the
large e¡ect of inversion with face photographs lies in the
misinterpretation of luminance gradients where the light
source is typically assumed tobe coming fromabove. But
when the light source is controlled, there still remains a
large cost to viewing a face upside down (Johnston et al.
1992; Enns & Shore 1997), as expected from their repre-
sentation in a 2D coordinate space.
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(b) Neural di¡erences between faces and objects

There are several neural di¡erences distinguishing
the representation of faces and objects. Only a brief
summary will be presented here. (See GrÏsser &
Landis (1991) for a comprehensive treatment of this
general area.)

(i) Selective impairment: prosopagnosia and object agnosias

Prosopagnosia, the inability to recognize familiar
faces but with a normal or near normal capacity for
object recognition, is a well-documented phenomenon,
generally associated with lesions to the right, inferior
mesial hemispheric (GrÏsser & Landis 1991), although
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Figure 3. Sample stimuli from Cooper & Wojan (1996). Subjects were much worse at identifying the celebrities in the third
column, where both eyes were raised, compared to those in the second column where only one eye was raised, despite the
greater di¤culty in judging the later as a face. Copyright Eric E. Cooper. Used with permission.



some (e.g. Damasio et al. 1985) have argued that the
lesions must be bilateral. Farah (1990) theorized that
the underlying continuum in visual recognition
extended from holistic processing, which would be
required for faces, to the capacity to represent multiple
shapes (or parts), which would be typi¢ed by the inte-
gration of letters into words in reading. She surmised
that bilateral parietal and superior occipital lesions
a¡ected holistic processing, whereas lesions to the left
inferior temporal-occipital region (including the fusi-
form) resulted in a condition, ventral simultagnosia, in
which the patient could not simultaneously process
multiple parts of an object or letters of a word (alexia).
Object recognition, according to Farah, employs both
types of processing, so object agnosia should be accom-
panied by either prosopagnosia or alexia. Two recent
cases have con¢rmed that a loss of the capacity for
parts-based representation need not interfere with face
recognition (Rumiati et al. 1994; Behrmann et al. 1992).
We interpret these ¢ndings (and those described in the
section on expertise) as evidence that object recognition
does not generally entail holistic processing.

(ii) Imaging studies
Recent facial magnetic resonance imaging (fMRI)

studies in humans have given clear evidence for object
and shape speci¢c regions in the occipital cortex.Tootell
et al. (1996) have documentedanareajust anterior toV4v
and partly overlapping with regions of the fusiform,
termed the lateral occipital (LO), that gives vigorous
responses to interpretable faces and objects even when
they are unfamiliar, such as an abstract sculpture, but
not to these stimuli when they have been rendered into
textures as, for example, quantized blocks characteristic
of the`Lincoln' illusionor ingratings, texturepatterns, or
highly jumbled object images. In contrast to LO,V4 does
not show this speci¢city to objects as compared to
textures. The LO is therefore sensitive to shapesöfaces
or objectsöthat have an interpretable structure rather
than being characterizable as a texture pattern. More
anterior regions in the ventral pathway such as ITare
sensitive to the familiarity of the objects, as described in
the next section.That the LO's responsivity is una¡ected
by familiarity suggests that it may be a region where
shape descriptionsöeven novel onesöare created. A
number of fMRI and positron emission tomography
(PET) studies have demonstrated that the processing of
faces and objects activate di¡erent loci in or near the
LO.These areas are generally consistent with the results
of the lesionwork, showing greater posterior right hemi-
sphereactivity, particularly inthe fusiformgyrus, for face
processing and greater left hemisphere activity for object
processing (Kanwisher et al. 1996; Sergent et al. 1992,
1994). The two PET studies by Sergent et al. are note-
worthy in showing virtually identical loci for the
di¡erential activity of judging whether a face was that of
an actor.The control taskwas one of judgingwhether the
orientation of a gratingswas horizontal or vertical.

(iii) Single unit recording
It is well established that individual IT cells can be

found that are di¡erentially tuned either to faces or to
complex object features, but not both (e.g. Baylis et al.
1987; Kobatake & Tanaka 1994; Young & Yamane
1992). However, as recently argued by Biederman et
al. (1997), it is likely that these IT cells are not
involved in the initial perceptual description of an
imageörather that they suggest that this is accom-
plished by the LO or in the area immediate anterior
to itöbut, instead, in coding episodic memories
following perception. Because these experiences include
contribution of the dorsal system in which position,
size, and orientation of the stimulus is speci¢ed, it is
not surprising to ¢nd cells that are tuned to the
speci¢c orientations and characteristics of the trained
stimuli (e.g. Logothetis et al. 1994). That IT may not
be involved in the perceptual recognition of a face or
object is suggested by the requirement of an interval
between stimulus presentation and testing in order to
show any de¢cits in object processing of macaques
who have undergone bilateral ablation of IT (Desi-
mone & Ungerleider 1989). However, the di¡erential
tuning of IT cells to faces and complex object features
indicates that these two classes of stimuli are distin-
guished neurally. A given IT face cell does not ¢re in
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(a) (b) (c)

