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The feedback people receive on their behavior shapes the process of belief formation and
self-efficacy in mastering a particular task. However, the neural and computational
mechanisms of how the subjective value of self-efficacy beliefs, and the corresponding affect,
influence the learning process remain unclear. We investigated these mechanisms during
self-efficacy belief formation using fMRI, pupillometry, and computational modeling, and by
analyzing individual differences in affective experience. Biases in the formation of self-efficacy
beliefs were associated with affect, pupil dilation, and neural activity within the anterior
insula, amygdala, ventral tegmental area/ substantia nigra, and mPFC. Specifically, neural and
pupil responses mapped the valence of the prediction errors in correspondence with indivi-
duals’ experienced affective states and learning biases during self-efficacy belief formation.
Together with the functional connectivity dynamics of the anterior insula within this network,
our results provide evidence for neural and computational mechanisms of how we arrive at

affected beliefs.
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elf-efficacy can be defined as a person’s subjective convic-

tion that he/she can overcome challenging situations

through his/her own actions!. To successfully perform goal-
directed actions, humans must learn from incoming information,
thereby forming beliefs about the world and about themselves
enmeshed in this world. According to economic theory, learning
should result in accurate beliefs that represent an internal model
of the world that is suitable to inform decision making. Novel
theoretical frameworks, among others by Bromberg-Martin
and Sharot?, emphasize that besides the instrumentality (i.e.
accuracy) of beliefs, they may also carry intrinsic value in and of
themselves, thus shaping the learning process and how people
ultimately arrive at their beliefs3. In this regard, affective states,
such as happiness about one’s own good health prognosis,
represent intrinsic values that individuals are inclined to optimize
during belief formation®. To demonstrate this entanglement of
affect and belief formation, we applied a learning task that
induces affective reactions during the process of forming con-
ceptually novel beliefs about one’s abilities to master a task™®.
Specifically, we focused on the primary affective states elicited by
self-efficacy beliefs — the self-conscious emotions of embarrass-
ment and pride - and their impact on the beliefs. By exerting
experimental control over failures and successes during the pro-
cess of self-efficacy belief formation, we were able to assess how
experienced affect relates to computational mechanisms of belief
formation and the underlying activity of neural systems, linking
neural and physiological mechanisms with shifts in preferences
for information of positive or negative valence during learning.

Affective states are considered to guide cognitive processing,
representing embodied and experiential information about the
positive or negative value of what people encounter’-8, It is pro-
posed that this internal affective information is integrated with
external information to shape beliefs that rather than being
objective, are motivated and biased by subjective feelings about
the beliefs themselves, leading to a recursive influence of beliefs
and affective states on each other2%10, Previous studies supported
aspects of Bromberg-Martin and Sharot’s framework? by
demonstrating that internal beliefs and external feedback can
elicit emotions like happiness, pride, or embarrassment!1-17,
Affective states also have been shown to alter decision
making!318:19 and cognitive processes like situational judgments
or learning styles’. Social anxiety, low self-esteem, or depression,
which are likely associated with more negative affective reactions
to self-efficacy beliefs, have also been found to bias social
learning>20-22, These findings provide support for the overall
rationale of the formation of affected beliefs, that is, the notion
that beliefs are fundamentally shaped by motivational biases as
well as affective experiences during feedback processing. How-
ever, the question remains open of which neurophysiological
mechanisms can explain how emotions elicited during learning
are associated with biases in belief formation.

Neuroscientific studies provided initial evidence that common
brain areas map the value of stimuli, actions, and their motiva-
tional relevance during social and non-social learning and deci-
sion making?3-4. Prediction errors, that is, the mismatch of prior
expectation and a situation’s outcome, are minimized by updating
beliefs during learning. These are generally processed in the
dopaminergically innervated ventral striatum, but also in the
orbitofrontal cortex or the amygdala during learning?4-27.
However, more recent findings suggest that there are distinct and
unique neural computations which potentially reflect the impact
of the prominent motivational and emotional processes during
belief formation. For example, studies have shown that distinct
value-related neural processes in subregions of the anterior cin-
gulate cortex (ACC) are recruited depending on whether infor-
mation about oneself or another agent is processed?32°. Other

findings revealed that activation in the ventral striatum was
modulated when the social context changed from a private to a
public situation, suggesting that the presence or absence of other
people influenced the sensitivity to the reward value of certain
decisions®. Biases specific to self-related learning, which are
absent when one is learning about another person>!, have been
associated with differences in the tracking of negative prediction
errors2. In this regard, the ventromedial prefrontal cortex
(vimPFC) shows valence-specific encoding of self-related feed-
back, which has been shown to predict an optimism bias in belief
updating3!-33.

Affective states triggered after personal failures or successes are
particularly important when people acquire novel self-concepts*
and develop an initial understanding of themselves as being self-
efficacious individuals in a novel task environment. Central to the
entanglement of affect and such self-efficacy beliefs is the
assumption that people are highly motivated to perform well and
maintain or even construct a positively shaped self-image3>-36.
Within this process, performance feedback elicits self-conscious
emotions, such as pride in the case of success!®37-38, but
also embarrassment if one fails to achieve the expected
outcome!437:39, Self-conscious emotions differ from other emo-
tional concepts as they essentially involve self-referential evalua-
tions and the activation of self-concepts3”. Thus, when it comes to
emotional experiences in the context of a performance situation,
pride or embarrassment are theoretically more valid constructs to
capture differences in affective experiences than e.g., the basic
emotion happiness. In the past, it has been demonstrated that
these self-conscious emotions are not only a consequence of the
situation but also directly affect behavior. Pride experiences
function as a motivator to persevere38. In contrast, embarrass-
ment experiences rather lead individuals to stop their current
behavior, withdraw, and appease others*®#l, For the process of
belief formation, it has been argued that specifically the dor-
somedial frontal cortex (dAMFC), the ventral and dorsal anterior
insula (vAI/ dAI), and the amygdala, brain areas involved in
action monitoring as well as emotional processing, integrate
affective states with outcome information*2. Therefore, the
anterior insula (AI) has been regarded, among other brain
regions, as an integrative hub for motivated cognition and emo-
tional behavior4>43. Similarly, dopaminergic midbrain nuclei in
the ventral tegmental area and substantia nigra (VTA/ SN) are
associated with attention processes, and at the same time, with
events (i.e. reward cues) that are of motivational relevance spe-
cifically during learning*44°.

While current frameworks support the idea that intrinsic
outcomes such as affective states may impact the formation of
self-efficacy beliefs2#, studies on this issue have not yet probed
this framework as a whole. We aim to bridge this gap by showing
how emotional states relate to biases in the formation of self-
efficacy beliefs, and how they are associated with preferences for
information of positive or negative valence. For this purpose, we
tested the effects of individual differences in the affective reac-
tions during learning. Using trial-by-trial updates of performance
expectations in a conceptually novel task environment, we com-
puted prediction error learning rates by fitting computational
learning models revealing valence-specific learning biases. As
predicted by current frameworks, individual differences in the
experience of the emotions embarrassment and pride were dis-
tinctly related to biases in the formation of self-efficacy beliefs.
Biased learning and affect were jointly related to the neural
processing of valence-specific prediction errors in the Al, amyg-
dala, VTA/ SN and mPFC as well as pupillary reactivity in favor
of the preferentially used information to update the belief.
Increases in valence-specific functional connectivity of the dAI
with the amygdala, VTA/ SN and mPFC support the notion of an
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integrative mechanism of affective and motivational processes
within the dAI#647. These findings provide insights into brain
networks involved in computational biases associated with emo-
tional experiences, and coherently support current theoretical
frameworks integrating affective experiences in the process of
belief formation.

