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Neurocontroller Alternatives for “Fuzzy”
Ball-and-Beam Systems with Nonuniform

Nonlinear Friction
Paul H. Eaton, Danil V. Prokhorov, Member, IEEE, and Donald C. Wunsch II, Senior Member, IEEE

Abstract—The ball-and-beam problem is a benchmark for
testing control algorithms. In the World Congress on Neural
Networks, 1994, Prof. L. Zadeh proposed a twist to the problem,
which, he suggested, would require a fuzzy logic controller. This
experiment uses a beam, partially covered with a sticky substance,
increasing the difficulty of predicting the ball’s motion. We
complicated this problem even more by not using any information
concerning the ball’s velocity. Although it is common to use the
first differences of the ball’s consecutive positions as a measure
of velocity and explicit input to the controller, we preferred to
exploit recurrent neural networks, inputting only consecutive
positions instead. We have used truncated backpropagation
through time with the node-decoupled extended Kalman filter
(NDEKF) algorithm to update the weights in the networks.
Our best neurocontroller uses a form of approximate dynamic
programming called an adaptive critic design. A hierarchy of
such designs exists. Our system uses dual heuristic programming
(DHP), an upper-level design. To our best knowledge, our results
are the first use of DHP to control a physical system. It is also
the first system we know of to respond to Zadeh’s challenge. We
do not claim this neural network control algorithm is the best
approach to this problem, nor do we claim it is better than a fuzzy
controller. It is instead a contribution to the scientific dialogue
about the boundary between the two overlapping disciplines

Index Terms—ACD, adaptive critic, control, DHP, dynamic
programming, extended Kalman filter, fuzzy, HDP, neural net-
works, neurocontrol, recurrent neural network, time-delay neural
network.

I. INTRODUCTION

A T THE World Congress on Neural Networks, 1994, and
later, at the IFAC 13th Triennial World Congress in San

Francisco, 1996, Prof. L. Zadeh issued a challenge to the neural-
network community. This challenge was as follows [1]:

A more complex problem involving dynamic motion
planning—a problem which does not lend itself to solu-
tion by the methods of classical control—is what might
be called the fuzzy ball and beam problem. The main
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difference between this problem and the standard ball and
beam problem is that the beam is assumed to be covered
with a strip of fuzzy material, e.g., a strip of thick-pile
rug. The fuzziness of the beam’s surface is intended
to preclude the possibility of setting up the differential
equations governing the ball’s motion (gliding and rolling)
on the beam. This rules out—or at least makes it very
difficult—to use classical control techniques to derive a
way of stabilizing the ball within a prescribed interval.
The same obstacle stands in the way of application of
neural network and genetic algorithm techniques since a
prerequisite to the use of these techniques is the possibility
of computer simulation.
(He provided another example fuzzy material, sticky tape, in

his earlier plenary talk at World Congress on Neural Networks,
1994.) Zadeh asserted that the only way to control this system
was with fuzzy logic, or at least that other approaches would
be difficult. We demonstrate two neurocontrollers to solve this
problem. Our approach is to train neurocontrollers on a model
of the system off-line, and then deploy them with fixed weights
for testing on the actual system on-line. First we verify that this
approach is valid using the ordinary beam, i.e., one providing
uniform friction for the ball everywhere. Then we show that our
approach is applicable to the “fuzzy” beam as well.

Our experience with this problem shows that the presence of
a sticky surface does increase the difficulty of control, as as-
serted in the challenge. A shallow beam angle can allow the
ball to become stuck on an undesired location, while a steep
angle will cause it to shoot past the desired point. Setting up dif-
ferential equations to describe the ball’s dynamics is very dif-
ficult since these responses are nonlinear and ill-posed. (On a
nonsticky beam, these problems do not exist because the ball’s
movement is smooth and predictable.) Yet, we believe that mod-
eling this problem is not impossible. In fact, the sheer success of
our experiments confirms feasibility of relatively simple control
solutions attained withqualitativelyaccurate models.

