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Abstract

The concept of diabetic retinopathy as a microvascular disease has evolved, in that it is now considered a more complex diabetic
complication in which neurodegeneration plays a significant role. In this article we provide a critical overview of the role of
microvascular abnormalities and neurodegeneration in the pathogenesis of diabetic retinopathy. A special emphasis is placed on
the pathophysiology of the neurovascular unit (NVU), including the contributions of microvascular and neural elements. The
potential mechanisms linking retinal neurodegeneration and early microvascular impairment, and the effects of neuroprotective
drugs are summarised. Additionally, we discuss how the assessment of retinal neurodegeneration could be an important index of
cognitive status, thus helping to identify individuals at risk of dementia, which will impact on current procedures for diabetes
management. We conclude that glial, neural and microvascular dysfunction are interdependent and essential for the development
of diabetic retinopathy. Despite this intricate relationship, retinal neurodegeneration is a critical endpoint and neuroprotection,
itself, can be considered a therapeutic target, independently of its potential impact on microvascular disease. In addition,
interventional studies targeting pathogenic pathways that impact the NVU are needed. Findings from these studies will be
crucial, not only for increasing our understanding of diabetic retinopathy, but also to help to implement a timely and efficient
personalised medicine approach for treating this diabetic complication.
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Abbreviations

BRB Blood–retinal barrier
CNS Central nervous system
DMO Diabetic macular oedema
DPP-IV Dipeptidyl peptidase-IV
ET-1 Endothelin-1

EUROCONDOR European Consortium for the Early
Treatment of Diabetic Retinopathy

GLP-1 Glucagon-like peptide 1
iBRB Inner blood–retinal barrier
mfERG Multifocal electroretinogram
NVU Neurovascular unit
oBRB Outer blood–retinal barrier
OCT Optical coherence tomography
OCTA Optical coherence tomography

angiography
PEDF Pigment epithelium-derived factor
RAS Renin–angiotensin system
RPE Retinal pigment epithelium
VEGF Vascular endothelial growth factor

Introduction

Diabetic retinopathy is the most common complication of di-
abetes and remains the leading cause of preventable blindness
among working-age individuals in most developed countries
[1, 2]. Current treatments target late stages of diabetic
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retinopathy, when vision has already been significantly affect-
ed. Therefore, novel and more efficient preventive and inter-
ventional strategies based on a better understanding of patho-
genesis of the early stages of the disease are needed.

The concept of diabetic retinopathy as a microvascular dis-
ease has evolved, in that it is now considered a more complex
diabetic complication in which neurodegeneration plays a sig-
nificant role [3–6]. In fact, the ADA has recently defined dia-
betic retinopathy as a highly tissue-specific neurovascular com-
plication involving progressive disruption of the interdepen-
dence between multiple cell-types in the retina [7]. In this re-
view, we provide a critical overview on the role of neurodegen-
eration in the pathogenesis of diabetic retinopathy and how this
new knowledge changes the traditional view of the disease. A
special emphasis is placed on the pathophysiology of the
neurovascular unit (NVU), examining the contributions of mi-
crovascular and neural elements. We also discuss the impact of
this new perspective on possible therapeutic avenues, whilst
highlighting important scientific gaps to be addressed.

Epidemiology and the associated economic
burden

The global prevalence of diabetic retinopathy in the population
with diabetes is around one-third and approximately one-tenth of
these patients have the vision-threatening states typified by dia-
betic macular oedema (DMO) or proliferative diabetic retinopa-
thy [1]. The number of people with visual impairment owing to
diabetic retinopathy worldwide is rising and this represents an
increasing proportion of all causes of blindness and moderate or
severe vision impairment [2]. In addition, the presence of diabet-
ic retinopathy is an independent indicator of other diabetic com-
plications, such as diabetic nephropathy [8, 9], cardiovascular
disease [10–12] and stroke [13, 14], thus increasing the risk of
morbidity and mortality in individuals with type 2 diabetes.

For these reasons individuals with diabetic retinopathy rep-
resent a significant cost for healthcare systems, only part of
which is due to ophthalmic care [15–17]. Therefore, strategies
to prevent or delay the progression of diabetic retinopathy
would lead to a decrease in its associated economic burden
[17]. In addition, improved awareness of diabetic retinopathy
and its assessment in at-risk individuals will make possible the
earlier detection of other systemic complications of diabetes.