Results

Measuring self-efficacy belief formation. In the present experi-
ment, n =39 subjects (26 females, aged 18-28 years; M = 22.3;
SD=2.65) completed the task in the MRI Another
n =30 subjects (24 females, aged 18-32 years; M =23.3; SD =
3.97) completed the task outside the MRI as a behavioral study.
During the MRI scanning, eye-tracking data was additionally
obtained in all but three subjects (see section “Methods” for more
details). To examine the formation of self-efficacy beliefs we used
the Learning Of Own Performance (LOOP) task>©.

In brief, in the LOOP task participants are asked to estimate
specific characteristics of properties (e.g., heights of buildings,
weights of animals, numbers of things, or distances between
objects). By manipulating the performance feedback, partici-
pants are led to form novel beliefs on their own and the other
person’s cognitive estimation abilities. In the fMRI sample,
participants perform the LOOP task in the MRI scanner while a
confederate (presented as another participant) ostensibly per-
forms the task simultaneously in an adjacent room. After each
trial, participants receive a manipulated performance feedback
for the last estimation (see Fig. la). During the entire
experiment, participants take turns in performing the estima-
tion task themselves (Self condition) or observing the other
participant performing the task (Other condition). Before each
trial, participants are asked to rate either their own or the other
person’s expected performance for the upcoming trial, enabling
us to examine the process of self- and other-related belief
formation. The design of the LOOP task provides a High Ability
and a Low Ability condition, resulting in overall four feedback
conditions: Agent condition (Self vs. Other) x Ability condition
(High Ability vs. Low Ability; see Fig. 1b and the “Methods”
section for a detailed description of the task). In previous
studies, we showed that over time, participants adjusted their
expected performance ratings according to the feedback,
allowing for an assessment of valence-specific self- and other-
related learning processes®.

Selection of computational models for self-efficacy belief for-
mation. Following a model-free behavioral analysis (see Supple-
mentary Note 1), we modeled the participants’ behavior by means
of learning rates. Changes in expectations were modeled through
updates from prediction errors (PEs) to test different learning
rates for PEs with positive vs. negative valence and Self vs. Other
(Supplementary Figs. 1, 2). In line with our previous studies, the
winning model was a Valence Model, including separate learning
rates for positive and negative PEs for Self vs. Other (Model 8; for
a more detailed description of this model and the whole model
space, see “Methods” section). This model received the highest
sum PSIS-LOO score (approximate leave-one-out cross-
validation (LOO) using Pareto smoothed importance sampling
(PSIS)#8), out of all models (for all PSIS-LOO scores see Sup-
plementary Table 1). In addition, Bayesian model selection (BMS)
resulted in a protected exceedance probability of pxp >.999 for
this model and a Bayesian Omnibus Risk of BOR <.001. The
expected model frequency was 46.53. Thus, the extended Valence
Model was selected for all further analyses of learning parameters,
allowing for a comparison of valence-specific learning rates. The
time courses of performance expectation ratings predicted by our

winning model successfully captured trial-by-trial changes in the
actual expectations due to PE updates within each of the ability
conditions at the individual subject level (R =0.46 +0.28 [M +
SD]), supporting the validity of the model in describing the
subjects’ learning behavior. In addition to revealing PE valence-
specific learning, which could not be directly assessed via model-
free behavioral analyses, posterior predictive checks also con-
firmed that the winning model captured the core effects in our
model-free analysis (see Supplementary Note 2, Fig. 1c, Supple-
mentary Table 2; for parameter correlations see Supplementary
Table 3). Exploratory analyses with learning rates from Model
5 showed that our results were unaffected by the w parameter
modulating learning from more extreme feedback in the winning
Model 8 (see Supplementary Note 3).

Replication of the negativity bias for the formation of self-
efficacy beliefs. Participants showed higher learning rates when
forming self-efficacy beliefs than when forming beliefs about the
other person’s performance (main effect of Agent: F; s, =5.77,
p=.019, n°=0.017, partial #*>=0.079). There was also a main
effect of Prediction Error Sign (F(; 6, = 5.22, p = .025, n”=0.011,
partial #>=0.072; categorical comparison of learning rates for
positive vs. negative PEs) and a significant interaction of Agent x
Prediction Error Sign (F(; ;) = 2147, p <.001, #°>=0.040, partial
#?=0.243), which replicates earlier findings of a bias towards
more negative updating during self-efficacy belief formation
(tes) = —3.53, p<.001, d = —0.425, Masagpg = 0.25, SD=0.13;
Moagagpe. = 0.35, SD=10.20)°. Forming beliefs about another
person’s performance did not reveal a significant bias towards
more negative updating (¢4g) = 2.67, p =.009, d = 0.321; Moother/
PE+4+ — 0.27, SD=0.16; Maother/pE_ =0.24, SD=0.15; see Flg ld)
There was no significant main effect or interaction for Group
(p>.097).

Associations of self-efficacy belief formation with affective
experience. We hypothesized that self-efficacy belief formation is
associated with affective experience. In line with Bromberg-
Martin and Sharot?> we expected that individuals with more
negative affective experience would update their self-efficacy
beliefs in a more negative way. To quantify associations between
learning behavior and affect, individual differences in the overall
experience of embarrassment and pride during the task were used
as between-subject measures. Embarrassment and pride ratings
were only weakly correlated (ps) = —.10, p =.436), indicating
that the experience of embarrassment and pride during the task
represent two rather independent affective components with
respect to the self-related feedback (see Supplementary Table 4
for a more detailed correlation table). The bias in the formation of
self-efficacy beliefs (Valence Learning Bias = (0sei/p 1 - Osel/pE-)/
(aselgpE+ T Aseirpe-)*°0 was negatively linked to the reported
experience of embarrassment during the task (pes) = —.24,
p =.043), that is, more negative updating behavior was associated
with increased embarrassment ratings. In contrast, the Valence
Learning Bias was positively linked to the emotion of pride
(ps)y=-55 p<.001). A regression predicting the Valence
Learning Bias with both affect ratings simultaneously revealed
independent effects of pride (8= 0.56, ts = 5.81, p <.001) and
embarrassment (= —0.22, tg=—2.30, p=.025 R>=4l,
Fr166=22.90, p<.001, f2=10.64). When controlling for differ-
ences in the feedback participants received before rating their
affective experience, correlations between emotions and Valence
Learning Bias do not significantly change and the overall pattern
of associations remains consistent. This indicates that the
experience of self-conscious emotions during successful and
unsuccessful performances was tied to the way in which people
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Fig. 1 Trial sequence and timing, experimental conditions, modeling of learning behavior, learning rates and their association with self-conscious
emotions. a Shows a stylized version of the estimation task. A cue at the beginning of each trial indicated the following estimation category and the agent
whose turn it was. After providing their performance expectation ratings (EXP), participants were asked an estimation question, followed by the
corresponding performance feedback. After approximately every 20 trials, participants were asked to rate their current emotional state (pride,
embarrassment, happiness, stress/ arousal). b The LOOP task contained two experimental factors, Ability level (High Ability vs. Low Ability) and Agent
(Self vs. Other), resulting in four feedback learning conditions that can be distinguished by different estimation question types (e.g. estimation of weights).
¢ Predicted and actual performance expectation ratings across time. The behavioral data indicate that participants adapted their performance expectation
ratings (solid lines) to the provided feedback, thus learning about the allegedly distinct performance levels. The winning valence-specific learning model
captured the participants’ behavior, as indicated by a close match of actual performance expectations with the predicted data (dashed lines). Shaded areas
represent the standard errors for the actual performance expectations. d Learning rates derived from the winning Valence Model indicate that there was a
bias towards increased updating in response to negative prediction errors (apg.) in contrast to positive prediction errors (ape,) for the formation of self-
efficacy beliefs. Colored bars indicate the first and third quartile of the data, the line marks the median. Whiskers extend from the upper (lower) box
borders to the largest (smallest) data point at most 1.5 times the interquartile range above (below) the respective border. Data with more extreme values
than this are displayed as individual points; ***p < 0.001, indicates a significant negativity bias during the formation of self-efficacy beliefs. e Correlation
plots and Spearman correlations of self-related Valence Learning Bias and embarrassment as well as pride experience during the experiment. *p < 0.05,
***p < 0.001.
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updated their self-efficacy beliefs (see Fig. le). Furthermore, the
way in which participants processed the performance feedback in
order to update their self-efficacy beliefs was associated with their
self-esteem. Specifically, participants with higher self-esteem
showed more positive updating, ps) = .33, p =.006 (fMRI sub-
sample: p(35) = .35, p=.030), which strengthens the assumption
that prior beliefs about the self have a direct impact on how
individuals learn novel information about new abilities>>!1.