We begin by describing the experimental apparatus, neural-
network architecture, and training algorithms (Sections II and
III). In Section IV, we discuss the creation of a model of the
system for off-line simulation and training. In Section V-A, a
conventional neurocontroller is trained, using backpropagation
through time, to balance the ball. Adaptive critic approaches
to train neurocontrollers are discussed in Section V-B. We also
provide references in that section to papers with full implemen-
tation details of these algorithms. In Section VI, we present re-
sults from our test on ordinary (nonsticky) and “fuzzy” (sticky)

1045–9277/00$10.00 © 2000 IEEE
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Fig. 1. Hardware setup. The beam moves like a cradle, with a pivot point high above the beam.

beams for both controllers, shown in computer simulations and
actual hardware tests.

II. I NSTALLATION FOR EXPERIMENTS

In the usual designs for the ball-and-beam, the position
sensors are mounted on the beam [7], [20], [21]. For in-
stance, photodiodes mounted along the beam are used as
position sensors in [7]. When the ball rolls, it blocks an
external light incident on a photodiode thereby signaling its
relative position on the beam. We cover the beam with a
nontransparent sticky tape, but this obviously would inter-
fere with photosensors as described above. Therefore we built
the ball-and-beam setup with displaced fulcrum as shown in
Fig. 1. The beam moves like a cradle, with a pivot point
high above it. A ball position sensor is moved above the
beam such that the ball is always easily detectable, whether
the beam is covered with a sticky tape or not.

The displaced fulcrum design just described does make
the physics of the problem easier than that of the usual
ball-and-beam. The version with nonlinear friction (beam
partially covered with sticky tape) thus inherits this advantage.
However, our design retains the intrinsic instability of balancing
the ball in an arbitrary off-center locationon the beam as the
essential property of the usual ball-and-beam problems. In any
case, it is a necessary step, enabling experimentation with the
“fuzzy” ball-and-beam, since the nonlinear friction is obtained
by covering the surface where photodetectors would be used
in other implementations.

The ball position sensor is a 512-element linear charge-cou-
pled device (CCD). The light reflecting off the ball and beam
is focused onto the CCD using a lens. The ball is painted black
and the beam is white. The software reads in the CCD pixels
serially, with sampling period of 0.055 s, looking for the dark
spot and determining the ball’s position on the beam.

A servo motor, using pulsed width modulation (PWM) en-
coding, moves the beam. The PWM signal is a digital signal
with a fixed frequency (the same as the inverse of the sampling
period) and a variable duty cycle, with changes in the duty cycle
changing the servo motor position.

The ball is 2 cm in diameter. The controller can balance it at
any position on the beam, which is 40 cm long. A foam bumper
is at each edge of the beam. The CCD reads in the beam from
pixel 189 to 412, allowing for 223 pixels to scan the 40-cm
beam. This allows an 0.18-cm accuracy limit in determining the
ball’s position. Actual accuracy is 0.54 cm after experiments

Fig. 2. Recurrent network architecture. The output of each neuron in the
hidden layer from the previous time step is used as input for the current step.

showed an added1 pixel from system noise. The servo motor
can be set to any value from zero to 255. Due to hardware lim-
itations, only the range between 50 and 140 is used to move
the beam. This range produces 90 different possible positions,
which set the beam at an angle between 79–103, with 90 cor-
responding to the beam being leveled. This allows for the beam
to be set to positions in 0.26increments.

The “fuzzy” beam used in this paper was created by laying
a sticky tape across half of the beam (sticky surface facing up-
ward). One half of the beam (approximately−1 to zero in nor-
malized units, and 189 to 290 in the hardware) remained the
same as the ordinary beam, while another half (zero to1 in
normalized units, and 290 to 405 in the hardware) was covered
with the tape.