Figure 4. Sample object stimuli from Cooper & Biederman
(1993). (a) standard; (b) NAP change; and (c) metric
change. Given the standard object on the left, a NAP of only
a single part was changed in the objects in the middle column
(NAP condition), and that same part was lengthened in the
metric condition, illustrated by the objects in the third
column. The magnitude of the metric changes were slightly
larger than the NAP changes, according to the model of
Lades et al. (1993). Whereas the di¡erences between metric
and standard images were more readily detected when
performing a simultaneous physical identity matching task
(`Are the objects identical?'), in a sequential object matching
task (`Do the objects have the same name?'), a change in a
NAP resulted in far more disruption than a change in a
metric property.



an all-or-nothing fashion to a given face, but partici-
pates in a population code to that face by which the
¢ring of the cell is modulated by the speci¢c charac-
teristics of the face (Young & Yamane 1992; Rolls
1992). Young & Yamane showed that the code for
macaques looking at pictures of men could be
summarized by two dimensions, one coding the width
of the face and one the distance of the pupil of the eye
to the hairline. Somewhat remarkably, as noted earlier,
these same two dimensions characterize human
performance with unfamiliar faces.

(iv) Universal classes of facial attributes
All cultures appear to process faces in highly similar

ways. Faces are not only processed for identity, but for
the information they provide about emotion, age, sex,
direction of gaze, and attractiveness. Di¡erent areas
mediate at least some of these attributes. Cells tuned to
di¡erences in emotional expression and direction of
gaze are found in the superior temporal sulcus in the
macaque, an area di¡erent from the IT locus of the
units that contribute to a population code that can
distinguish identity. Prosopagnosics can often readily
judge these other attributes, e.g. sex, age, etc., as we
have recently witnessed in our laboratory. To the extent
that these areas are segregated from those for object
recognition, we have additional evidence supporting
the faceobject distinction. However, it is not clear to
what extent, if any, these attributes contribute to face
individuation.

4 . A THEORY OF THE PERCEPTUAL
RECOGNITION OF FACES

Abiologically inspired face recognition system devel-
oped by Christoph von der Malsburg and his associates
(Lades et al. 1993;Wiskott et al. 1997) suggests a theore-
tical perspective from which many of the phenomena
associated with face perception described in the
previous section might be understood. The funda-
mental representation element is a column of
multiscale, multiorientation spatial (Gabor) kernels
with local receptive ¢elds centered on a particular
point in the image. Each column of ¢lters is termed a
`Gabor jet', and each jet is presumed to model aspects
of the wavelet-type of ¢ltering performed by a V1
hypercolumn. We will ¢rst consider the initial version
of the model (Lades et al. 1993), which will be referred
to as the lattice version. This model can be applied to
the recognition of faces and objects, so it has the poten-
tial to serve as a device for the scaling of both kinds of
stimuli. A more recent version (Wiskott et al. 1997), the
`¢ducial point' model, incorporates general face knowl-
edge. We will ignore preprocessing stages by which a
probe image is translated and scaled to achieve a
normalized position and size. Overall illumination
levels and contrast are similarly normalized.

(a) The lattice model

As illustrated in ¢gure 5, Lades et al. (1993) posited a
two-layer network. The input layer is a rectangular
lattice of Gabor jets. The pattern of activation of the
80 kernels (¢ve scales6eight orientations6two
phases, sine and cosine) in each of the jets is mapped
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(a) (b) (c)

Figure 5. Illustration of the input layer to the Lades et al. (1993) network. (a) The basic kernels are Gabor ¢lters at di¡erent
scales and orientations, two of which are shown here (eight orientations, ¢ve scales). (b) The centre ¢gure illustrates the
composition of a jet, with the larger disks representing lower spatial frequencies. There are a set of 865 ¢lter responses at
one image location (only 463 are represented here). (c) This is a model showing a grid of 466 connected jets. The number
of jets, scales, and orientations can be varied.



onto a representation layer, identical to the input layer,
that simply stores the pattern of activation over the
kernels from a given image. An arbitrary large
number of facial images can be stored in this way to
form a gallery.