The key role of the NVU in retinal physiology

The term ‘neurovascular unit’, was first applied to the blood–
brain barrier and refers to the functional coupling and interde-
pendency of neurons, glia and the highly specialised vascula-
ture in the central nervous system (CNS) [18–21]. In the con-
text of the retina, all the component cells of the NVU are in

intimate communication and maintain the integrity of the in-
ner blood–retinal barrier (iBRB) whilst dynamically regulat-
ing blood flow in response to metabolic demands. The impair-
ment of the NVU is a primary event in the pathogenesis of
diabetic retinopathy that can be examined by different
methods (Fig. 1).

The components of the NVU are diverse neural cell types
(i.e. ganglion cells, amacrine cells, horizontal and bipolar
cells), glia (Müller cells and astrocytes), professional immune
cells (microglia and perivascular macrophages) and vascular
cells (endothelial cells and pericytes) [18–21] (Fig. 2). The
intra-retinal vasculature lacks autonomic innervation and,
therefore, a dynamic autoregulatory response of the NVU to
complex circulatory and neural cues is essential to regulate
blood flow through the inner retina [22, 23]. Thus, neuronal
and glial-mediated neurovascular coupling is an essential nor-
mal homeostatic function of the retinal NVU.

Diabetes results in abnormal retinal blood flow, although
the precise nature of this pathophysiology varies according to
measurement techniques used and stage of diabetic retinopa-
thy [22, 23]. Nevertheless, there is consistent and robust evi-
dence that normal function of the retinal NVU is impaired in
diabetes. For instance, the response to functional hyperaemia,
which is critical for supplying oxygen and glucose to the ac-
tive retinal neurons in the inner and middle retinal layers,
becomes impaired as diabetes progresses. This response can
be examined by flicker-evoked vasodilation, which is de-
creased in individuals in the early stages of diabetic retinopa-
thy, even before overt signs of clinical retinopathy are ob-
served [20–25]. These changes clearly demonstrate the rele-
vance of neurovascular coupling or, in other words, interac-
tions between the neurosensory retina and its blood vessels.
The progressive dysfunction of neurovascular coupling may
be a key causative factor in the development of clinically
evident diabetic retinopathy, but longitudinal studies of retinal
autoregulatory responses are needed to confirm this.

Is microvascular disease a primary pathogenic
event in the development of diabetic
retinopathy?

The early stages of diabetic retinopathy include disruption of
the iBRB and the thickening of the vascular basement mem-
brane in parallel with the damage and subsequent loss of
pericytes and endothelial cells.

Blood–retinal barrier dysfunction in diabetes

The BRB consists of the iBRB and the outer BRB (oBRB). As
mentioned previously, the integrity of the iBRB involves com-
plex cell–cell communication between all the components of
the NVU [26]. In contrast, the oBRB is formed by retinal
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pigment epithelium (RPE). In both the iBRB and the oBRB, the
passage of proteins and many other macromolecules into the
retina from the bloodstream is controlled by tight junctions and
adherens junctions between adjacent cells (i.e. occludin,
claudins and zonula occludens-1 [ZO-1]), which effectively
block paracellular permeability. The disruption of the BRB, in
particular the iBRB, is essential in the pathogenesis of DMO
[27]. The main known contributors to the breakdown of the
BRB are vascular endothelial growth factor (VEGF), proinflam-
matory cytokines (e.g. IL-1β, TNF-α, IL-6, monocyte
chemoattractant protein-1 [MCP-1]) and components of com-
plement. These are variously secreted from RPE, glia and im-
mune cells. In addition, blood-circulating leukocytes may en-
gage with adhesion molecules, such as intercellular adhesion
molecule-1 (ICAM-1), vascular cell adhesion molecule
(VCAM) and selectins, on the surface of endothelial cells, and
the adherence of these cells to the endothelial wall may result in
the occlusion of capillaries (leukostasis). Such vascular–im-
mune cell interactions contribute to microvascular damage by
releasing cytokines and superoxide via respiratory burst, which
alters the integrity of the NVU [28, 29]. In the advanced stages
of diabetic retinopathy, in which immune privilege is compro-
mised, circulating immune cells and serum proteins may infil-
trate the retina and vitreous, thus participating in chronic inflam-
mation and retinal vascular and neuronal damage [30].