III. N EURAL NETWORKS USED AND THEIR TRAINING

ALGORITHM

Our training method is backpropagation through time trun-
cated with depth [BPTT( )] with node-decoupled extended
Kalman filtering (NDEKF). BPTT( ) uses copies of the net-
work with the same weights but different node activations cor-
responding to different time steps. We typically used .
The recurrent neural networks (RNN’s) we use (Fig. 2) are dis-
crete-time recurrent multilayer perceptrons [5].

In BPTT( ), multiple copies of the same network weights are
made. This can be pictured as one larger network, with each time
step representing a hidden layer passing its output to the next
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layer. While the copies’ weights are usually the same, the node
activations are different and time dependent. Thus, unfolding
the network provides a natural way to preserve this time depen-
dence. Starting at the beginning of the data, each copy calculates
its outputs. At the end, the error is calculated for the last copy,
and the weights are updated using the chain rule for ordered
derivatives. The copies are then moved forward one time step
and the process is repeated [14]–[16].1

EKF training is a parameter identification technique for an
RNN [4], which adapts weights of the network pattern-by-pat-
tern, accumulating training information in approximate error co-
variance matrices and providing individually adjusted updates
for the network’s weights.

All weights of the RNN are assembled in a vectorof length
. This is split into disjoint groups. is a vector of theth

group of weights. , and size
size size .

The EKF method requires that we compute derivatives of the
RNN’s outputs, rather than output errors, with respect to the
weights. These derivatives are obtained using BPTT() [16]. We
store them in a set of matrices , where each has dimen-
sions size .

The following equations form the basis of the EKF training
procedure:

(1)

(2)

(3)

(4)

where
scalar learning rate;
Kalman gain matrix for the th group of
weights;

error vector;

vector of the desired outputs;
actual output vector of the RNN.

forms the squared error, is the size
size approximate error covariance matrix which models
correlation between each pair within theth group of weights,
and is a positive diagonal matrix that helps avoid numer-
ical divergence of the procedure and prevents getting stuck in a
local minimum [4].

Grouping of weights can be done in a variety of ways. We
employ grouping by node, i.e., weights belonging to the same

1Our notation BPTT(h) corresponds to BPTT(h � 1) of [15] and [24].

neuron are grouped together. Thus, we ignore frequently unnec-
essary correlation between weights belonging to different neu-
rons. This results in a significant reduction of computational
complexity and storage requirements since the size of each error
covariance matrix can then be made much smaller than,
the size in the case when .

The matrices are initialized as diagonal matrices with
large diagonal elements (values between 100 and 10 000). User-
specified values of are usually increased from 0.01 to one
whereas diagonal components of are decreased from 0.01
to 10−6 as training progresses.

The set of matrices in (1), (2), and (4) is obtained by trun-
cated backpropagation through time with depth ten. This means
that we do not use more than ten copies of the network to accu-
mulate appropriate derivatives in the matrices, hence the no-
tation BPTT(10). Training usually lasts for around 100 passes,
where one pass corresponds to a complete processing of the
whole training set.

IV. SYSTEM SIMULATION

Our approach to balancing the ball on the beam belongs
to the category of indirect adaptive control [2]. Problems of
this category are characterized by the presence of a system
model, which simulates behavior of the actual system. The
model naturally has to be accurate enough in predicting the
system behavior over a sufficiently long time horizon. The
length of the time horizon depends on the training mode.
If training is performed on-line, the model is typically used
for short-term predictions of the system outputs. For ex-
ample, in the case of one-step-ahead predictions the model
gets outputs of the actual system from the previous time
step as its inputs. The model outputs are predictions of the
current system outputs. Such model-system configuration is
known under different names including series-parallel model
[3] and teacher forcing [15]. We model the ball-and-beam
system via an NN henceforth referred to as an ID (identi-
fication) network. After this network is trained, its weights
are fixed, and itreplacesthe system in subsequent off-line
training of the neurocontrollers. We emphasize that the com-
plete replacement of the actual system is performed. Our
configuration is therefore an extreme case of so-called par-
allel model [3]. Unlike the series-parallel model, it features
an ID network inputting its own predictions for the previous
time step instead of the system outputs. The parallel model
is used when the ID network is to simulate long-term be-
havior of the system, which is precisely what we need. The
parallel method clearly puts more demands on the NN than
the series-parallel method. This is justified by the conve-
nience of off-line training, which precludes the latter.