Matching of a new image against those in the gallery
is performed by allowing the jets (in either the probe or
a gallery image) to independently di¡use (gradually
change their positions) to determine their own best ¢t,
as illustrated by the arrows on the jets in the input
layer. The di¡usion typically results in distortion of the
rectangular lattice, as illustrated in ¢gures 6 and 7.The
similarity of two images is taken to be the sum of the
correlation in corresponding jets of the magnitudes of
activation values of the 80 corresponding kernels. The
correlations (range 0 to 1) for each pair of jets is the
cosine of the angular di¡erence between the vectors of
the kernels in an 80-dimensional space. (If the values
are identical, the angular di¡erence will be 08 and the
cosine will be 1. A 908 (orthogonal) di¡erence in angles
will be 0.00.) The correlations over the jets are summed
to get a total similarity score, expressed as a proportion
of the maximum score. Figure 7 illustrates distortion of
the lattice as a person changes expression, orientation,
and both expression and orientation. Typically, the
greater the deformation of the lattice, the lower the
similarity of the match.

Given a test image matched against a number of
stored images, the most similar image is taken to be
the recognition choice if it exceeds some threshold
value. In a set of over 1000 images of di¡erent people,

test images di¡ering moderately in pose and expression
were recognized by a version of the model (incorpor-
ating ¢ducial points) at a 95% accuracy level (Phillips
& Rauss 1997). Most important with respect to the
model's relevance to biological vision, the model's simi-
larity values for such images were strongly correlated
with human performance in judging whether a pair of
images depicted the same person's face (P. Kalocsai &
I. Biederman, unpublished data).

How well does the model re£ect the phenomena
associated with faces listed in table 1?

(i) Rotation e¡ects
We will ¢rst consider the model's handling of rotation

e¡ects, particularly rotation in depth, as that is an extre-
mely common source of image variation and we have
assessed its e¡ects under well controlled conditions.

1210 I. Biederman and P. Kalocsai Face and object recognition

Phil.Trans. R. Soc. Lond. B (1997)

Figure 6. Schematic representation of Lades et al.'s (1993)
two-layer spatial ¢lter model. The model ¢rst convolves
each input image with a set of Gabor kernels at ¢ve scales
and eight orientations and sine and cosine kernels arranged
in a 569 lattice. These values can be varied. The set of
kernels at each node in the lattice is termed a `Gabor jet'.
The activation values of the kernels in each jet, along with
their positions, are stored for each of the images to form a
`gallery'. The ¢gure shows the diameters of the receptive
¢elds to be much smaller than actual size in that the
largest kernels had receptive ¢elds that were almost as
large as the whole face.

(a) (b)

Figure 7. Sample images from the Kalocsai et al. (1994)
experiment with the Lades et al. (1993) lattice deformations
superimposed over di¡erent pairs of images of the same
person. The positioning of the lattice over an original
image is shown in the left-hand column (a) and the
deformed lattice is shown in the right-hand column (b).
Top, middle, and bottom rows show changes in expression,
orientation (608), and both expression and orientation,
respectfully. The similarities as determined by the Lades et
al. (1993) model correlated highly with performance in
matching a pair of images when they were at di¡erent
orientations and expressions (Kalocsai et al. 1994).



Kalocsai et al. (1994) had subjects judge whether two
sequentially presented faces were of the same or
di¡erent person in a task resembling that shown in
¢gure 16. The faces could be at di¡erent orientations
in depth and/or with a di¡erent expression, as shown
in ¢gure 7. Easy cues, such as facial hair, clothing and
the hairline (all stimulus models wore a white bathing
cap) were eliminated. A change in the depth orienta-
tion of the two poses, such as that shown in the middle
row of ¢gure 7, increased RTs and error rates for `same'
trials.The magnitude of this cost was strongly and line-
arly correlated with the lattice model's similarity values
for the pair of pictures, 0.90 for RTs and 0.82 for error
rates. That is, the more dissimilar the two ¢gures
according to the model, the longer the RTs and error
rates for judging them to be the same person. We can
consider the e¡ects of depth rotation as a yardstick for
determining the model's adequacy for handling other
e¡ects.

Turning a face upside down would greatly reduce its
similarity to that of the original image. Although it
would be a simple matter, computationally, to rotate
the coordinate space of the jets to eliminate the e¡ects
of planar rotation, the large cost to human recognition
performance from inversion suggests that such a trans-
formation is not available to human vision. Given a
yardstick of depth rotation, it is an open question
whether the same similarity function would also
account for the cost of 2D inversion or other variables.
That is, would a 608 rotation in depth (around the y-
axis) result in as much cost as a 608 rotation in the
plane? What would human subjects evidence?