There is robust clinical evidence that the development and
progression of retinal microvascular disease is related to
glycaemic control and hypertension [6]. However, clinical
information on the relationship between glycaemic control

and hypertension and retinal neurodegeneration is not avail-
able. It is worth mentioning, however, that the major compo-
nents of the renin–angiotensin system (RAS) have been iden-
tified in ocular tissues and they are overexpressed in the retina
of individuals with diabetes [31]. In addition, the blockade of
RAS in experimental models of diabetes attenuates retinal
neurodegeneration [32–34]. Regarding glycaemic control, it
should be noted that accumulation of advanced glycation and
lipoxidation end-products, and upregulation of the receptor
for advanced glycation end-products (RAGE), plays a key
role in the hyperglycaemia-induced activation of Müller cells
and downstream cytokine production that may contribute to
diabetic retinopathy [6].

The text box ‘BRB disruption and diabetic retinopathy’
summarises the main structural factors involved in the disrup-
tion of the BRB.

NPDR PDR

DMO

No DR

NVU

impairment 

Methods for assessment

mfERG Microperimetry SD-OCT

Tight control of blood glucose levels 

and blood pressure

Laser photocoagulation

Intravitreal injections

Vitreoretinal surgery

Fig. 1 Natural history of diabetic retinopathy, based on retinal microvas-
cular disease progression, and current treatment options. NVU impair-
ment is an early event in the pathogenesis of diabetic retinopathy that can
be assessed by functional (i.e. mfERG [with or without flickering] and
microperimetry) or morphological (i.e. SD-OCT) analysis. DR, diabetic
retinopathy; mfERG, multifocal electroretinogram; NPDR, non-prolifer-
ative diabetic retinopathy; PDR, proliferative diabetic retinopathy; SD-

OCT, spectral domain OCT. Schematic adapted from Simó andHernández
[73] by permission from BMJ Publishing Group Limited. mfERG image,
distributed under the terms of the Creative Commons Attribution-Share
Alike 4.0 International License (https://creativecommons.org/licenses/by-
sa/4.0/); microperimetry image, used with permission from CenterVue
SpA; SD-OCT image, 3D OCT-2000, used by permission of Topcon GB
Ltd. This figure is available as part of a downloadable slideset

The disruption of the BRB is one of the most impor-

tant events in early stages of diabetic retinopathy. 

The main factors involved are:

●  Dysfunctional basement membrane

●  Pericyte loss

●  Endothelial damage

●  Glial activation  →  NVU impairment

BRB disruption and diabetic retinopathy
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Basement-membrane thickening in retinal blood vessels The
vascular basement membrane is a key component of the NVU
and is essential for both structural integrity and cell–matrix
interactions [35]. Thickening of the capillary basement mem-
brane is an early histological change in the retinal blood ves-
sels in diabetic retinopathy. It is a consequence of increased
synthesis of vascular basement-membrane components, such
as collagen IVand laminin, in combination with reduced deg-
radation by catabolic enzymes. These changes impair cell–cell
communications, such as those that occur between endothelial
cells and pericytes [6, 35]. Since the protein composition of
the thickened basement membrane is modified, the charge
selectivity properties of the membrane are also altered and
the capacity for cell interactions that promote normal function
and survival of the NVU are diminished. In addition, the
thickened basement membrane acts less efficiently as a barri-
er, thus favouring vascular leakage [36].

Pericyte and endothelial cell death in diabetic retina Pericytes
are specialised contractile cells of neural crest, mesodermal and
bone marrow origins; they regulate vascular tone and perfusion
pressure [37]. Studies in experimental models of diabetic reti-
nopathy have shown that pericyte dropout occurs before endo-
thelial cell loss [38]. The loss of pericytes compromises capillary

integrity leading to weakening of the iBRB and vascular leak-
age. The underlyingmechanisms of pericyte loss during diabetic
retinopathy remain to be fully elucidated and, although they
have intimate physical and paracrine interactions with the vas-
cular endothelium, demise of both pericyte and endothelial cells
may occur via independent mechanisms [6, 39].