Pupil dilation slopes are associated with surprise and valence
of prediction errors, in line with a negative learning bias.
Previous research has successfully linked changes in pupil dia-
meter to surprise, PEs and learning®>>3 as well as emotional
experiences and arousal'®>%. Thus, we hypothesized that PE
tracking is linked to changes in pupil diameter. To corroborate
our assumption that changes in pupil diameter, as indicated by
the slope of the change in pupil size during the processing of self-
related feedback, reflect increased arousal or attention in asso-
ciation with greater PEs, we regressed trial-by-trial variability in
the pupil slope on PE surprise (continuous effect of unsigned
PEs) and PE valence (continuous effect of signed PEs; see
Fig. 2a)>°. The linear mixed model revealed a significant positive
effect for PE surprise (8=0.067, f(3259)=2.16, p=.032, 95%
CI=1[0.006; 0.127]) and a significant negative effect for PE
valence (= —0.113, t(39,) = —2.52, p=.017, 95% CI = [—0.200;
—0.025]; see Supplementary Fig. 3). First, we observed an effect of
PE surprise, insofar as the more surprising the feedback was with
respect to trial-by-trial prior expectations, the more the pupil
dilated. Second, the results indicate that pupil dilation was greater
with decreasing PE values, thus linking negative PEs, rather than
positive PEs, to greater dilation (i.e. effect of PE wvalence).
Potentially, these PE valence effects indicate increased arousal
and attention towards more negative PEs, in line with the nega-
tivity bias that we found in learning rates.

Pupil dilation response to prediction error valence is associated
with affect and learning bias. It has been suggested that pupil
dilation reflects differences not only between stimuli but similarly
between individual biases during decision making (see Fig. 2b for
examples of individual differences)®®. We thus expected indivi-
dual differences in self-efficacy belief formation and affective
experience to be associated with differences in pupil responses to
PEs. To test this assumption, we introduced individual differences
in learning and self-conscious emotions as between-subject cov-
ariates into the linear mixed models assessing trial-by-trial pupil
slopes. These analyses demonstrated that individuals who
experienced more embarrassment showed stronger pupil dilations
scaling with more negative PEs, while pupil slopes did not cor-
relate with PEs in individuals with lower embarrassment (sig-
nificant interaction of embarrassment and PE valence:
(B=—0.0004, t;3,5=—2.59, p=0.015 95% CI=/[—0.0006;
—0.0001]; no main effect for embarrassment: f=0.002,
t312)=0.42, p=0.679, 95% CI=[—0.009; 0.014]; see Fig. 2c).
These effects were reversed when pride ratings, instead of
embarrassment ratings, were included in the model (interaction
pride and PE valence (8 =0.0005, t;4=3.18, p=0.003, 95%
CI=1[0.0002; 0.0007]; main effect of pride: 5= —0.00006,
tisa1)=—0.01, p=0991, 95% CI=[—0.01132; 0.01120]). The
Valence Learning Bias modulated the relationship between PE
valence and pupil slopes in the same way (interaction Valence
Learning Bias and PE valence (8 =0.38, t;3,.5 = 3.02, p=0.005,
95% CI=1[0.13; 0.62]; main effect of Valence Learning Bias:
B =0.33, t(s0.0=1.04, p=0.308, 95% CI = [—0.30; 0.97]), indi-
cating that participants with a more negative Valence Learning
Bias showed a negative correlation of pupil dilation and PEs,

whereas participants with no bias or a positive bias showed less
differentiation in pupil dilation in response to the valence of
the PE.

Common neural activations associated with PE surprise and
distinct activations for PE valence. On the level of the brain, we
assessed the association of PE tracking with neural activity and
tested whether there is a specific response pattern with respect
to self- and other-related belief formation. To do so, we com-
puted the effects of continuous trial-by-trial PE surprise and PE
valence as parametric weights to assess neural aspects of
learning more specifically (see Fig. 3a). Increased PE surprise
was associated with greater activation of the mPFC for Self and
Other as well as clusters in the left insula/ temporal pole/
frontal orbital gyrus (bilaterally for Other; see Fig. 3¢ and
Supplementary Table 5). There was no significant difference
between Self and Other (p <.001 uncorrected), indicating that
there is no evidence for distinct neural processes of error
tracking between agents.

The assessment of PE valence revealed a distinct pattern for
self- and other-related belief formation: Self-related PE valence
was positively associated with increased activation of the NAcc/
VS, mPFC, bilateral angular gyrus/ superior parietal lobule/
lateral occipital gyrus and precentral gyrus, showing stronger
activation scaling with more positive PEs (Fig. 3b and
Supplementary Table 6). There was no effect for other-related
PE valence, and a direct comparison of self- vs. other-related PE
valence effects revealed stronger associations in the NAcc/VS for
Self (right: x, y, z: 12, 17, —4, t(35=5.23; k=2; left: x, y, z: =9,
26, —1, t;359=>5.77, k=19). This supports the assumption that
the valence of the feedback has a specific value when feedback
refers to the self as compared to another person. Although
behavioral data and learning rates clearly emphasize the greater
importance of negative over positive PEs, there were no
significant negative associations with PE valence in the neural
data (p <.001 uncorrected). Additional analyses assessing differ-
ences between the feedback conditions for Agent and Prediction
Error Sign are presented in the Supplementary Information
(Supplementary Note 4, Supplementary Fig. 4, Supplementary
Data 1, and Supplementary Table 7).

Neural activity in response to self-related PE valence is asso-
ciated with affect, learning bias, and pupil dilation. To assess
how biases in learning as well as affective experience and pupil
dilation were associated with valence-specific PE processing on the
single trial level, multiple general linear models (GLMs) were
performed. These included the Valence Learning Bias, self-
conscious emotions, and a score representing a valence bias for
pupil dilation responses to positive vs. negative PEs (Pupil Dilation
Bias = PupilSlopesepr - PupilSlopesqgpr.) as between-subject
covariates for PE valence tracking. Analyses within our predefined
regions of interest (ROIs) revealed that the more negative the
Valence Learning Bias was, the more neural activity increased with
more negative PEs in the bilateral dAI, vAl, amygdala, mPFC, and
VTA/ SN (all results are p < 0.05 family-wise error (FWE) corrected
at peak level within ROIs; see Fig. 3d, e, Supplementary Data 2). In
other words, the more positively participants learned about
themselves (i.e., more positive Valence Learning Bias), the more
neural activity increased with more positive PEs in these regions
(see Fig. 3d, e, and Supplementary Fig. 5). Overall, higher experi-
ence of embarrassment showed similar associations with stronger
activity with more negative PEs in the right dAI, bilateral amygdala,
and VTA/ SN. Trend effects for embarrassment were found in the
left dAI, bilateral vAIL, and mPFC. In line with this, lower experi-
ence of pride showed the same association in the dAI and VAl
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Fig. 2 Association of pupil slopes with prediction error (PE) valence and individual pupil response differences explained by differences in Valence
Learning Bias, embarrassment and pride experience. a Example of pupil diameter trace over three trials for one subject (orange line) and trial-specific
fitted linear slopes (blue lines) for the feedback phase of each trial. PE values are calculated with the participant’s current performance expectation (EXP)
and the following feedback value (FB), and PE valence represents the signed PE while PE surprise represents the unsigned PE. b Three exemplary scatter
plots show the association of pupil slopes with PE valence and illustrate the variance between subjects. Trend lines are fitted by linear regression.

