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1 |  INTRODUCTION

Epilepsy is one of the most common and disabling neurologi-
cal disorders worldwide. The etiologies of acquired epilepsy 
are diverse, but a causative epileptogenic brain injury, such 
as stroke, status epilepticus, traumatic brain injury (TBI), 
or infection, can be identified in a proportion of patients.1 
There is increasing evidence that acquired epilepsy can be a 

progressive disorder, associated with cognitive decline and 
worsening of other neuropsychiatric comorbidities and the 
development of pharmacoresistance.2‒7 Clinical and experi-
mental evidence has shown an association of epilepsy with 
different neurodegenerative pathways such as tau, amyloid-
β-related, the mammalian target of rapamycin (mTOR).8

Neurodegeneration is a broad term defined as the pro-
gressive alterations of neuronal function, which often 
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Abstract
There is a growing body of clinical and experimental evidence that neurodegenera-
tive diseases and epileptogenesis after an acquired brain insult may share common 
etiological mechanisms. Acquired epilepsy commonly develops as a comorbid con-
dition in patients with neurodegenerative diseases such as Alzheimer's disease, al-
though it is likely much under diagnosed in practice. Progressive neurodegeneration 
has also been described after traumatic brain injury, stroke, and other forms of brain 
insults. Moreover, recent evidence has shown that acquired epilepsy is often a pro-
gressive disorder that is associated with the development of drug resistance, cogni-
tive decline, and worsening of other neuropsychiatric comorbidities. Therefore, new 
pharmacological therapies that target neurobiological pathways that underpin neuro-
degenerative diseases have potential to have both an anti-epileptogenic and disease-
modifying effect on the seizures in patients with acquired epilepsy, and also mitigate 
the progressive neurocognitive and neuropsychiatric comorbidities. Here, we review 
the neurodegenerative pathways that are plausible targets for the development of 
novel therapies that could prevent the development or modify the progression of 
acquired epilepsy, and the supporting published experimental and clinical evidence.
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involves neuronal death, and has been described in a wide 
variety of brain conditions such as stroke, traumatic brain 
injury, multiple sclerosis, Alzheimer disease, amyotrophic 
lateral sclerosis, Parkinson's disease, Huntington disease, 
and acquired epilepsy.9‒12 Observations in experimental 
models of acquired epilepsy in animals and in vitro are pro-
viding a better understanding of different neurodegenerative 
pathways that may contribute to excitotoxicity, cell death, 
neurogenesis, and axonal sprouting, which could provide 
possible pharmacological targets for the development of an-
ti-epileptogenic or disease-modifying therapies (Figure 1). 
A clear etiological link between the neurodegeneration 
with the development of epileptic seizures has not yet been 
proven, and it remains possible that the neurodegeneration 
observed in patients and animal models with acquired ep-
ilepsy is an incidental result of the injury or a secondary 
effect of the repeated epileptic seizures.12‒14 Nevertheless, 
studies targeting neurodegenerative mechanisms have re-
ported protective effects against epileptogenesis following 
an acquired brain insult and thus provide evidence linking 
these and promise for the future development of this ap-
proach clinically.15‒23

This review focuses on some of the neurodegenerative 
mediators and pathways, such as AMPA receptors, tau, amy-
loid, mTOR, and neuroinflammation that represent potential 
targets to prevent or modify acquired epilepsy, and the pub-
lished experimental literature supporting this approach.

2 |  NEURODEGENERATIVE 
MECHANISMS RELEVANT TO 
ACQUIRED EPILEPSIES

The acquired epilepsies comprise a heterogeneous group in 
which a structural abnormality or metabolic condition sec-
ondary to a brain injury has been attributed to play a major 
role in the risk of developing epilepsy.24 TLE is the most 
common form of acquired epilepsy that is often resistant to 
drug treatment, where seizures continue to occur despite 
anti-epileptic drug treatment.25 Despite decades of study of 
TLE, and more than 15 new anti-epileptic drugs that have 
been introduced into clinical practice, at least 30% of the 
patients are resistant to medical treatment.25,26 A variety of 
different brain insults can be the trigger of the acquired epi-
leptogenic, such as status epilepticus (SE), febrile seizures, 
TBI, infection, prenatal or perinatal injuries, congenital 
abnormalities, brain tumors, autoimmune, or genetic disor-
ders associated with brain malformations, with the chance 
of the development of epilepsy likely enhanced by genetic 
determinants.1,26‒31 Epileptogenesis is a cascade of molec-
ular, functional, and structural processes that are triggered 
by a brain insult and are capable of generating spontane-
ous seizures. During epileptogenesis, the limbic structures 