Given that we have a scaling device (namely, the
model of Lades et al. model), the analysis that could
be undertaken to compare rotation in depth to rota-
tion in the plane can be illustrated by Kalocsai et al.'s
(1994) comparison of the e¡ects of di¡erences in depth
orientation to the e¡ects of di¡erences in expression.
Kalocsai et al. (1994) showed that when the degree of
image dissimilarity of two images of the same person
produced by di¡erences in depth orientation (holding
expression constant) and expression di¡erences
(holding depth orientation constant) were equated,
the increase in RTs and error rates in responding
s̀ame' were three times greater when the dissimilarity
was produced by expression di¡erences than when
produced by depth rotation. They modelled this e¡ect
by assuming that a classi¢er for expression, which was
also highly correlated with Gabor similarity, would
signal a mismatch to a decision stage (same versus
di¡erent person?) between two face images that
di¡ered in expression, even though the images were
of the same person. That mismatch signal resulted in
the increased cost for faces di¡ering in expression.

(ii) Con¢gural and verbalization e¡ects
Contrast variation within any small region of the face

would a¡ect all those kernels whose receptive ¢elds
included that region. The pattern of activation of the
kernels implicitly contains a holistic or con¢gural repre-
sentation in that the shape of all facial features and their
positions with respect to each other are implicitly coded

by the activation of the kernels. Indeed, the representa-
tion if run with su¤cient jets would be equivalent to a
picture of a face, and so it does not distinguish contrast
variation arising from the shape of facial features from
contrast variation arising from translation of those
features. It would be impossible to move a region or a
feature, or to change a feature, without a¡ecting the
coding of a number of kernels from a number of jets.The
representation thus becomes integral (Shepard 1964) or
non-analytical (Garner 1966) in that it is not decom-
posed into readily perceivable independent attributes.
This spatially distributed population code of activation
values of many kernels of varying scales and orientations
in a number of di¡erent jets thus captures many of the
characteristics of what is generally meant by `holistic
representations'. Consistent with human performance,
this spatially distributed code would be extraordinarily
di¤cult to verbalize.

(iii) Lighting, and contrast reversal e¡ects
Although the model's normalization routines allows

its performance to be invariant to overall lighting and
contrast levels, a change in the direction of lighting
would result in a cost in similarity for the lattice
model. It is not clear whether changing the light source
vertically, from top to bottom, would result in a greater
reduction in similarity, than a change from right to left,
nor would the cost of contrast reversal necessarily be as
severe as that evidenced in human performance when
compared to, say, rotation in depth.There is nothing in
the model, at present, that would identify regions on the
surface as convex or concave.

(iv) Metric sensitivity
Metric variation such as that performed by Cooper

& Wojan (1996) in raising the eyes in the forehead
would alter the pattern of activation values in the
lattice. Although the distortion of the lattice might be
su¤cient to account for the e¡ects on recognition
performance of such an operation, it is not obvious
how lattice distortion would handle the much smaller
e¡ect of moving only one eye. The need to handle this
result and others in this section on metric sensitivity
(along with the bene¢ts of improved recognition
performance) provide motivation for the model's incor-
poration of ¢ducial points.

Another result that is not obviously derived from the
lattice model is the extraordinary di¤culty in recog-
nizing the components of a face where the upper half
is of one famous person and the lower half another,
with the upper and lower halves smoothly aligned to
constitute a single face (Young et al. 1987). When the
upper and lower halves are o¡set it is much easier to
identify the component individuals.
A third result is that we experience little distortion of

other regions when a face is partially occluded as, for
example, when a person holds his chin with his hand.
The hand is not seen as part of the face but instead is
regarded as another object, with the occluded regions
contributing little, if anything, to the perception of the
face.
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(b) Beyond a lattice of spatial features: ¢ducial
points

We now consider the ¢ducial point version of the face
recognition system so that we can appreciate the poten-
tial gains in making facial features explicit by centring
designated jets onto salient feature points. We will also
consider two other possible extensions of the model: the
explicit use of (i) spatial distances and (ii) normative
coding by which a face is represented in terms of its
deviations from a population norm.