Endothelial cell injury by exposure to the diabetic milieu is
a crucial event in diabetic retinopathy. When endothelial cells
die, retinal capillaries become acellular. This so-called
vasodegeneration or vasoregression is a central pathogenic
response to chronic hyperglycaemia and initiates the progres-
sive ischaemia characteristic of diabetic retinopathy. The im-
portance of vasoregression in the setting of diabetic retinopa-
thy has been comprehensively reviewed by Hammes et al [39,
40] and is conceptually divided into sequential steps: branch
selection by flow dichotomy; vessel constriction; occlusion;
endothelial retraction/apoptosis/reintegration; and resolution
of the remaining empty vascular basement-membrane tube.
Blood flow is a critical determinant of endothelial cell damage
and sustained, abnormal autoregulatory responses are likely to
significantly contribute to vasoregression. This is a highly
complex system in which several inter-related signalling path-
ways are involved following the paracrine exchange of
growth-factor signals between cells and differential receptor

Blood vessel

Dilation
Constriction

Neuron

Neuron

EETs PGs 20-HETE

AA

Ca2+

PLA2

MPL

ATP

IP3

Microglia

Glial endfeet

Endothelium

Pericyte

BM

Healthy retina

Glial-mediated neurovascular
coupling

Glia

Fig. 2 Composition of the retinal NVU. The NVU consists of vascular
elements (endothelial cells, pericytes), the basement membrane (BM),
glial cells (Müller cells, astrocytes), microglia and neurons. Glial-medi-
ated neurovascular coupling is schematically represented. Synaptic re-
lease of ATP from neurons stimulates purinergic receptors on glial cells,
leading to the production of inositol trisphosphate (IP3) and the release of
Ca2+ from internal stores. Ca2+ activates phospholipase A2 (PLA2),
which converts membrane phospholipids (MPL) to arachidonic acid
(AA), which is subsequently metabolised to the vasodilators prostaglan-
din E2 (PGs) and epoxyeicosatrienoic acids (EETs), and to the vasocon-
strictor 20-hydroxy-eicosatetraenoic acid (20-HETE) [23]. Interestingly,

glial-induced vasodilating prostanoids are active at low NO concentra-
tions, whereas vasoconstricting prostanoids are predominant at higher
NO concentrations [24]. Healthy retina adapted from an illustration by
R. Davidowitz in Duh et al [21], distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium. Glial-mediated
neurovascular coupling illustration adapted from a drawing by A.
Mishra in a review by Eric Newman [22], © SAGE Publications. This
figure is available as part of a downloadable slideset
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activation. There is accumulating evidence that the balance of
wingless-related integration site (Wnt), Notch and
angiopoietin–Tie-1 receptor signalling govern vessel forma-
tion and regression in the retina [41].

Imaging early stages of microvascular disease:
the role of optical coherence tomography
angiography

Optical coherence tomography angiography (OCTA) provides
depth-resolved images of blood flow in the retina with levels of
detail far exceeding that obtained with older forms of imaging.
Using this approach, the retinal layers can be readily visualised
and the distinct capillary plexi readily imaged. OCTA provides
the ability to reconstruct and view the retinal vasculature in 3D,
as well as to evaluate independently the changes that occur in
the superficial, intermediate and deep capillary plexi. OCTA
has enabled spatial and temporal visualisation of many of the
vascular changes in individuals with diabetes, such as the de-
velopment of microaneurysms and loss of vascular perfusion
(capillary dropout) [42]. It has revealed that such changes hap-
pen sooner and are more severe in the deep capillary plexus
than in the superficial capillary layer [43]. Indeed, with use of
OCTA, these microvascular alterations can be detected in pa-
tients with diabetes without clinically detectable diabetic reti-
nopathy on fundus photography (Fig. 3).

Is neurodegeneration the primary event
in the pathogenesis of diabetic retinopathy?

A growing body of evidence clearly shows that neurodegen-
eration is an early event in the pathogenesis of diabetic reti-
nopathy that could be linked to the development of microvas-
cular abnormalities [3–6]. Therefore, the study of the under-
lying mechanisms leading to early disruption of the NVU and
later neurodegeneration is essential for the development of
new therapeutic strategies.