c lllustration of the impact of the three between-subject covariates, Valence Learning Bias (left), embarrassment (middle) and pride experience (right)
explaining differences in the associations of PE valence and pupil slope. The plots show the data as predicted by the multi-level models for the mean
covariate (grey line) and the mean covariate +/— 1 standard deviation (SD; black line and gray dashed line).
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amygdala, VTA/ SN and mPFC. Additional analyses revealed that
effects for embarrassment and pride were mainly independent (see
Supplementary Note 5). Similarly, the more negative the Pupil
Dilation Bias was, the stronger the activation of the dAI and vAlI,
amygdala and VTA/ SN with more negative PEs. Thus, the greater
the response of this neural system for more negative PEs, the
greater was the preference for negative information during learning

as well as the negativity of the affective experience. This gained
multi-modal support by similar associations of the Valence
Learning Bias and affect with the pupil dilation response, which
reflects the activity of this underlying neural system. In contrast,
participants who showed a greater response of this neural system to
positive PEs also had a preference for positive information during
learning and reported more positive affect.
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Fig. 3 Common neural activations associated with prediction error (PE) surprise, distinct activations for self-related PE valence and individual
response differences to PE valence explained by differences in Valence Learning Bias, embarrassment and pride experience, and pupil dilation.

a Exemplary BOLD response over three trials for one subject (orange line) and regressors for the feedback phase of each trial (black line; the originally
separate regressors for self- and other-related feedback are combined here for display purposes). PE valence (small dashed) and PE surprise (large dashed)
are added as parametric modulators in addition to the feedback regressors. PE values are calculated as shown in Fig. 2. b PE valence was associated with
increased activation of the NAcc/VS, mPFC, bilateral angular gyrus/ superior parietal lobule/ lateral occipital gyrus and precentral gyrus when participants
formed self-efficacy beliefs (Self). € PE surprise was associated with activation of the mPFC and the bilateral insula/ temporal pole/ frontal orbital gyrus
during the formation of self- and other related beliefs (uncorrected p < 0.001 for display purposes; see Supplementary Table 5 for FWE corrected
statistics). d Neural tracking of PE valence during the formation of self-efficacy beliefs was modulated by between-subject variables. Black arrows indicate
the direction in which the covariates are coded in the analyses. Clusters refer to p < 0.005, uncorrected for display purposes; see Supplementary Data 2 for
FWE corrected statistics. @ Pearson correlations for parameter estimates derived from the whole areas of our predefined ROIs with the Valence Learning
Bias, Pupil Dilation Bias, embarrassment and pride are color-coded. *p < 0.05, FDR corrected.

Functional connectivity of the dorsal anterior insula depends
on prediction error valence in line with the negativity bias. Due
to the dense anatomical and functional connections between the
dAI and (para)limbic as well as frontal brain regions*®47 we
tested whether dAI connectivity increased with more negative
PEs. To do so, we assessed functional connectivity dynamics of
the left and right dAI, as these were activated during feedback
processing for self- and other-related feedback, independent of
Agent and PE valence. Using psychophysiological interaction
(PPI) analyses we calculated the interaction of the continuous PE
valence and the time series extracted from the left and right dAI
seed regions separately for Self and Other on the first level. The
two agents were contrasted against each other on the second-level
GLM, as we were specifically interested in connectivity dynamics
that might reflect the differential learning from negative PEs
when processing self-relevant information. Contrasting the PPI
effects for PE valence between Self and Other demonstrated that
during the formation of self-efficacy beliefs, functional con-
nectivity dynamics of the right dAI with the bilateral amygdala,
mPFC and VTA/ SN (p<0.05, FWE corrected at peak level
within ROIs) more strongly aligned with the negativity of the PEs.
The left dAI showed a weaker but similar spatial distribution,
with significant differences between self- and other-related PE
valence for the left amygdala and VTA/ SN (p < 0.05, FWE-cor-
rected, see Fig. 4a, b and Supplementary Table 8). Thus, those
brain regions that preferentially tracked PEs of negative valence
in individuals with increased negative affect and learning biases
also showed connectivity dynamics with the dAI in a similar
direction during self-efficacy belief formation. Individuals who
showed more pronounced differences in functional connectivity,
that is, stronger functional connectivity for negative PEs during
Self>Other, also showed a more negative Valence Learning Bias,
although this pattern was not fully consistent across all ROIs (see
Fig. 4c¢).

Discussion

Belief formation is essentially biased, and various studies have
shown how it is shaped by motivations330->7>8. Here, we extend
these findings and show that the affect, which people experience
during learning, also is linked to belief formation and its
underlying neural processes. Our computational modeling results
imply that biases in the formation of self-efficacy beliefs in
mastering a conceptually novel task are associated with the
experience of the self-conscious emotions of embarrassment and
pride. Critically, on the level of neural systems, the valence of
prediction errors (PEs) is associated with biases in self-efficacy
belief formation and the negativity of the affective experience.
Individual differences in the response preference for negative PEs,
as indicated by the pupil dilation response and activation of the
Al, amygdala, mPFC, and VTA/ SN, are associated with a more

negative learning bias and negative affective experience, hinting at
a neurobiological system that integrates affect during learning.

The novel framework on the value of beliefs proposed by
Bromberg-Martin and Sharot? nicely details how beliefs elicit
emotions, while at the same time, these emotions shape how
beliefs are updated in a reciprocal relationship. Based on this
framework as well as previous research on self-conscious emo-
tions, a negative belief about one’s abilities, i.e. a negative self-
efficacy belief, should elicit stronger embarrassment after failures
and reduced pride after successes!437. According to the present
data, the association of the learning bias with affect supports this
notion, as individuals who experienced more negative (embar-
rassment) and less positive affect (pride) when receiving self-
related feedback were also inclined to update their self-efficacy
beliefs in a more negative way. At the same time, negative
emotions guide the information processing at various stages,
including perception, attention, and decision-making, as dis-
cussed in the context of motivated cognition*. This reciprocal
relationship finally results in a biased formation of self-efficacy
beliefs and in self-efficacy beliefs that are both drivers of affect
and influenced by emotional responses to incoming information.
Here, embarrassment is a particularly relevant example illustrat-
ing this recursive relationship: The fear of failure, as is often
discussed in the context of social anxiety (disorder)>1420:9, leads
to shifts in expectations and attention (threat monitoring)
towards negative information. At best, this results in reparative
behavior and performance improvement®®6l, and at worst, it
leads to a vicious cycle of fear and pathologically increasing
negative beliefs about the self®2. This is reflected in the present
findings, when individuals who experienced more intense
embarrassment ended up with lower self-efficacy beliefs.

Emotions shape learning processes in different ways. First,
emotions can influence how information is processed in the brain
by adaptively shifting attention towards salient aspects of the
situation®>%4. Second, emotions entail arousal, which intensifies
internal rehearsal and evaluations, leading to increased
learning”-893, although these processes often interact and are
intricately related*. The increased pupil dilation in response to
negative PEs in our study is in line with both increased salience of
and attentional shifts towards negative PEs®>°3 or increased
arousal elicited by negative PEs!4>%. In this regard, we believe
that the stronger impact of positive or negative information on
pupil responses and brain reactivity maps arousal and affect
according to the valence of individual learning biases and affec-
tive experiences.