In the ¢ducial pointmodel (Wiskott et al.1997), the jets
are not initially arranged in a rectangular lattice but,
instead, each jet is centred on a particular landmark
feature of the face, termed a ¢ducial point, such as the

corner of the right eye. This step has been implemented
and was achieved by centring each of 45 jets (by hand)
on a particular ¢ducial feature, e.g. the outside corner of
the right eye, for a`learning set'of 70 faces,whichdi¡ered
in age, sex, expression, depth orientation, etc. Figure 8
shows some of the ¢ducial points on a face at di¡erent
orientations and expressions. The 70 jets for each of the
45 points are stored as a`bunch graph'.When a new face
is presented to the system, not themean but the closest ¢tting
of the 70 jets for each feature is takenas abasis for re¢ning
thepositionbyundergoinglocaldi¡usion.Forexample, if
the right eye in the probe image is blinking, then a best
match might be an eye that is blinking, rather than the
mean. A jet on the centre of the chin might come from
another face. Once a su¤ciently large set of faces is
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Figure 8. Illustration of the mapping of jets onto ¢ducial points (the vertices of the triangles) on three images of the same
person at di¡erent orientations and expressions.

Figure 9. Illustration of how the eight scales6eight orientations were distributed to the members of a complementary pair.
If arranged as a checkerboard with rows representing the spatial frequencies and columns the orientations, one image would
have the speci¢c scale-orientation values of the red squares, the other member the values of the black squares. Here the
checkerboard is shown as two half radial grids, with scale varying with distance from the origin (low to high SF) and orien-
tation varying as shown. (The lower half would continue the upper half.)



included in thebunchgraphs (ca. 50), it is possible to auto-
matically add new ¢ducial points. After the matching jet
from the bunch graph ¢nds its optimal position, the
actual pattern of activation for a jet at that ¢ducial point
is taken to be one of the jets representing that particular
face.

The ¢ducial points, in additional to potentially
allowing better resolution in matching, can readily be
employed to reject inappropriate image information,
such as would occur if the face was partially occluded
by a hand. When none of the jets for a given ¢ducial
point in the bunch graph can match their feature to
some con¢dence level in a circumscribed region
(constrained in part by the neighbouring jets), that jet
is simply not employed in the matching phase. In this
way partial occlusion can be made to exact a much
smaller cost on recognition than it would if the
occluder was incorporated into the representation of a
face. Although not implemented, it may be possible to
suppress the activity from parts of the receptive ¢elds of
jets that lie outside of the bounding contours of the face
so they do not contribute to the representation as well.
Young et al.'s (1987) ¢nding that o¡setting the upper
and lower halves of a composite face resulted in much
better performance in recognizing that the component
individuals might be handled by a similar application
of a ¢ducial point model. In this case the ¢ducial
points in the upper and lower halves of the face were
not in their expected locations, so their activation
pattern would not be included in matching one half of
the face to the other half. It is possible, of course, that
beyond the o¡set of the ¢ducial points, the matched

cusps provide strong evidence of separate parts, and
this evidence could also aid easier retrieval of the
o¡set face.

It will be recalled that in the Cooper &Wojan (1996)
experiment, better recognition was obtained for faces
in which one eye was raised, rather than both of them,
despite the former stimulus looking less like a face. If
the expected locations of the ¢ducial points for the eye
on the opposite side of the head di¡ered for the left and
right halves of the face, then each face half might not
have been integrated into the ¢ducial points of the eye
in the opposite half. Consequently, the original half
could vote for the correct face, without incorporation
of the distorted region.

In summary, in addition to greater accuracy in
recognizing faces over a wider range of conditions, the
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Figure 10. Example images for the object naming task of
experiment 1. Shown are the four images (two exem-
plars6two complements) created for the entry level object
`dog'. In the priming paradigm one of the four images was
displayed on the ¢rst block of trials and either the identical
image, its complementary pair, or a di¡erent exemplar
image was displayed on the second block of trials.
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Figure 11. Mean correct naming RTs and mean error rates
for the object naming task of experiment 1. The second
block data are for those trials where the object was correctly
named on the ¢rst block. (Because this was a within-subject
design, error bars show the standard error of the distribu-
tion of individual subjects' di¡erence scores, computed by
subtracting each subject's mean score from that subject's
score for a particular condition; and so they do not include
between-subjects variability.)



great value in employment of a ¢ducial point represen-
tation is that it allows selective attention to be exercised
over a holistic representation of the face.

(c) The use of topological relations

A secondmodi¢cation of the ¢lter model would be the
incorporation of the distancesbetween the jets.This could
be done either with the original lattice or with the ¢du-
cial points. Figures 7 and 8 show both arrangements
with the nodes of the lattice (upper) connected to its
nearest nodes and the ¢ducial points (lower) connected
to their nearest ¢ducial points to form a set of triangles. A
change in the image of a face produced by changes in
orientation and expression, as in ¢gures 7 and 8, results
in distortion of the lattice or the triangles. A potentially
important representational problem is whether the
distances among the jets (or the distortions of these
distances) should be incorporated into the representa-
tion or whether the jet similarities are su¤cient to
account for the accuracy of the model's performance in

modelling human face recognition. Many issues remain
concerning the possible inclusion of an explicit measure
of distance (e.g. the sum of the squares of the di¡erences
in corresponding distances) as a component of similarity
in the matching phase. The ¢ducial point model has a
strong potential for serving as a research platform for
addressing these and a number of the other issues in
face recognition, such as norm-based coding.