Regardless of whether the parallel or series-parallel model
is used, the main function of the model for training con-
trollers is to provide sensitivity signals, i.e., gradients of
outputs with respect to inputs. These gradients are used to
adapt adjustable parameters of the controller. It is convenient
to use the backpropagation algorithm to obtain the gradients,
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Fig. 3. Example training data set. The first 350 steps are a predetermined pattern executed moving the beam through its entire range of motion. The next650
steps are randomly generated PWM values and the corresponding ball positions.

Fig. 4. Architecture for the parallel model. The ID network uses its previous prediction of the ball position and the PWM signal from a data file as its inputs. This
creates a reliance on the accuracy of previous predictions in the current position calculation.

in which case one recovers backpropagation through the for-
ward model as proposed in [8].

Our ID network uses two inputs, the ball position, , and
the PWM, PWM , and computes the ball position . It
is a one-hidden-layer RNN. The hidden layer has two neurons
which read in the inputs and the recurrent values from the pre-
vious time, and pass their outputs to one output neuron.

About 40 data files were created for training the ID network
using various techniques such as a human randomly changing
the angle, a human trying to balance the ball, the computer ran-
domly changing the beam angles, and the computer changing
the beam angle in specific patterns. The best models were cre-
ated using a combination of the last two. In the beginning of
gathering the data file, the computer was moving the beam from
the largest angle in one direction, followed by the largest angle

in the other direction. The beam then oscillated back and forth,
slowly decreasing the angle until the beam was horizontal. This
portion of the data file was followed by the computer randomly
choosing a beam angle and staying in this position for a certain
amount of time. An example of a typical data set recorded in
this way is shown in Fig. 3.

The parallel model shown in Fig. 4 feeds the output from each
step as the input for the next time step. Only the first few ball po-
sitions are read from a data file of consecutive ball positions and
corresponding PWM’s providing the initial ball position, after
which the network uses its previous estimate of the ball position
as the current input. The parallel method is trained in 70 to 100
passes using BPTT(10) with NDEKF as described in Section III.
A typical comparison of the actual and the corresponding
predictions of the ID network on the training data is shown in
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Fig. 5. Training results of the ID network trained as the parallel model.

Fig. 6. Test results for the ID network trained as the parallel model. This typical result demonstrates that the ID network indeed captures essential long-term
dynamics of the actual ball-and beam system.

Fig. 5. An example test performance of the ID network is il-
lustrated in Fig. 6. While discrepancies between the predicted
and the actual appear to be large, they turn out to be small
enough to enable acceptable off-line training of our neurocon-
trollers, to be discussed in Sections V and VI. More details on
the system simulation using series-parallel and parallel models
are given in [17] and [18].

V. NEUROCONTROLLERS

Once we have the ID network, we can proceed with designing
and training of the system’s controller. Section V-A discusses
the conventional neurocontroller, i.e., one which is trained using
BPTT with NDEKF in the closed loop with the ID network.
In Section V-B, we discuss an adaptive critic-based neurocon-
troller. To distinguish between the two neurocontrollers we used
the designator “conventional” for the former. We will later show
that our best performance for this problem was obtained with the
adaptive critic known as DHP. We provide some motivation for
this design and references to complete implementation details.

A. Conventional Neurocontroller

The controller is a one-hidden-layer RNN, with two nodes in
the hidden layer and one node in the output layer. The neurocon-
troller uses the two inputs, the current ball position (), and the
desired ball position ( ), to produce an output which is
the PWM signal used by the ID network.