On the neural level, the anterior insula (AI), specifically, has
been suggested to function as an integrative hub for motivated
cognition and emotional behavior*243. While ventral aspects of
the AI are associated with affective processing, emotions, and
physiological arousal347:65-67 dorsal aspects of the Al are
strongly associated with the detection of salient events, allocation
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of attentional resources, executive working memory®®%? and also
surprise PEs and uncertainty during learning’%-72. These findings
suggest that the functions of the Al provide a physiological basis
for how emotions are translated into biased, motivated, or
affected beliefs*>43. A similar role, as a link for the attention-
emotion interaction, has also been suggested for the
amygdala?2%4, which showed similar responses in our task. The

functional connectivity dynamics of the dAI, matching the
modeled learning rates with a stronger impact of self-related
negative PEs, underline the insula’s role as an integrative hub”3
that receives and forwards signals affecting information proces-
sing in other brain regions?6:47,

Tracking of PEs in the dopaminergically innervated VTA/ SN
is influenced by motivational factors during learning*’. The
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Fig. 4 Differences in functional connectivity of the dorsal anterior insula during prediction error (PE) valence tracking during the formation of self-
and other-related beliefs and associations with the Valence Learning Bias. a Increased functional connectivity of the dorsal anterior insula for the

negative effect of PE valence in the predefined ROIs (amygdala, mPFC, VTA/ SN; p < 0.005 uncorrected for display purposes; contrast Self vs. Other).
b Functional connectivity dynamics of the dorsal anterior insula plotted separately for the formation of self- and other-related beliefs. For display purposes,
parameter estimates are plotted separately for Self and Other and refer to the peak voxels of the contrast Self vs. Other that are reported in Supplementary
Table 8. Colored bars indicate the first and third quartile of the data, the line marks the median. Whiskers extend from the upper (lower) box borders to the
largest (smallest) data point at most 1.5 times the interquartile range above (below) the respective border. Data with more extreme values than this are
displayed as individual points; *p < 0.05, **p < 0.01. ¢ Spearman correlations of the Valence Learning Bias with the functional connectivity dynamics

between the dorsal anterior insula (seed region reported on the right side) and the amygdala, mPFC and VTA/ SN associated with PE valence for self- vs.

other-related learning are color-coded. *p < 0.05, FDR corrected.

subjective value of self-related information varies strongly
between subjects, as indicated by response patterns of the VT A/
SN to gains or losses’%. In this line, we believe that the present
results reflect individual response tendencies at a very basic level
of PE tracking. On higher layers of the computational hierarchy,
regions in the ACC and mPFC are also associated with PE
tracking and value representation?87>76 and have been pre-
viously associated with biases in learning®!3377. Affect and
arousal could therefore bias learning on various stages of the
computational hierarchy of PE processing, from more basic
dopaminergic midbrain responses to more abstract value repre-
sentations in the neocortex’8. While the directionality of the
effects remains to be determined, the dynamics in the functional
connectivity of the dAI suggest a modulatory role in this process.
Here, information is forwarded to and/ or integrated from the
VTA/ SN and mPFC, the same regions whose response to the
valence of PEs was also modulated by differences in learning bias
and affective experience. This strengthens the idea that the Al
may play a role in shifting responses to negative or positive
information in other brain regions (e.g. by shifting attention and
by affective tagging) or that it already may receive stronger signals
in response to PEs of negative or positive valence from midbrain
regions and the mPFC. The tracking of the absolute error, PE
surprise®®, independently of the agent, suggests that there is a
common and valence-independent coding of surprise in the
insula and the mPFC that could be sufficient to complete
the learning task per se. As our results indicate, however, the
valence of the PE is relevant for understanding the trajectories of
how individuals form self-efficacy beliefs. This is implicated by a
valence-dependent, additive shift in the error-related BOLD
response of these regions that corresponds to individual differ-
ences in the learning bias and affective experience. As a result,
besides the main effect of surprise on the BOLD response of the
AT and the mPFC, individuals who form more negatively biased
self-efficacy beliefs and experience more negative affect, also have
greater error-related responses in the case of negative PEs in
contrast to positive PEs. This congruency in the modulation of
the U-shaped surprise function hints at a neurocomputational
mechanism of how affect may shape the formation of beliefs, as
proposed previously?. Some of the key findings of the present
study emerged at the level of individual differences. We observed
a wide inter-individual variance in the affective experience during
the task and in the learning bias, that is, the type of information
participants preferentially used to update self-efficacy beliefs.
While, on average, we found a negativity bias during the for-
mation of self-efficacy beliefs, just under a third of the partici-
pants still showed a positive learning bias, underlining the
importance of individual factors and the meaningfulness of
variability. Studies suggest not only that biases in belief formation
differ between tasks>>7? but also that they depend on contextual
factors like stress®®0. An individual’s ability to adjust his/her
current information processing strategy to the context might be
adaptive?: for example, adaptation to an increased relevance of

negative or threat-related information during stress®® or coping

with a negative self-concept following social stress by means of
more self-beneficial belief updating®. It might also be adaptive for
people who fear negative feedback to pay more attention to
failure-related information in order to learn and circumvent
potential future failures®’. However, it is not always straightfor-
ward to determine under which conditions a strategy is adaptive
or whether the affective experience can ameliorate the individual’s
well-being. A maladaptive consequence of biased self-efficacy
beliefs becomes apparent in psychiatric disorders such as
depression and social anxiety, in which amplified negative
updating can lead to persistently distorted self-views and overly
negative beliefs about one’s own capabilities in everyday
life20,21,81-83

Emotions experienced during learning are linked to compu-
tational mechanisms and manifest in distributed neural activity
during belief formation. In particular, neural activity of the Al,
amygdala, VTA/SN, and mPFC and pupil responses map the
valence of PEs in correspondence with the experienced affect and
the learning bias that people show during belief formation. The
more negative balancing in the functional connectivity dynamics
of the dAI during the processing of self-related PEs within
this network outline a scaffold for neural and computational
mechanisms integrating affect during belief formation. The
results of our empirical implementation of the framework on the
value of beliefs? have broader implications concerning any con-
text that provides personal evaluations based on behavioral per-
formance. Here, the focus on the affective experience during
learning provides a deeper understanding of how feedback
manifests in self-efficacy beliefs, which may in turn have a rele-
vant impact on developmental processes and future behavior.

Methods

Participants. The study was approved by the ethics committee of the University of
Liibeck (AZ 18-066), was conducted in compliance with the ethical guidelines of
the American Psychological Association (APA), and all subjects gave written
informed consent. Participants were recruited at the University Campus of Liibeck,
were fluent in German, and had normal or corrected-to-normal vision. In the MRI
39 participants (26 females, aged 18-28 years; M = 22.3; SD = 2.65) completed the
study. We initially recruited 48 participants, but had to exclude six participants
who did not believe the cover story of the task and three participants who did not
attentively complete the task until the end (e.g. participants reported that they were
too tired or the ratings indicated that they stopped responding to the estimation
task). During the MRI scanning, eye-tracking data was additionally obtained and
could be analyzed in all but three subjects who had insufficient data quality
(resulting in n =36 for pupil data analyses). We recruited an additional 30 par-
ticipants (24 females, aged 18-32 years; M = 23.3; SD = 3.97), who completed the
study as a behavioral study outside the MRI to increase the sample size for com-
putational modeling results (resulting in an overall N =69 for behavioral data
analyses). For more details on the sample characteristics, see Supplementary
Table 9.