(d) Norm-based coding?

In the current versions of the model, the match of a
probe face to a face stored in the gallery is only a function
of the similaritybetween the two. Analternativebasis for
matchingcouldbe to includenotonly the similarityof the
two faces but their distances from the norms of a popula-
tion of faces.There are several e¡ects that would suggest
some role of such norm-based coding in face recognition.
Caricatures canbe created by enhancing deviations (e.g.
by 50%) of points on a particular face from the popula-
tion values (see Rhodes & Tremewan (1994) for a recent
review).Moreover, for famous faces the recognitionaccu-
racyof suchcaricaturesdoesnot su¡er incomparisontoö
and can sometimes be found to exceedöthe recognition
accuracy of the original face (Rhodes & Tremewan
1994). Carey (1992) and Rhodes & Tremewan (1994)
tested whether the caricature gains its advantage in
recognition (or resists a loss) because of the increased
`distinctiveness' of the distortions in face space. They
showed that `lateral'caricatures, in which the distortions
weremade inadirectionorthogonaltothedirectionof the
deviation of a point, were recognized less well than 50%
characters, whichwere recognizedaswell as the original,
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Figure 12. An example of two original grey level images of
a famous person (O. J. Simpson) illustrating di¡erences in
expression and pose used in the face veri¢cation task of
experiment 2. The images were collected such that the
expression and/or the orientation of the two face images of
a person were di¡erent.

Figure 13. Filtered complementary images for the famous
face veri¢cation task of experiment 2. Shown are the four
images (two exemplars6two complements) created for the
images of O. J. Simpson shown in ¢gure 12. In the priming
paradigm one of the four images was displayed on the ¢rst
block of trials and either the identical image, its comple-
mentary pair, or a di¡erent exemplar image was displayed
on the second block of trials.



and even less well than anticaricatures, faces where the
distortionwas reduced by 50% towards the norm.Thus,
it is notmerelyanydistortion that produces anadvantage,
butonly those thatenhance thedeviations fromthenorm.
The ¢ducial point model ofWiskott et al. (1997) would

seem to be particularly well designed to incorporate
norm-based coding. Whether the perception of carica-
tures di¡ers from that of non-caricatured faces can be
assessed with such a representation. A caricature
matched against its original image will have a lower
similarity value with the standard matching routines in
theWiskott et al. system. But it would be a simple matter
to include deviations of both the jet locations and the
kernel activation values from a normed face. One can
also ask whether the advantage of the caricature is one
of deviations from the norm or deviations from near
neighbours? In general these two measures will covary.
An explicit model also o¡ers the possibility of more
detailed tests of how caricatures function. When
performed over a set of faces, would it be possible to
predict which faces would enjoy a caricature advantage
and which would not? Should greater weight in
matching be given to kernels in proportion to their
departure from their normed activation value? This last

question raises a possible issue with respect to carica-
tures. People typically realize that they are looking at a
caricature and not the original face. Is it possible that
caricature perception alters the way in which faces are
coded or matched? Speci¢cally, do models that predict
the distinctiveness of uncaricatured faces also serve to
predict the distinctiveness of caricatured faces?

5. EMPIRICAL TESTS OF SPATIAL
FILTER REPRESENTATIONS

The purpose of the foregoing set of experiments was
to assess whether the identi¢cation or matching of faces
and objects would be dependent on the original spatial
¢lter values. We would expect such a dependence for
faces but not for objects.

There is considerable evidence that the priming of
objects cannot be dependent on a representation that
retained the similarity space of the activation values of
spatial ¢lters (Fiser et al. 1997). For example, if contours
are deleted from a line drawing of an object so that the
geons cannot be recovered from the image, recognition
becomes impossible (Biederman 1987). The same
amount of contour deletion, when it permits recovery
of the geons, allows ready recognition. Fiser et al.
showed that the Lades et al. (1993) model recognized
the two kinds of stimuli equally well. Similarly, the
Lades et al. (1993) model failed to capture the di¡er-
ences in matching objects that did or did not di¡er in a
NAP in the Cooper & Biederman (1993) experiment.
Biederman & Cooper (1991) showed that members of

a complementary pair of object images in which every
other line and vertex was deleted from each part (so
that each image had 50% of the original contours)
primed each other as well as they primed themselves.
The measure of priming was the reduction in the
naming RTs and error rates from the ¢rst to the
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Figure 14. Mean correct naming RTs and mean error rates
for the face veri¢cation task of experiment 2. The second
block data are for those trials where the object was correctly
named on the ¢rst block.