manifest a variety of neurodegenerative changes that may 
contribute to the development of acquired epilepsy. The 
initial insult is often followed by a latent period that com-
prises a cascade of molecular, morphological, functional, 
and structural changes.32 This latent period is variable 
from months to years in humans 33 and continues to cre-
ate a hyperexcitable network prone to develop spontaneous 
seizures.4,34‒42

Moreover, acquired epilepsy, specifically affecting the 
temporal lobe, is associated with an increased incidence of 
neuropsychiatric disturbances, including anxiety, depression, 
memory, and learning disabilities.43‒47 These associated neu-
ropsychiatric comorbidities often worsen over time, resem-
bling in some cases a neurodegenerative condition.12 The 
underlying pathogenic mechanisms may relate to the progres-
sive nature of epilepsy and its impact on the function of the 
different brain regions involved in cognition and the cumu-
lative effects of therapies and epigenetic factors. Learning, 
cognition, verbal, and long-term memory are often affected 
in acquired epilepsy, since the most common focus is located 
in the limbic system.48‒51 The duration of epilepsy has been 
correlated with the degree of hippocampal sclerosis, cortical 
atrophy, and reduced psychometric intelligence in some stud-
ies,48‒51 but not others.52,53

During epileptogenesis, a wide spectrum of potentially 
pro-epileptogenic neurodegenerative changes is seen in 
limbic structures including mossy fiber sprouting4,34‒42; 
neuronal reorganization-synaptic remodeling54‒57; neu-
rogenesis58; blood-brain barrier disruption, γ-aminobu-
tyric acid (GABA) receptor, and GABAergic neurons 
changes59‒63; alterations in peptide and brain-derived neu-
rotrophic factor (BDNF) expression36,64,65; neuroinflam-
mation23,66; changes in ion channels67; alterations in axonal 
transport, amyloid-β peptide, tau, and PP2A pathology15,68; 
and other cellular and functional changes.54,56,57,69‒73 These 
neuropathological changes are not specific of epilepsy; 
however, they are similar to those of neurodegenerative 
disorders such as Alzheimer's disease,12,74‒86 even when 
there is no clear history of epilepsy.12 Neurodegeneration is 

Key points

• Neurodegenerative diseases and epileptogenesis 
after an acquired brain insult may share common 
etiological mechanisms

• Targeting neurodegenerative pathways have the 
potential to have both anti-epileptogenic and dis-
ease-modifying effects in acquired epilepsy

• Modification of tau, amyloid-β, neuroinflamma-
tion, mTOR, and AMPA pathways are plausible 
targets for the development of epilepsy therapies



140 |   CASILLAS-ESPINOSA Et AL.

a progressive process that evolves during acquired epilep-
togenesis87; however, some studies suggest that the neuro-
degeneration may not directly result in the epileptogenesis, 
but it may induce other processes that do.88,89 Hippocampal 
sclerosis is the pathological landmark of chronic drug-re-
sistant mesial TLE and is characterized by neuronal loss 
in the hippocampus, reactive gliosis, and reorganization of 
the synaptic connections. However, not all with TLE have 
hippocampal sclerosis.90‒92 Neuronal cell loss is commonly 
seen in patients with acquired epilepsy and in different an-
imal models, including the post-traumatic and post-status 
epilepticus models.15,22 Neuronal death causes a cascade 
of changes that includes massive release of intracellular 
Ca2+, oxidative stress, and activation of apoptotic pathways 
such as caspase, P53 and Bcl,70,71,75,78,84 and others.93‒102 
In response to this, there is an activation and increased 
presence of astrocytes and microglia, a process known as 
gliosis. Glial cells and microglia release pro-inflamma-
tory cytokines, such as interleukin 1ß (IL-1ß) and tumor 
necrosis factor α (TNF-α), which promote gliosis103,104 
and perpetuate a chronic inflammatory state that further 
influences the hyperexcitability and promotes aberrant 
neurogenesis and tissue remodeling, which further enhance 
epileptogenesis.103,105,106