The desired ball position is a value provided in a data file.
The current ball position comes from the output of the ID net-
work from the previous time step. The neurocontroller is shown
with its connections to the ID network in Fig. 7. The output of
the neurocontroller (PWM) is a sigmoid node, where PWM =
−1 sets the beam to the highest angle possible in one direction,
and PWM = 1 moves to the highest angle in the other direc-
tion. The controller is trained using BPTT(10) with an error term
corresponding to the difference between the current ball posi-
tion and the desired ball position at each time step. This error is
backpropagated through the ID network to the neurocontroller,
providing PWM . The weights of the controller are
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Fig. 7. Controller network connected to the ID network. Both networks contain two hidden neurons and one output neuron. The controller uses the current B(t)
from the previous time step and the desired positionBdesired(t) from a data file, calculating the needed PWM(t) value. The ID network receives the current
B(t) and the controllers output PWM(t) value to determine the next ball positionB(t + 1).

then updated using NDEKF and the appropriate derivatives with
respect to the controller weights.

B. Adaptive Critic-Based Neurocontroller

A family of approaches united under the common name adap-
tive critic designs (ACD’s) have recently emerged as a synthesis
of reinforcement learning, dynamic programming, and back-
propagation [10], [19], [22], [23]. This section discusses the
most salient issues of ACD’s with respect to this problem. A
typical ACD consists of the critic network, the ID network, and
the controller network, also called the action network in ACD
literature. The critic is trained to estimate the cost-to-go function

of the Bellman equation of classical dynamic programming
[13]. Similarly to the off-line training algorithm Dyna [9], in our
case the critic is added to the ID network and the conventional
controller of Section V-A to obtain an adaptive critic-based neu-
rocontroller. The addition of the critic turned out to be crucial in
improving the balancing performance, as shown in Section VI.

The critic is a one-hidden-layer RNN with three hidden
neurons and one output neuron. The critic inputs are the actual
ball position and the corresponding desired ball position

. Two ACD’s, heuristic dynamic programming
(HDP) and dual heuristic programming (DHP), were imple-
mented. HDP outputs the cost-to-go function , while DHP
outputs the derivative of . The reader is referred to [11],
[12], and [19] for the detailed descriptions of these ACD’s. As
we shall see, DHP works well for this problem, whereas HDP
does not.

We nevertheless begin by introducing the architecture of
HDP, because DHP is best explained by its contrast with HDP,
and the shortcomings of HDP for this problem serve to motivate
the use of DHP. The HDP critic produces the function
described above as the output, calculated using

Error (5)

where

(6)

The error is calculated by finding the output error, , and the
and terms for the current and next time step. By

using this cost-to-go function, the effect of the current neuro-
controller output on future positions can be seen. For instance,
if the beam is set to a very high angle, the ball could roll to the
desired position faster than from a small angle, but it will be
more difficult to stop the ball when it arrives. Learning to incor-
porate this tradeoff is why reinforcement learning allows good
control decisions in spite of the inability to create an accurate
model. This advantageous property of ACD’s was also noted in
[22].

The term in (5) is called the discount factor and is set to a
value between zero and one. Whenis close to zero, the critic
network will be trained with a very small predictability horizon
[if , this horizon is just the current time step error ],
while having values of close to one is equivalent to extending
prediction horizon of the critic up to infinity. Once the critic
network is trained, its weights are fixed and the critic is used to
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Fig. 8. Diagram of the connections between networks for DHP. This method uses a critic trained to produce a derivative of the cost-to-go function. The derivative
of the cost-to-go function is backpropagated through the networks as shown by the dashed lines. [The left branch captures the dependency uponB(t), and is thus
the source of error signal in the previous time step. The right branch captures the dependency upon the control signal PWM(t). This enables training of the Action
net as shown.] The model (ID) network and the action (controller) network are the same as those in Fig. 7.

train the action network. This is done by using the derivative of
the cost-to-go function as the error term

(7)

Simultaneously requiring smooth estimates and a minimal final
cost is proven to minimize cost over time [6]. Backpropagation
through (now fixed) weights of the critic and model networks
yields an error signal for the action network. The training of
the action network is performed until its error reaches a min-
imum, and the weights of the action network are fixed and used
to retrain the critic. This process is continually repeated until
the neurocontroller performance is no longer improved over the
previous training pass. The training process follows guidelines
of the general training procedure for ACD’s proposed in [19],
and the NDEKF algorithm is used for updating both critic and
action weights.