Figure 15. Same images for the chair matching task of
experiment 3. Shown are the four images (two exem-
plars6two complements) created for two chair images
from the stimuli set.



second brief exposure of an object picture. The priming
was visual, and not just verbal or conceptual, because
there was much less priming to an object that had the
same name but a di¡erent shape (e.g. two di¡erent
shaped chairs). In this case, humans treated the
members of a complementary pair as equivalent,
although the two members would have di¡erent
spatial ¢lter activation patterns (Fiser et al. 1997).

To test whether faces retain and objects do not retain
the original spatial ¢lter activation pattern, the ¢rst two
experiments employed a similar design comparing the
magnitude of priming of identical to complementary
images. Rather than deletion of lines as in Biederman
& Cooper's (1991) experiment, complementary pairs of
grey-level images of objects and faces of celebrities were
created by having every other Fourier component (eight
scales6eight orientations) in one member and the
remaining 32 components in the other, as illustrated in
¢gure 9 (see also Appendix 1). In experiment 1, subjects
named pictures of common objects on two blocks of
trials. On the second block, for each object viewed on
the ¢rst block, subjects would see either the identical
¢ltered image that was shown on the ¢rst block, its
spatial complement, or a di¡erent shaped exemplar
with the same name, as illustrated in ¢gure 10. The
results of this experiment are shown in ¢gure 11.Visual
priming was evidenced on the second block of trials
because the same shaped object was named more
quickly and accurately than an image with the same
name but a di¡erent shape. However, naming RTs and
error rates for identical and complementary images
were virtually equivalent, indicating that there was no

contribution of the original Fourier components
compared to their complements to the magnitude of
visual priming.

Experiment 2 employed the same general priming
design with faces except that subjects veri¢ed rather
than named the images of famous people. Before each
trial the subject was given the name of a famous person.
If the imagewas that person the subjects were to respond
`same'. In half of the trials the picture did not correspond
to the target and the subjects were to respond `di¡erent'.
In these cases the picture was a face of the same general
age, sex, and race as the target.The veri¢cation task was
used, rather than a naming task, because the naming of
faces is slow and error prone. As in experiment 1, two
pictureswith the same namebut a di¡erent shape (di¡er-
ences in pose, expression, orientation, etc.), as illustrated
in ¢gure12, were used to assess that the primingwouldbe
visualandnot just verbalorconceptual.As inexperiment
1, for the s̀ame' trials on the second block, for each face
viewed on the ¢rst block, subjects would see either the
identical image, its complement or the di¡erent image of
the same person as illustrated in ¢gure 13. In contrast to
the result for object naming, in this experiment comple-
mentary images were veri¢ed signi¢cantly more slowly
and less accurately than those in the identical condition,
as shown in¢gure14.Thedi¡erencebetweenthe comple-
mentary and the di¡erent exemplar faces was not
signi¢cant, indicating that the visual system represented
complementary face images almost as di¡erently from
the original as it did the di¡erent exemplar images.This
result indicates that the representation of a face, unlike
that of an object, is speci¢c to the original ¢lter values.
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Figure 16. Sequence of images presented in the chair matching task of experiment 3. The correct response to this sequence is
`same' because both pictures are of the same chair, although di¡erent members of a complementary pair.



One possible explanation for the above results is
what we have been positing: face representations
preserve the activation pattern of early ¢lter values,
whereas object representations do not. Alternatively, it
could be that it is the necessity for distinguishing
among highly similar entities, such as faces, that
produces a dependence on the original early ¢lter
outputs. Two additional experiments were conducted
to assess whether the dependence on the precise ¢lter
values were a consequence of the greater similarity of
the face stimuli (or the veri¢cation task itself ) as
opposed to being a phenomenon speci¢c to the repre-
sentation of faces. In these experiments, subjects
viewed a sequence of two highly similar chairs (experi-
ment 3, ¢gures 15 and 16; or two highly similar faces
(experiment 4), ¢gure 17). Subjects performed a same^
di¡erent matching task in which they judged, s̀ame' or
`di¡erent', whether the two chairs or persons were the
same, ignoring whether the image was identical or
complementary. The mean similarities of the comple-
mentary pairs of faces and chairs were approximately
equivalent, as was the mean similarity of target and
distractor faces and chairs as assessed by the Lades et
al. (1993) model (see also Appendix 2). In both experi-
ments 3 and 4, in half the same trials the second
presented image was identical to the ¢rst, and in the
other half it was the complementary image.