The hallmarks of diabetes-induced neuroglial degenera-
tion, which include reactive gliosis, diminished retinal neuro-
nal function and neural-cell apoptosis, have been observed to
occur before overt microangiopathy in experimental models
of diabetic retinopathy and in the retina of diabetic donors
[44–46] (Fig. 4). Retinal ganglion cells and amacrine cells
are the first neurons in which diabetes-induced apoptosis is
detected, but photoreceptors also have an increased apoptotic
rate. The structural consequence of this apoptotic death is a
reduced thickness of inner retinal layers and the nerve fibre
layer, which can be detected by optical coherence tomography
(OCT). Multifocal electroretinography (mfERG), the gold
standard for assessing retinal functional impairment, has re-
vealed that the functional repercussions of neurodegeneration
consist of a delayed P1 implicit time and reduced of traces

[47]. These structural and functional alterations have clinical
implications in terms of deficiencies in sensory capacity, in-
cluding decreased hue discrimination, contrast sensitivity, de-
layed dark adaptation and abnormal visual fields, and thus
result in reduced vision-related quality of life [48–50].

At present, it is unknown whether neural-cell apoptosis or
reactive gliosis is first in the neurodegenerative process that
occurs in the retina in diabetes. However, reactive gliosis (glial
activation) may play a role in damage to retinal neurons and
may link the neurodegenerative process with microvascular
disease. Indeed, the astrocytes and Müller cells of the NVU
play a critical homeostatic function by regulating retinal blood
flow, and water balance in the neural parenchyma, and by
maintaining barrier function [51]. Specifically, Müller cells
can undergo reactive gliosis, which is discernible by upregu-
lation of glial fibrillary acidic protein (GFAP). Gliosis is asso-
ciated with increased expression of VEGF and innate
immune-related pathways, resulting in overexpression of pro-
inflammatory cytokines and BRB dysfunction.

In addition to macroglial cells, activated microglia, the res-
ident immune cells of the retina and infiltrating monocytes can
also mediate diabetes-induced subclinical inflammation.
Microglial activation is accompanied by a phenotypic change
toward an ameboid shape and presents two opposite roles,
triggering either proinflammatory (M1) or anti-inflammatory
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Fig. 3 Frequency-doubling perimetry field tests with corresponding OCT
angiograms and macular OCT (a) for a healthy 58 year old woman with
20/16 visual acuity and (b) for a 62 year oldwomanwith an 18 year history
of type 2 diabetes, 20/25 visual acuity and gastroparesis, but with a normal
clinical examination and fluorescein angiogram (data not shown). The
individual with diabetes has reduced frequency-doubling perimetry
(FDP) sensitivity confirmed by repeat testing, an enlarged and irregular
foveal avascular zone, a wide fovea and generalised inner retinal thinning
compared with the control individual (T. W. Gardner and A. Omari, un-
published data). The red dotted line underlies the foveal avascular zone.
The normal foveal depression is denoted by the blue arrow. The two
yellow arrows denote inner retinal thinning. Scale bar, 0.5 mm. This figure
is available as part of a downloadable slideset

Diabetologia

https://static-content.springer.com/esm/art%3A10.1007%2Fs00125-018-4692-1/MediaObjects/125_2018_4692_MOESM1_ESM.pptx


(M2) actions [52, 53]. In the early stages of diabetic retinop-
athy, the M2 response occurs concurrently with the M1 re-
sponse and ameliorates inflammation and delays the progres-
sion of the disease. However, during the progression of dia-
betic retinopathy, the M1 response is maintained whereas the
M2 response declines and the classical proinflammatory sig-
nalling pathways are chronically activated [53]. In fact, a shift
from pro-survival to pro-neurotoxicity occurs, and transcrip-
tional changes in activated microglia, mediated via the NFκB
and extracellular signal-regulated kinase (ERK) signalling
pathways, result in the release of various proinflammatory
cytokines, chemokines, caspases and glutamate [54]. These
molecular mediators contribute to disruption of the BRB and
NVU impairment, and to neuronal death.