Learning of own performance task. The learning of own performance (LOOP)
task enables participants to incrementally learn about their own or another per-
son’s alleged ability in estimating properties. The task was previously introduced
and validated in a set of behavioral studies®. For the LOOP task, all participants
were invited to take part in an experiment on cognitive estimation together with a
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confederate, who was allegedly another participant. In contrast to the fMRI study,
for the behavioral study, two participants were invited and tested together instead
of introducing a confederate. Participants were informed that they would take
turns with the other participant/ confederate, either performing the task themselves
(Self) or observing the other person performing (Other). Participants were asked to
estimate different properties (e.g. the height of houses or the weight of animals).
On a trial-by-trial basis, participants received manipulated performance feedback
in two distinct estimation categories for their own estimation performance and for
the other person’s estimation performance. Unbeknownst to the participant, one of
the two categories was arbitrarily paired with rather positive feedback while the
other was paired with rather negative feedback (e.g. height of houses = High
Ability condition and weight of animals = Low Ability condition or vice versa;
estimation categories were counterbalanced between Ability conditions and Agent
[Self vs. Other] conditions). This resulted in four feedback conditions with 20 trials
each (Agent condition [Self vs. Other] x Ability condition [High Ability vs. Low
Ability]). Trials of all conditions were intermixed in a fixed order with a maximum
of two consecutive trials of the same condition. Performance feedback was pro-
vided after every estimation trial, indicating the participant’s own or the other
person’s current estimation accuracy as percentiles compared to an alleged refer-
ence group of 350 university students who, according to the cover story, had been
tested beforehand (e.g. “You are better than 94% of the reference participants.; see
Fig. la). The feedback was defined by a sequence of fixed PEs with respect to the
participants’ current belief about their abilities. The current belief was calculated as
the average of the last five performance expectation ratings per category, which
started at 50% before participants actually rated their performance expectation.
This procedure led to varying feedback sequences between participants but kept
PEs mostly independent of the participants’ performance expectations and ensured
a relatively equal distribution of negative and positive PEs across conditions (Self:
mean positive PE = 13.6, SD = 1.8 (mean frequency = 20.3); mean negative PE =
—12.6, SD = 1.4 (mean frequency = 19.7); Other: mean positive PE =13.0, SD =
1.3 (mean frequency = 19); mean negative PE = —13.1, SD = 1.1 (mean fre-
quency = 21)). At the beginning of each trial, a cue was presented indicating the
estimation category (e.g. height) and the agent whose turn it was (e.g. you or Tim).
Afterwards participants were asked to state their expected performance for this trial
on a scale with the same percentiles used for feedback. In order to increase
motivation and encourage honest response behavior, participants were informed as
part of the cover story that accurate expected performance ratings would be
rewarded with up to 6 cents per trial, that is, the better the match between their
expected performance rating and their actual feedback percentile, the more money
they would receive. Following each performance expectation rating, the estimation
question was presented for 10 s. During the estimation period, continuous response
scales below the pictures determined a range of plausible answers for each question.
Participants indicated their responses by navigating a pointer on the response scale
with an MRI-compatible computer mouse. Subsequently, feedback was presented
for 3's (see Fig. la). Jittered inter-stimulus-intervals were presented following the
cue (mean: 4 * TR (0.992 s), range: 2-6 * TR), estimation (mean: 4.5 * TR, range:
2.5-6.5 * TR) and feedback phase (mean: 6 * TR, range: 4-8 * TR) for the fMRI
task with jitters distributed in a uniform distribution with steps of 0.5 * TR. All
stimuli were presented using MATLAB Release 2015b (The MathWorks, Inc.) and
the Psychophysics Toolbox®%. The fMRI task was completed in two separate 20-
min sessions with a short break in between.

Before starting the experiment, all participants answered several questions
about their self-efficacy beliefs and completed a self-esteem personality
questionnaire (Self-Description Questionnaire-IIT (SDQ-III)#%). During the LOOP
task, participants were also asked to rate their current levels of embarrassment,
pride, happiness and stress/ arousal on a continuous scale ranging from not at all
(coded as 0) to very strong (coded as 100). During the whole task four emotion
rating phases, including all four emotions, were presented, each following a trial of
one of the four experimental conditions (e.g. Self - High Ability). The two emotion
rating phases following self-related feedback were averaged to obtain a rating for
the experience of self-conscious affect (embarrassment and pride) during the
formation of self-efficacy beliefs. Following the task, participants completed an
interview including ratings about self-efficacy beliefs, were debriefed about the
cover story, and reimbursed for their time before leaving. The whole procedure
took approximately 2 h.

Statistics and reproducibility

Behavioral data analysis and modeling. To illustrate effects in our behavioral data, a
model-free analysis was performed on the participants’ expected performance
ratings for each trial. We conducted a linear mixed model (LMM) fitted with
restricted maximum likelihood (REML) including the Ability condition (High
Ability vs. Low Ability) x Agent condition (Self vs. Other) as factorial and Trial (20
Trials) as continuous predictors. Intercept, Ability condition, Agent condition, and
Trial were modeled as fixed and random effects (see Supplementary Note 1 for
results).

Following model free analyses, dynamic changes in self-efficacy beliefs, that is,
performance expectation ratings, were then modeled using PE delta-rule update
equations (adapted Rescorla-Wagner model36). For the learning models the
following PE delta-rule update equation was used (EXP = Performance expectation

rating, FB = feedback, PE = prediction error, « = learning rate):
EXP,,, = EXP, 4+ « PE; while PE, = FB, — EXP, (1)

The model space contained three main models, which varied with regard to
their assumptions about biased updating behavior when forming self-efficacy
beliefs (see Supplementary Fig. 1). The simplest learning model used one single
learning rate for all conditions for each participant, thus not assuming any learning
biases (Unity Model). The second model, the Valence Model, included separate
learning rates for positive PEs (atpg) vs. negative PEs (apg.) across both ability
conditions, thus suggesting that the valence (positive vs. negative) of the PE biases
self-efficacy belief formation. The third model, the Ability Model, contained a
separate learning rate for each of the ability conditions, indicating context-specific
learning. In addition, learning rates were either estimated separately for Self vs.
Other or across Agent conditions. The Valence Model with separate learning rates
for Self vs. Other (Model 5), which was the winning model in our previous
studies™®, was further extended by adding a weighting factor that reduced learning
rates towards the ends of the feedback scale (percentiles close to 0% or 100%),
under the assumption that participants would perceive extreme feedback values to
be less likely than more average feedback®”. In the first of these models (Model 7), a
linear decrease of the learning rates was assumed, beginning at 50% and ending at
0% and 100%. A weighting factor w was fitted for each participant, defining how
strongly the linear decrease was present for each individual. Since many of the
variables people encounter in everyday life (e.g., many test results) approximately
follow a normal distribution with extreme values being less likely, for the second
model of this kind (Model 8), we assigned the relative probability density of the
normal distribution to each feedback percentile value. Again, a weighting factor w
was fitted for each individual, indicating how strongly the relative probability
density reduced the learning rates for feedback further away from the mean. The
initial beliefs about the own and the other participant’s performance (EXP;) were
estimated as free parameters separately for Self and Other as well as both Ability
conditions, resulting in four additional model parameters. The linear (LD) and
normal decay (ND; values depicted in Supplementary Fig. 2) weighted by the
weighting factor w that reduced the learning rates towards the ends of the scale
were introduced in the learning models in the following way:

EXP.,, = EXP, + a PE,(1 — wLD); for the linear decrease; (2)

EXP,, = EXP, + a PE (1 — wND); for the normal decrease. 3)

In contrast to our previous studies in which we implemented the LOOP task
with fixed feedback sequences, here, feedback depended on the participants’
current expectations and thus differed between participants and conditions.
Reduced learning rates towards the ends of the feedback scale, which may
systematically confound learning rates between participants and conditions, were
thus accounted for in Models 7 and 8 (see Supplementary
Information; Supplementary Fig. 2). To test whether the participants’ performance
expectation ratings can be better explained in terms of PE learning as compared to
stable assumptions in each Ability condition, we included a simple Mean Model,
with a mean value for each task condition (Model 9).