Performance on identical and complementary chair
images on s̀ame' trials was virtually identical, as shown
in¢gure18, indicatingthattherewasnoe¡ectof changing
the speci¢c spatial components of the chair images.
However, for faces, the complementary images were
signi¢cantly more di¤cult to match than identical ones
(¢gure19), indicatinga strong contribution of the speci¢c
spatial components in the image.

In summary, this set of experiments showedequivalent
priming and matching performance for identical and

complementary images of objects. However, faces
revealed a striking dependence on the original ¢lter
values. There was virtually no visual priming across
members of a complementary pair of faces, and face
complements were far more di¤cult to match than iden-
tical images. These results indicate that faces are
represented as a more direct mapping of the outputs of
early ¢lter values. One likely reason why the objects
were una¡ected by varying the ¢lter values is that object
representations employ non-accidental characterization
of parts or geons based on edges at depth or orientation
discontinuities. Di¡erent spatial ¢lter patterns can acti-
vate the same units coding edges, non-accidental
characteristics, part structures, and relations, as
discussedbyHummel& Biederman (1992).

6. CONCLUSION

A number of di¡erences are apparent in the beha-
vioural and neural phenomena associated with the
recognition of faces and objects. Readily recognizable
objects can typically be represented in terms of a geon
structural description which speci¢es an arrangement
of viewpoint invariant parts based on a non-accidental
characterization of edges at orientation and depth
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Figure 18. Mean correct RTs and mean error rates for the
chair matching task of experiment 3.

Figure 17. Example images for the unfamiliar face
matching task of experiment 4. Shown are the four images
(two exemplars6two complements) created for two face
images from the stimuli set.



discontinuities. The parts and relations are determined
in intermediate layers between the early array of
spatially distributed ¢lters and the object itself, and
they confer a degree of independence between the
initial wavelet components and the representation. The
units in a structural description of an object allow ready
verbalization. The non-accidental characterization of
discontinuities endows the representation with consid-
erable robustness over variations in viewpoint,
lighting, and contrast variables. Finally, object experts
discover mapping of small non-accidental features.
Individuation of faces, by contrast, requires speci¢ca-
tion of the ¢ne metric variation in a holistic
representation of a facial surface. This can be achieved
by storing the pattern of activation over a set of
spatially distributed ¢lters. Such a representation will
provide evidence for many of the phenomena associated
with faces, such as holistic e¡ects, unverbalizability,
and great susceptibility to metric variations of the face
surface, as well as to image variables such as rotation in
depth or the plane, contrast reversal, and direction of
lighting. Face experts represent the whole face. A series
of experiments demonstrated that the recognition or

matching of objects is largely independent of the parti-
cular spatial ¢lter components in the image, whereas
the recognition or matching of a face is closely tied to
these initial ¢lter values.

The authors express their deep appreciation to Professor
Christoph von der Malsburg for providing the general theore-
tical context by which biological face recognition might be
modelled, his help in using the face recognition systems that
he and his associates have developed, and for a number of sti-
mulating and helpful discussions.We also thank DrWolfgang
Konen for his assistance and support in our implementation
of ZN-Face, and Pearl Fang and NancyWang for their assis-
tance in creating the stimuli and running the subjects. This
research was supported by ARO NVESD grant no.
DAAH04-0065 and ONR N00014-95-1-1108.

APPENDIX 1.

Complementary image pairs were created by the
following procedure: eight-bit greyscale images were
Fourier-transformed and bandpassed ¢ltered cutting o¡
the highest (above 181cycles/images) and lowest (below
12 cycles/image) spatial frequencies.The remaining part
of the Fourier domain was divided into 64 areas (eight
orientations6eight spatial frequencies).The orientation
borders of the Fourier spectrumwere set-up in succession
of 22.58. The spatial frequency range covered four
octaves in step of 0.5 octaves. By this operation the two
complementary images had no common information
about the objects in the Fourier domain.

APPENDIX 2.

A recent study (Biederman & Subramaniam 1997)
provides strong documentation that the Lades et al.
(1993) system can provide an a priori measure of shape
similarity when the pairs of shapes only di¡er in metric
properties. In a same^di¡erent sequential matching
task, subjects judged whether two highly similar, blobby,
asymmetric toroidal free-form shapes were identical or
not. A family of 81 such shapes has been generated by
Shepard & Cermack (1973). On di¡erent trials, the
shapes varied in similarity, as assessed by the Malsburg
system. For intermediate to highly similar shapes, RTs
and error rates in judging that two shapes were di¡erent
correlatedby 0.95with themodel's similaritymeasure.
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