Mechanisms linking retinal neurodegeneration
and early microvascular impairment

The potential mechanisms linking retinal neurodegeneration
and early microvascular impairment are summarised in Fig. 5.
Apart from glial-mediated vascular damage, the balance be-
tween upregulated and downregulated neuroprotective factors

in the diabetic retina is very important for the fate of the retinal
neurons. In early stages of diabetic retinopathy, downregulation
of key factors such as pigment epithelium-derived factor
(PEDF), somatostatin, glucagon-like peptide 1 (GLP-1) and
other neurotrophic factors is counterbalanced by an upregula-
tion of VEGF and erythropoietin [4, 5]. However, the downreg-
ulation of neuroprotective factors may predominate, thus con-
tributing to retinal neurodegeneration. This finding has impor-
tant therapeutic implications. In this regard, neuroprotective ef-
fects have been reported by using insulin [55], PEDF [56, 57],
somatostatin [58], GLP-1 [59, 60], dipeptidyl peptidase-IV
(DPP-IV) inhibitors [61] and erythropoietin or erythropoietin-
linked analogues [62, 63] in various experimental models. The
European Consortium for the Early Treatment of Diabetic
Retinopathy (EUROCONDOR) clinical trial has recently
shown that topical administration of somatostatin arrested the
progression of neurodysfunction as assessed by mfERG (im-
plici t t ime) in participants with some degree of
neurodysfunction at baseline [64]. As an alternative target,
endothelin-1 (ET-1) is upregulated in the retina in diabetes
[65] and has dual deleterious action on microvessels and neu-
rons. This is because of its capacity to bind to endothelin
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Fig. 4 Main features of neurodegeneration: glial activation (also known
as reactive gliosis) and neural apoptosis. (a, c) Glial activation (green),
assessed by analysis of glial fibrillary acidic protein (GFAP) expression,
and (b, d) neural apoptosis, analysed using TUNEL assay in retinas from
(a, b) an experimental model of type 2 diabetes (db/db mouse) and a
control (db/+) mouse and (c, d) human diabetic and non-diabetic donors.
(e) Image obtained by transmission electron microscopy showing DNA
fragmentation in photoreceptors in db/db mice, which is characteristic of
the apoptotic process. The nuclei of cells are stained in blue. The arrows

indicate glial activation (a, c) and apoptotic cells (b, d). (a–d) Scale bar,
20 μm; (e) scale bar, 5μm. GCL, ganglion cell layer; INL, inner nuclear
layer; ONL, outer nuclear layer; T2D, type 2 diabetes. (a, b, d, e), images
from R. Simó’s laboratory, not previously published; (c) Adapted from
Carrasco et al [86], distributed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives License 3.0 (http://
creativecommons.org/licenses/by-nc-nd/3.0/). This figure is available as
part of a downloadable slideset
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receptors A (ETA) which mainly mediates vasoconstriction and
vasoregression [66], and B (ETB), involved in retinal neurode-
generation [67, 68]. Therefore, the blockade of ET-1 may pre-
vent bothmicrovascular disease and neurodegeneration induced
by diabetes.

It should be noted that retinal neurons, themselves, includ-
ing photoreceptors, may be an important source of oxidative
stress that help drive the proinflammatory environment in di-
abetic retinopathy [69, 70], thus leading to vasoregression. In
addition, it has recently been reported that photoreceptor cells
release inflammatory products, which directly contribute to
increased retinal endothelial permeability in mouse models
of diabetes [71]. Furthermore, retinal neuronal cells may se-
crete molecules, such as semaphorin-3A, that promote BRB
dysfunction, and may contribute to macular oedema [72].

When assessed by electroretinogram or other electrophysio-
logical and psychophysical methods, impaired retinal function
has been found to occur in individuals with diabetes who do not
have detectable microvascular abnormalities [73]. In this regard,
neuroretinal dysfunction, as assessed by mfERG, has been re-
ported in individuals with type 1 diabetes without BRB leakage,
the latter measured by vitreous fluorometry [74]. In addition,
progressive thinning of the inner retina over time (assessed by
OCT) occurs in murine experimental models [75], and in
humans with type 1 diabetes, without any associated reduction
of capillary density [76]. Furthermore, though only performed in
a small number of individuals, prospective studies usingmfERG