Mossy fiber sprouting is another pathological landmark 
seen in the hippocampal formation of acquired chronic 
epilepsy patients, in particular those with mesial TLE, 
and in animal models that represents aberrant synaptic 
remodeling and hyperexcitable neuronal network forma-
tion.105,107‒109 The increase in interictal epileptiform spike 
frequency in the chronic epileptic phase in animal models 
of TLE correlates with the development of spontaneous 

seizures, neuronal loss, and mossy fiber sprouting.91,110 
The imbalance between inhibitory and excitatory mech-
anisms plays a role in the development of epilepsy, but 
also in the initiation and maintenance of spontaneous 
seizures.71,72 N-methyl-D-aspartate (NMDA) receptor ac-
tivation might play a role for inducing the trans-synaptic 
alterations that underlie TLE epileptogenesis.33 In fact, 
repeated seizures may lead to loss of GABAergic inhibi-
tory interneurons in the hippocampus.111‒113 In addition, 
regulation of inhibitory and excitatory receptors can be 
influenced by neuropeptides such as brain BDNF.64,114,115 
However, the mechanisms of GABA, NMDA, BDNF, and 
other neuropeptide-related neurodegeneration are out of 
the scope of this review and will not be discussed in the 
current manuscript.

This review will focus on the discussion of the AMPA, 
tau, amyloid-β, mTOR, and neuroinflammatory pathways as 
potential targets for drug development.

3 |  AMPA RECEPTOR 
NEURODEGENERATIVE 
MECHANISMS

The majority of fast excitatory synaptic neurotransmission in 
the central nervous system is mediated via glutamate activa-
tion of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic 
acid (AMPA) receptors.115,116 This neurotransmitter system 
not only drives abnormal hyperexcitable circuitry during an 
epileptic seizure but also could initiate neurodegenerative 
processes by excessive calcium uptake and pushing the cells 
toward apoptotic cell death.117

F I G U R E  1  Neurodegenerative 
pathways in acquired epilepsy. A brain 
insult triggers a cascade of mechanisms 
that may be involved in the development 
of acquired epilepsy, and five 
neurodegenerative pathways implicated 
in the development of acquired epilepsy, 
(1) AMPA mechanisms, (2) tau-based 
mechanisms, (3) amyloid-β pathways, (4) 
mTOR pathway, and (5) neuroinflammatory 
mediators, are reviewed in this manuscript 
as they represent potential targets for drug 
development
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The AMPARs primarily mediate fast neurotransmis-
sion by serving as a glutamate-gated cation channel. In 
addition to initiating neuronal firing, AMPARs also un-
derlie aspects of synaptic plasticity116 such as long-term 
potentiation, learning, and memory.118 Glutamate chronic 
neuronal excitotoxicity is a newer concept, but has linked 
glutamate excitotoxicity to neurodegenerative processes in 
Huntington's disease, Parkinson's disease, and Alzheimer's 
dementia.9

Similarly, excessive glutamate receptor activation has been 
linked epilepsy.119 In acquired epilepsy, particularly in TLE, 
increases in glutamate excitotoxicity have been described as 
an important initial mechanism for neuronal injury that leads 
to neuronal cell death and neurodegenerative processes that 
may lead to overall hyperexcitable tissue reorganization by 
mechanisms described earlier.54,73 These events could in turn 
promote increased burst firing in reticular neurons enhancing 
epileptogenic circuit synchrony, promoting the development 
of seizures.120‒124

The hippocampus has been identified as the seizure initi-
ating zone in many TLE patients as well as in different an-
imal models.125 GABAergic neurons are found primarily in 
the basket cells located in deep portions of the granule cell 
layer in the dentate gyrus.26,126 However, repeated seizures 
and excitotoxicity lead to death of these interneurons that are 
critical to maintain the balance between excitation and inhi-
bition in the hippocampus.105,113,127

Glutamate is the major excitatory neurotransmitter in the 
hippocampal formation.73 The mossy fiber pathway runs 
from the dentate gyrus granule cells to the pyramidal cells 
of the CA3; after excitotoxicity and neuronal cell death due 
to the initial brain insult or to repeated seizures, the mossy 
fibers are reorganized and sprout into the inner molecular lay-
ers of the dentate gyrus to form aberrant synaptic terminals 
with dendrites of GABAergic interneuron basket cells and 
with granule cells.113 This abnormal reorganization renders 
the hippocampus hyperexcitable and prone to the develop-
ment of spontaneous seizures.107