Model fitting. For model fitting, we used the RStan package (Stan Development
Team, 2016. RStan: the R interface to Stan. R package version 2.14.1.), which
implements Markov chain Monte Carlo (MCMC) sampling algorithms. All of the
learning models in the model space were fitted for each participant individually,
and posterior parameter distributions were sampled for each participant. A total of
2400 samples were drawn after 1000 burn-in samples (overall 3400 samples;
thinned with a factor of 3) in three MCMC chains. We assessed whether MCMC
chains converged to the target distributions by inspecting; R values for all model
parameters®S. Effective sample sizes (r,5) of model parameters, which are estimates
of the effective number of independent draws from the posterior distribution, were
typically greater than 1500 (for most parameters and subjects). Posterior dis-
tributions for all parameters for each of the participants were summarized by their
mean as the central tendency, resulting in a single parameter value per participant
that we used in order to calculate group statistics.

Bayesian model selection and family inference. For model selection, we estimated
pointwise out-of-sample prediction accuracy for all fitted models separately for
each participant by approximating leave-one-out cross-validation (LOO; corre-
sponding to leave-one-trial-out per subject;*38%). To do so, we applied Pareto
smoothed importance sampling (PSIS) using the log-likelihood calculated from the
posterior simulations of the parameter values as implemented by Vehtari et al.48,
Sum PSIS-LOO scores for each model as well as information about k values — the
estimated shape parameters of the generalized Pareto distribution — indicating the
reliability of the PSIS-LOO estimate are depicted in Supplementary Table 1. As
summarized in Supplementary Table 1, very few trials resulted in insufficient
parameter values for k and thus potentially unreliable PSIS-LOO scores (on average
1.1 trials per subject with k>0.7 for the winning model*$). BMS on PSIS-LOO
scores was performed on the group level, accounting for group heterogeneity in the
model that best describes learning behavior®®. This procedure provides the pro-
tected exceedance probability for each model (pxp), indicating how likely a given
model is to have a higher probability of explaining the data than all other models in
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the comparison set. The Bayesian omnibus risk (BOR) indicates the posterior
probability that model frequencies for all models are all equal to each other®®. We
also provide difference scores of PSIS-LOO in contrast to the model that won the
BMS, which can be interpreted as a simple ‘fixed-effect’ model comparison (see
Supplementary Table 1488%). Model comparisons according to PSIS-LOO differ-
ence scores were qualitatively comparable to the BMS analyses for our data. Pos-
terior predictive checks were conducted following model selection by quantifying
whether the predicted data could capture the variance in performance expectation
ratings for each subject within each of the experimental conditions using lin-

ear regression analyses. Additionally, to assess whether the winning model cap-
tured the core effects in the behavioral data, we repeated the model-free analysis,
which we had conducted on the behavioral data, with the data predicted by the
winning model (see Supplementary Note 2 for results).

Statistical analyses of learning parameters. Model parameters, i.e. learning rates, of
the winning models for all experiments were analyzed on the group level. A
repeated measures ANOVA was calculated on the learning rates with the factor
Agent (Self [aseigpe 1> Aseirpe-] vs. Other [aother/pE+> Qother/pe-]) and factor Pre-
diction Error Sign (PE + [aself/pe+> Qother/pE+] VS: PE- [Asel/pe-» QOther/pe-]; in line
with the winning model, the term bias corresponds to the categorical distinction
between feedback with positive PEs vs negative PEs) as well as Group as a between-
subject factor (fMRI vs. behavior), testing whether the formation of self-efficacy
beliefs was more valence-specific than forming beliefs about another person’s
performance.

To associate learning biases with self-conscious affect, that is, embarrassment
and pride, as well as self-esteem (SDQ-III subscale scores), we calculated a
normalized learning rate valence bias score for self-related learning (Valence
Learning Bias = (asetgpe+ - Aselepi-)/ (Oseigpr+ + Aselgpe-)>*7>0). Spearman
correlations were calculated between Valence Learning Bias, affect ratings, and self-
esteem scores. Statistical tests were performed two-sided if not mentioned
otherwise. All statistical analyses on the behavioral data apart from the modeling
procedure were performed using jamovi (Version 1.2.27, The jamovi project
(2020), retrieved from https://www.jamovi.org).

Pupil data analysis. For the fMRI sample, eye-tracking data were assessed during
scanning. Pupil diameter and gaze behavior were recorded non-invasively in one eye
at 500 Hz using an MRI-compatible Eyelink-1000 plus device (SR Research, Kanata,
ON, Canada) with manufacturer-recommended settings for calibration and blink
detection. Stimuli were presented on a TFT display (327, Active area 698.4 mm(H) x
392.85 mm(V); Pixels 1920 x 1080; NordicNeuroLab’s LCD monitor [NNL MRI
InroomViewingDevice; NordicNeuroLab AS, Mellendalsveien 65 C, 5009 Bergen,
Norway]), located 50 cm from the observer, in an otherwise dark room. The task has
been optimized with respect to eye-tracking by controlling the global luminance of
the stimuli as well as the local luminance of the feedback scale. Due to insufficient
pupillometry data quality, three participants had to be excluded from the analyses
(final sample n = 36). Pupil data were preprocessed by cutting out periods of blinks,
and values in this gap were interpolated by piecewise cubic interpolation. The pupil
trace was subsequently z-normalized over the whole session. To characterize the pupil
dilation for each trial by a single value, we calculated a linear slope for each feedback
phase of three seconds. Summarizing the pupil dynamics during a single trial with a
linear slope is a robust and valid measure for an arousal related pupil response to
stimuli of comparable lengths!421:92 building up after 1-2 s until reaching a plateau
after more than approximately 6 s°93. Pupil traces were only analyzed for the Self
condition as there was an offset in the pupil diameter at the beginning of the feedback
presentation (see Supplementary Fig. 6). The strong difference in the pupil diameter
between the Agent conditions is expected given the greater arousal® after the cog-
nitive effort when estimating properties. While the pupil slope is a robust measure of
rather sustained relative change during stimulus presentation, this offset in the dia-
meter at the beginning of the feedback presentation makes it impossible to draw valid
comparisons of these slopes between the Agent conditions as greater pupil diameter
will result in greater negative slopes compared to smaller pupil diameter. The linear
mixed models (LMMs) with pupil slopes as dependent variable were fitted including
intercept, PE valence, and PE surprise both as fixed and random effects. In three
separate models either embarrassment ratings, pride ratings, or the Valence Learning
Bias (Covariates) were included as second-level covariates as well as their interaction
with PE valence (see Supplementary Note 6, Supplementary Figs. 7-9 for supporting
analyses on the linear mixed models). The model description of the full model was as
following:

$ij =Yoo T V10 * PE Valence;; + y, o  PE Surprise; ; + y, | * Covariate;
+ y1,1 * Covariate; x PE Valence;; + v, ; + v, ; * PE Valence;; (4)
+ vy * PESurprise;; + ¢

fMRI data acquisition. Participants were scanned using a 3 T Siemens MAGNE-
TOM Skyra scanner (Siemens, Miinchen, Germany) at the Center of Brain,
Behavior, and Metabolism (CBBM) at the University of Liibeck, Germany with 60
near-axial slices. An echo planar imaging (EPI) sequence was used for the acqui-
sition of on average 1520 functional volumes (min = 1395, max = 1672) during
each of the two sessions of the experiment, resulting in a total of on average 3040
functional volumes (TR =0.992 s, TE = 28 ms, flip angle = 60°, voxel size =3 x 3

x 3 mm3, simultaneous multi-slice factor 4). In addition, a high-resolution ana-
tomical T1 image was acquired, which was used for normalization (voxel size =
1x1x1mm3, 192 x 320 x 320 mm? field of view, TR =2.300's, TE = 2.94 ms,
TI =900 ms; flip angle = 9° GRAPPA factor 2; acquisition time 6.55 min; see
Supplementary Fig. 10 for whole brain mask).