For this problem, HDP, one of the simplest ACD’s, produced
unsatisfactory results. This was expected, because, as we shall
explain below, DHP computes derivatives that are essential to
training the action network that makes control decisions. To il-
lustrate the limitations of HDP with respect to this issue, we
trained the HDP critic using in (5), i.e.,

Error (8)

The trained critic showed it could produce results with the error
(8) close to zero implying that

(9)

However, the problem occurred when the derivative term
was examined. This derivative term was very

inaccurate when compared to . But an inaccurate
causes improper training of the action network

due to (7). The choice of turns the task of approximating
the cost-to-go function into the much simpler task of
recreating the one-step cost function . It is therefore hard

to expect a more accurate for . This inac-
curacy of in the most benign case demonstrated
that even if a network can produce a close estimate of a desired
function, it is still possible for the network to produce a poor
approximation of the derivatives of this function, unless it is
trained to estimate them explicitly.

The explicit approximation of is precisely the
goal of the more sophisticated ACD called dual heuristic pro-
gramming (DHP). DHP uses a critic whose output tries to min-
imize

Error (10)

The advantage of this ACD is that the critic produces the
term as its output, to be directly used to adapt the

action network [see (7)]. The disadvantage lies in the necessity
to perform extra computations for the term,
but this is a minor technical difficulty. The DHP arrangement
of all three networks for two consecutive time steps is shown
in Fig. 8. DHP is an algorithm of moderate complexity, and all
our experience with ACD’s to date recommends it as a good
tradeoff between complexity and power. Reference [22] con-
tains implementation details pertaining to DHP, while [19] and
[23] give an analysis of the whole family of ACD’s, including
an algorithm which includes HDP and DHP as special cases.
While ACD’s are sufficiently complex to preclude even an
overview section here, these papers, especially [23], provide
the complete discussion of relevant issues.

VI. RESULTS

A. Ordinary (Nonsticky) Ball-and-Beam

1) Conventional Neurocontroller:The conventional neu-
rocontroller was trained using the ID network simulating the
ball-and-beam system with the ordinary beam, first around
a single position and then around multiple positions. The
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Fig. 9. Computer simulation of conventional controller test performance on ordinary beam. The results show the conventional neurocontroller approach is capable
of moving the ball to different desired positions in a relatively short period of time.

Fig. 10. Hardware results of conventional controller test performance on ordinary beam. The results show the conventional neurocontroller is able to move and
balance the ball around different positions on the beam. These are the same desired balancing points (dotted) as in Fig. 9 but the overall duration is about 100 time
steps longer. This difference between the off-line simulations and actual hardware runs is presented in Figs. 11–16.

controller trained relatively fast on the single position, and
depending on the distance between the balancing positions,
could also train quickly on multiple balancing points. The
network was repeatedly trained on many different positions
using random initial weights with the best neurocontroller
being chosen and applied to test simulations. An example test
simulation for this type of controller is shown in Fig. 9. Once it
was shown that the neurocontroller could balance the ball in the
off-line simulations, the weights were saved and applied to the
actual hardware, with the test performance as shown in Fig. 10.

2) Critic-Based Neurocontroller:Neurocontroller training
within the DHP framework began with random weights in both
the neurocontroller and critic networks. The critic network
was trained first, using in (10) (see Section V-B). This
training made the first critic act very similar to the explicit error
function used to train the conventional neurocontroller. The
critic quickly trained to almost zero error within the first ten
passes. Once the error reached a minimum, the critic weights

were saved and the critic was used to train the action network.
The results of this were successful, but not as good as the
conventional neurocontroller. This was because
is an approximation of , and there is a slight
difference between the two. When the minimum was reached,
the first neurocontroller’s weights were saved, and the new
critic was trained using the first neurocontroller, this time with

. This process was repeated, with gradually increasing
(final value 0.9), until the neurocontroller performance was

no longer improving. Fig. 11 shows the results of the test
simulation for the critic-based neurocontroller and Fig. 12
shows the hardware test results.