have shown that increased implicit time can predict the develop-
ment of visible vascular abnormalities over a 1 to 3 year period
[77, 78]. However, baseline fluorescein angiograms were not
performed in these studies, so it is possible that subclinical le-
sions existed at study entry. These findings raise the possibility,
but do not prove, that retinal neurodegeneration may precede the
onset of diabetes-induced vascular changes. Robust observation-
al studies or interventional clinical trials that examine the neuro–
vascular relationships are lacking. The recent randomised, pla-
cebo-controlled, Phase II–III EUROCONDOR study failed to
show any effect of two neuroprotective drugs (brimonidine and
somatostatin; administered by eye drops) in preventing or arrest-
ing microvascular disease [64]. Nevertheless, it should be noted
that the short follow-up of this clinical trial (2 years), the inclu-
sion of a high proportion of patients with no or very mild mi-
crovascular disease, and the excellent metabolic control during
follow-up (mean HbA1c, 54.1 mmol/mol [7.1%] in all arms)
could explain the negative findings with regards to the effects
of neuroprotection on the development or progression of retinal
microvascular disease.

How do we integrate the microvascular
and neural components?

In order to integrate retinal microangiopathy and neuropathy into
the definition of eye disease in diabetes, the term ‘diabetic retinal
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disease’, instead of ‘diabetic retinopathy’, has been proposed for
a more comprehensive definition of the disease [79]. However,
our knowledge of the relationship between diabetes-induced ret-
inal neurodegeneration and microvascular disease is still limited.
To our knowledge, there are no published studies in which cell-
specific defects in microvascular or neural cells result in a dia-
betic retinopathy-like phenotype. In addition, although several
studies using neuroprotective drugs, such GLP-1 and DPP-IV
inhibitors, have prevented vascular leakage in rodents [59–61], it
is unknown if this effect was due to neuroprotection or to direct
vascular effects. In addition, recent results from the
EUROCONDOR study showed that a significant proportion of
individuals with type 2 diabetes present with early microvascular
disease without detectable neurodysfunction [64, 80]. Therefore,
it seems that neurodegeneration is not always the apparent pri-
mary event in the natural history of diabetic retinopathy. In this
regard, it is possible that neurodegeneration could herald diabetic
retinopathy in some subsets of patients, but neurodegeneration
and microvascular disease could occur independently in others.
This new comprehensive understanding of diabetic retinopathy
emphasises the need for better phenotyping and stratification of
patients with diabetic retinopathy, not only by use of themethods
addressed to measure microvascular impairment (e.g. OCTA),
but also by incorporating measurements of retinal function.

The relative sensitivity of the methods used to assess
neurodysfunction and microvascular damage should be taken
into account when examining whether neuronal or vascular
dysfunction occur first. In this regard, prospective studies
using new technologies (e.g. fundus microperimetry, OCTA
and OCT-based oximetry) are needed.

It should be noted that diabetic retinopathy may be a com-
mon response to multiple metabolic injuries that depend on the
duration and severity of diabetes, and are modulated by the
presence of hypertension, dyslipidaemia, systemic inflamma-
tion and renal disease. Indeed, the strikingly similar phenotypic
appearance of diabetic and radiation retinopathy suggests that
the retina has a limited response pattern to a variety of insults.

In view of consistent evidence from studies into both exper-
imental models and humans, that neurodegeneration is an early
event in the retina in diabetes, it could be hypothesised that glial
activation and some degree of neural apoptosis exists in the
retina of most individuals with long-term diabetes. However,
it is apparent that only a subset of these individuals will develop
microvascular disease, which could initially be triggered by
glial activation and neurodegeneration. However, in later stages
these two pathophysiological events may evolve independently.

Retinal neurodegeneration is a biomarker
of neurodegenerative diseases

Numerous epidemiological studies have demonstrated that in-
dividuals with type 2 diabetes have a significantly higher risk

of developing neurodegenerative diseases, in particular,
Alzheimer’s disease [81]. The retina is ontogenically brain-
derived tissue, so it may provide an easily accessible and non-
invasive way of examining CNS pathology. Therefore, it
could be postulated that, in individuals who develop brain
neurodegeneration, a neurodegenerative process co-occurs in
the retina (‘the eye as a window of the brain’). In fact, both
diabetes-induced retinal neurodegeneration and Alzheimer’s
disease share several pathogenic pathways, such as insulin
signalling impairment, low-grade inflammation, the accumu-
lation of advanced glycation end-products (AGEs) and an
increase in oxidative stress [81]. In addition, several pathogen-
ic pathways triggered in the brain of those with neurodegen-
erative diseases have also been found to be triggered in the
retinas of individuals with type 2 diabetes [82].