FMRI data analyses. FMRI data were analyzed using SPM12 (www.fil.ion.ucl.ac.uk/
spm). Field maps were reconstructed to obtain voxel displacement maps (VDMs).
EPIs were corrected for timing differences of the slice acquisition, motion-
corrected and unwarped using the corresponding VDMs to correct for geometric
distortions and normalized using the forward deformation fields as obtained from
the unified segmentation of the anatomical T1 image. The normalized volumes
were resliced with a voxel size of 2 x 2 x 2 mm? and smoothed with an 8 mm full-
width-at-half-maximum isotropic Gaussian kernel. To remove low-frequency
drifts, functional images were high-pass filtered at 1/384.

Statistical analyses were performed using a two-level, mixed-effects procedure.
A main GLM was implemented on the first level and this fixed-effects GLM
included four epoch regressors modeling the hemodynamic responses to the
different cue conditions (Ability: High vs. Low x Agent: Self vs. Other), weighted
with the performance expectation ratings per trial as parametric modulator for
each condition. Two regressors modeled the feedback conditions for Self vs Other
collapsing across PE valence (Agent: Self vs. Other). Two parametric modulators
were included per feedback condition, weighting feedback trials with PE valence
(continuous effect of the signed PE values) and PE surprise (continuous effect of
the unsigned PE values). Parametric modulators were not orthogonalized, thus
each only explaining their specific variance. One regressor modeled the
performance expectation rating phase. The estimation periods for Self and Other
were modeled as two regressors, and emotion rating phases as separate regressor.
Each of the regressors was modeled with the exact duration as presented during the
experiment: The cue phase was modeled with a duration of 2.5, the expectation
rating phase according to individual reaction times with a mean of 4.26 s
(SD = 1.04), the estimation phase with 10's, the feedback phase with 3s, and the
emotion rating phase with 22.51' s (SD = 3.85). To account for noise due to head
movement, six additional regressors modeling head movement parameters were
introduced and a constant term was included for each of the two sessions.

On the second level, beta images for the parametric weights of feedback were
extracted for Self and Other. Four separate one sample t-tests were implemented
for PE valence and PE surprise for Self and Other. For direct comparisons of PE
valence and PE surprise responses for Self and Other, two repeated measures
ANOVAs were conducted including the respective beta images for Self and Other.
Differential tracking of the PE valence, depending on biased learning and self-
conscious affect, were examined by three additional second-level models for the PE
valence beta images for Self including either the Valence Learning Bias,
embarrassment, or pride ratings as between-subject covariate. A self-related Pupil
Dilation Bias (average slope for positive PEs - average slope for negative PEs;
higher scores indicate stronger pupil dilation for positive PEs) was also included as
covariate in another second-level model to assess whether the neural response
scaling with more negative PEs was associated with the pupil dilation response.
Here, we tested for stronger responses with more negative PEs associated with
more negative affect and a more negative Valence Learning Bias and Pupil Dilation
Bias. The analyses including all covariates were conducted within our predefined
ROIs, the bilateral dAI, vAI amygdala, mPFC, and VTA/ SN, as these regions are
associated with affective and motivational aspects and PE tracking during learning
(for a detailed description see section “Thresholding procedure and regions of
interest”). Supplementary analyses assessing all four feedback conditions and
parametric modulators are show in Supplementary Note 4, Supplementary
Figs. 11-13.

We additionally performed psychophysiological interaction (PPI) analyses on
the first level, investigating whether functional connectivity of the dAI, which is
commonly activated during feedback processing independent of Agent and
Prediction Error Sign (conjunction of baseline contrasts: feedback Self N feedback
Other), would differ depending on the PE valence. PPI analyses were computed
separately for Self and Other and the resulting contrast images for the PPI effects
were aggregated on the second level using two-sample t-tests contrasting PPI
effects for Self vs. Other. For each participant, we defined 6-mm radius spherical
ROIs, centered at the nearest local maximum for the conjunction contrast feedback
Self N feedback Other and located within 10 mm of the group maximum within the
dAL separately for the left dAI (x, y, z: —33, 20, —4) and right dAI (x, y, z: 36, 20,
—7). By computing the first eigenvariate for all voxels within these ROIs that
showed a positive effect for the conjunction (p <.500), we extracted the time course
of activations and constructed PPI terms using the contrast for the parametric
weights of PE valence for Self or Other, respectively, resulting in four distinct PPI
first-level GLMs. One participant was excluded from the PP analyses for the right
dAI because no voxels survived the predefined threshold for eigenvariate
extraction. The PPI term, along with the activation time course from the (left or
right) dAI was included in a new GLM for each participant that also included all
the regressors in the initial first-level GLM (four regressors for the different cue
conditions, each weighted with the expected performance ratings; two feedback
regressors for Self and Other with each two parametric modulators for PE valence
and PE surprise; two regressors for the estimation periods for Self and Other; one
regressor for the expectation ratings phase; one regressor for the emotion ratings
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phase; six regressors modeling head movement parameters; a constant term for
each session). On the second level, we assessed whether there was a stronger
functional coupling of the dAI seed regions with the predefined ROIs (amygdala,
mPFC, VTA/ SN) for the Self in contrast to the Other when PE valence was more
negative. In line with the negative Valence Learning Bias for self-efficacy beliefs and
stronger pupil dilation responses scaling with more negative PEs we specifically
tested for stronger functional connectivity correlated with more negative PEs.
Functional connectivity dynamics were also associated with learning behavior by
calculating Spearman correlations for the Valence Learning Bias and the

mean parameter estimates for the PPI effect of Self > Other extracted from the
GLMs described above in a sphere of 6 mm around the peak voxels within the
predefined ROIs (amygdala, mPFC, VTA/ SN).

Thresholding procedure and regions of interest. According to its suggested role as an
integrative hub for motivated cognition and emotional behavior, the AI was defined
as one of the regions of interest (ROIs)4243, Due to their specific functional asso-
ciations, a bilateral ventral and a bilateral dorsal AI ROI was defined according to the
three-cluster solution of Kelly and colleagues?’. The bilateral amygdala was defined
as another ROI and derived from the AAL atlas definition in the WFU PickAtlas?®
due to its similar role for the attention-emotion interaction*>64. The mPFC ROI was
also derived from the AAL atlas in the WFU PickAtlas (label: bilateral frontal
superior medial) due to its specific role during social learning and for biases in self-
related learning reported in previous studies’>?¢. Additionally, an anatomically
defined VTA/ SN ROI, dopaminergic nuclei in the midbrain, was included (prob-
abilistic atlases of the midbrain; Adcock Lab)®7-? as dopamine signals motivationally
important events, e.g. during reward learning*>, and has been associated with biases
in memory towards events that are of motivational relevance4.

FMRI results were family-wise-error (FWE) corrected at peak level for the
whole brain unless ROI analyses were conducted, and all coordinates are reported
in MNI space. As our predefined ROIs were chosen with respect to their
involvement with the emotion-cognition link, we tested the effects of our covariates
on PE valence tracking and PPI effects within the ROIs. Anatomical labels of all
resulting clusters were derived from the Automated Labeling Atlas Version 3.0%.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The data that support the findings of this study are available from the corresponding
author upon reasonable request. Source data for the figures are available as
Supplementary Data 3.

Code availability

Code used to generate the analyses are available from the corresponding author upon
reasonable request. Software packages used for the analyses are RStan package (Stan
Development Team, 2016. RStan: the R interface to Stan. R package version 2.14.1.),
SPM12 (www.filion.ucl.ac.uk/spm), GAMLj (https://github.com/gamlj/gamljin) in
jamovi (Version 1.2.27, The jamovi project (2020), retrieved from https://www.jamovi.
org).
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