3) Comparison of the Two Neurocontrollers Response Char-
acteristics: We observe that the conventional neurocontroller
used smaller changes in the PWM signal to move the ball. This
makes the controller slower when making a large change in
PWM, causing overshooting to be observed in many hardware
tests. The conventional neurocontroller appears to have a greater
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Fig. 11. Computer simulation of critic-based controller test performance on ordinary beam. The critic based neurocontroller generates larger PWM(t) values
compared to the conventional approach when moving the ball. These larger values cause “ringing” effects on the motion of the ball, seen in the second balancing
position.

Fig. 12. Hardware results of critic-based controller test performance on ordinary beam. The hardware results demonstrate the critic based trainingapproach is a
viable solution to training neurocontrollers. The larger PWM(t) values generated “ringing” on hardware tests, but reach the final positions in times similar to those
of the conventional neurocontroller.

TABLE I
COMPARATIVE RESULTS OF THENEUROCONTROLLERS FOR THEORDINARY BALL -AND-BEAM

difficulty in correcting this than the critic-based neurocontroller.
The critic-based neurocontroller used larger PWM signals, usu-
ally causing overshoot. However, it could compensate for this
quickly resulting in a shorter settling time compared to that of
the conventional neurocontroller.

As seen in Figs. 9–12, performances of both controllers are
comparable, with small discrepancies between the results of
off-line simulations (Figs. 9 and 11) and those of runs on the
actual system (Figs. 10 and 12) being observed.

Table I quantifies performance of both neurocontrollers in
terms of settling time, rise time, and the overshoot. All num-
bers represent averages over 20 test trials of balancing the ball.

Thus, we have verified that our approach of training neu-
rocontrollers off-line on the model (ID network) of the actual
system is valid when applied to balancing the ball on the ordi-
nary beam. In the next section, we demonstrate that the approach
remains applicable to balancing the ball on the “fuzzy” beam as
well.
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Fig. 13. Computer simulation of conventional controller test performance on fuzzy beam. The conventional neurocontroller training approach was attempted
multiple times without producing an adequate controller capable of balancing the ball on the fuzzy beam.

Fig. 14. Hardware results of conventional controller test performance on fuzzy beam. A typical conventional neurocontroller trained on the fuzzy model was
applied to the hardware, unable to balance the ball.

B. “Fuzzy” (Sticky) Ball-and-Beam

1) Conventional Neurocontroller:Similar with Sec-
tion VI-A1, the conventional neurocontroller was trained
using the ID network, but this time the ID network was
trained in advance to simulate dynamics of the system with
the “fuzzy” beam. A typical test simulation of the best
neurocontroller is shown in Fig. 13. A typical performance
of the same controller when applied to the actual hardware
is illustrated in Fig. 14.

2) Critic-Based Neurocontroller:Similar with Section
VI-A2, after the critic was trained first (using ), critic
weights were fixed and used to train the neurocontroller. On
the first cycle the controller reached a reasonable minimum of
the RMS error term quickly, after two or three passes through a
300-point data file. The critic was then retrained using ,
and used for further training of the controller. This retraining
was repeated for several cycles, usually three or four, with the

final . By this process, the neurocontroller eventually
functioned at a performance level that could not be improved
by further training. An example test simulation is shown in
Fig. 15. This neurocontroller was then applied to the actual
system, with the typical results shown in Fig. 16.