Current neuroimaging modalities, such as MRI, may not be
able to detect subtle subclinical changes in the brain (resolution
<100–500 μm), so advances in retinal imaging (i.e. OCT) may
provide an additional tool for new and potentially important
insights into neurodegenerative processes [83]. Functional as-
sessment of the retina could also be used as an indirect method
to explore events in the brain. In a recent prospective study,
retinal sensitivity assessed by microperimetry significantly cor-
related with variables related to brain neurodegeneration and
cognitive status [84]. This pilot study suggested that the assess-
ment of retinal sensitivity by microperimetry could be a useful
biomarker for identifying individuals with type 2 diabetes who
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are at risk of developing Alzheimer’s disease. This is an impor-
tant issue since unrecognised cognitive dysfunction can affect
treatment adherence and diabetes self-management, resulting in
poor glycaemic control, an increased frequency of severe
hypoglycaemic episodes and increased hospital admissions
[81]. For these reasons, the early diagnosis of cognitive impair-
ment is not only recommendable in itself, but also permits a
more personalised treatment approach for patients with type 2
diabetes. In this regard, it should be noted that the ADA rec-
ommends individualised diabetes treatment, taking into account
the cognitive capacity of patients [85].

Where do we go from here?

Diabetes causes not only classical retinal microangiopathy
and DMO, but also neurodegeneration, and these events coa-
lesce with progressive disruption of the retinal NVU. Glial
dysfunction plays a crucial role in diabetes-induced
neurovascular coupling impairment, thus contributing to the
early stages of microvascular disease. However, our knowl-
edge regarding the cellular and molecular mechanisms that
link retinal neurodegeneration and microvascular disease re-
mains limited and more research is needed to understand the
complex intercellular dynamics within the NVU in health and
diabetes. Current evidence suggests that neurodegeneration is
an early event in diabetic retinopathy but may or may not be
related to the development and progression of microvascular
disease. This should be tested further in future long-term clin-
ical trials using highly sensitive new technologies combined
with improved stratification of participants.

The consequences of progressive retinal diabetic neurodegen-
eration, specifically in the absence of clinically appreciable dia-
betic retinopathy, have been gaining attention [79]. In this regard,
it is notable that the loss of neuroretinal thickness (nerve fibre
layer, ganglion cell layer and inner plexiform layer) in people
with diabetes with no or minimal diabetic retinopathy is around
0.54 μmper year [76]. This mean a loss of 5.4 μmover 10 years
and, remarkably, is equivalent to the loss found in severe glau-
coma. Since this neuron loss is related to deficient sensory ca-
pacity and vision-related quality of life, periodic assessments of
neurodegeneration/neurodysfunction in the diabetic population
is strongly recommended. In addition, the emergent develop-
ment of neuroprotective drugs to treat diabetic retinopathy points
to screening for retinal neurodysfunction as critical for identify-
ing the subset of patients in whom neuroprotective treatment
might be of benefit. Additionally, the assessment of retinal neu-
rodegeneration could be an important index of cognitive status,
thus helping to identify individuals at risk of dementia.

In summary, it is now recognised that during diabetes, ret-
inal glial, neural and microvascular dysfunction is interdepen-
dent and essential for the development of diabetic retinopathy.
Despite this intricate relationship, it should be noted that

retinal neurodegeneration is a critical endpoint and neuropro-
tection, itself, can be considered as a target, independently of
its potential impact on microvascular disease. Hence, the
decades-old grading schemes of diabetic retinopathy, based
solely on non-quantitative assessment of microvascular abnor-
malities, should be replaced by robust quantitative readouts
that are reflective of progressive dysfunction in the retinal
NVU. In addition, more interventional studies targeting path-
ogenic pathways that impact the NVU and that offer both
vaso- and neuroprotection are needed. This will be crucial,
not only for increasing our understanding of diabetic retinop-
athy, but also to implement a timely and efficient personalised
medicine approach for the treatment of this disease.
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