3) Comparison of the Two Neurocontrollers’ Response
Characteristics: Comparing Figs. 13 and 14 and 15 and 16,
we conclude that the critic-based neurocontroller outperforms
the conventional neurocontroller both in the off-line simulation
and hardware tests, but in both cases there are differences
between the performance in the simulations and corresponding
actual behavior. These differences are more salient than those
observed in the case of the ordinary ball-and-beam (see Sec-
tion VI-A3). In particular, the ball is seen to be stuck in the
time interval from 77 to 172 in Fig. 14, whereas it should have
oscillated according to Fig. 13. Alternatively, the ball keeps
oscillating in the time interval from 229 to the end in Fig. 14
whereas it should have settled down according to Fig. 13.
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Fig. 15. Computer simulation of critic-based controller test performance on fuzzy beam. After several training cycles (training the critic, training the controller,
retraining the critic, etc.), the controller was able to balance the ball on the fuzzy surface.

Fig. 16. Hardware results of critic-based controller test performance on fuzzy beam. The critic-based controller was able to balance the ball on the fuzzy surface.

TABLE II
COMPARATIVE RESULTS OF THENEUROCONTROLLERS FOR THE“FUZZY” BALL -AND-BEAM

Such discrepancies are not very surprising. After all, the sticky
tape is intentionally used to complicate accurate long-term
predictability of the ball movement.

Table II quantifies performance of both neurocontrollers in
terms of settling time, rise time, and the overshoot. All num-
bers represent averages over 20 test trials of balancing the ball.
Unlike the results in Table I, the settling time of the conven-
tional controller is not reported since in most of the trials the
ball either got stuck far from the desired balancing point or
never stopped oscillating. We note that the steady-state error of
the conventional controller, however, is not particularly large.

(The critic-based controller has some steady-state error too.) We
therefore do not claim that a conventional neurocontrol solution
better than ours can not be designed in fact, we suspect that it
can be done.

C. Balancing in a Given Time Interval

It is interesting to change the problem so as to permit the
user to specifywhenit is desirable to have the ball balanced at
a particular location on the beam. To implement this, a simple
modification of the proposed neurocontrollers turns out to be
sufficient.
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Let us consider a structure described by the following equa-
tions:

(11)

if
if

(12)

where

(13)

Here
unit step function;
input weight equal to the sampling interval (0.055 s, as
in Section II);
user-specified time (in seconds) marking the end of the
balancing interval;
average settling time (see Tables I and II).

In (11) one can recognize a linear recurrent node, with its only
external connection . In addition, (12) and (13) describe a
threshold node. Both of these nodes are connected in series, with
the recurrent node feeding the threshold node. At each time step

all states and inputs of both the ID network and the controller
are multiplied by the output of the threshold node. As a
result, no balancing happens as long as stays at zero. The
duration of the interval when remains zero (in time steps)
is determined by the user specifying( and are the prede-
fined system parameters). The balancing interval begins at
with initialization of the state to zero. Due to using the average
settling time the balancing may only approximately be com-
pleted by the end of the time interval from zero to. In addition,
if the balancing begins instantly (i.e., in the very first
time step) but, in this case it would be impossible to meet such
an invalid user specification.

Equations (11)–(13) are interpreted as a special neural net-
work. This network is added to either of the neurocontrollers
discussed in Sections VI-A and VI-B to make them immedi-
ately applicable for balancing the ball within the time specifica-
tion.

VII. CONCLUSION

In this paper we have demonstrated that the control of the
fuzzy ball-and-beam system, as described here, can be done
without fuzzy logic, using only neural networks. It is, to our
knowledge, the first reported experimental study to respond to
Prof. Zadeh’s challenge. Furthermore, to the best of our knowl-
edge, this is the first accomplished implementation of DHP to
control a physical system. These results showcase the capabili-
ties of DHP in particular and neural-network controllers in gen-
eral. Although we do not claim that the results presented here
represent the best possible approach to this particular problem,
we do believe that reinforcement learning approaches offer a
valuable alternative when simulation of the system to be con-
trolled can yield only qualitatively accurate predictions, which
was the real crux of this challenge.
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