Therefore, strategies that can inhibit the AMPA receptor 
activity have the potential to reduce excessive excitatory re-
sponses that could to neurodegenerative changes and may be 
promising targets for the development of anti-epileptogenic 
and disease-modifying drugs.128,129

Perampanel is a non-competitive and highly selective 
AMPA receptor antagonist that has recently completed phase 
III of clinical trials and has been approved as an adjunctive 
treatment for drug-resistant partial-onset seizures.130‒133 
Perampanel also decreases intracellular Ca2+ concentration 
induced by AMPA receptor activation that would have the 
net effect of decreasing excitability.134,135 Perampanel has 
shown to reduce neuronal cell death in the hippocampus 
and the piriform cortex in the lithium-pilocarpine post-SE 
model,136 but does not have anti-epileptogenic properties.137 

Similar neuroprotective effects have been described with 
other AMPA antagonists.138

4 |  TAU-BASED MECHANISMS IN 
EPILEPSY

There is building clinical and experimental evidence linking 
tau-based neurodegenerative mechanisms with the epilepsy 
development,15,68 suggesting for a neurodegenerative basis 
for acquired epilepsies. Tau, a microtubule-associated pro-
tein, performs important physiological functions in neurons, 
including providing stabilization to microtubules as well as 
contributing to axonal transport. The binding of tau to mi-
crotubules and thereby its physiological functions are regu-
lated by a balance in phosphorylated and non-phosphorylated 
forms of tau (as reviewed by Zheng et al139 for details on 
tauopathies). A partially phosphorylated tau is needed for the 
physiological functioning, whereas a hyperphosphorylated 
tau can aggregate and lead to impairment of normal functions 
and cessation of cell survival mechanisms and contribute to 
neurodegeneration.140,141

Abnormalities in the expression and phosphoryla-
tion of tau have also been described in stroke,142 epilepsy, 
Alzheimer's disease, frontotemporal dementia, and chronic 
traumatic encephalopathies.143 In clinical situations, patho-
logical deposition of hyperphosphorylated tau has been ob-
served in brain samples obtained from surgical resection 
of epileptic tissue from patients with drug-resistant chronic 
TLE.144‒147 Similarly, brain tissue from other drug-resistant 
epileptic conditions such as focal cortical dysplasia also 
displays hyperphosphorylated tau.148 Moreover, tau-based 
pathologies are also reported acutely after traumatic brain in-
jury, a major component for secondary injury, and is associ-
ated with neurological symptoms and cognitive decline,68,145 
as also reported in animal models of TBI.68,149 Elevated 
levels of tau and hyperphosphorylated tau have also been 
observed in cerebrospinal fluid from epilepsy patients with 
partial and convulsive seizures, as well as following status 
epilepticus.150‒152 Such changes were determinants of poor 
prognosis and higher risk to develop epilepsy.150 These find-
ings in human patients suggest a possible role in targeting tau 
pathologies as disease-modifying treatment, but also provide 
a possible biomarker for predicting epilepsy development 
after a brain insult that should be further investigated and 
validated.

The involvement of tau-based mechanisms in epilepsy 
has been further supported by neuropathological findings 
from both genetic153,154 and acquired models of epilepsy.15 
Furthermore, there is evidence that genetic155,156 or phar-
macological15,157,158 manipulations of tau phosphoryla-
tion alter seizure induction or epilepsy development after 
an epileptogenic brain insult. In addition to the impact of 
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hyperphosphorylated tau, total tau has been implicated in al-
tering excitation/inhibition balance,159 Roberson et al, who 
showed that mice with tau genetic knockout display reduced 
seizure severity and latency to chemoconvulsant-induced 
seizures.159

There is also building evidence that tau-based mecha-
nisms enhance neuronal excitability. An unstable microtu-
bule assembly at axonal segments dysregulates the resting 
membrane potential and thereby generations of action po-
tentials.160 Accordingly, not only pharmacological regula-
tion or genetic manipulation of tau phosphorylation but also 
inhibiting total tau has shown protection against induced 
seizures.156,157,161,162 Interestingly, tau knockout mice that 
underwent experimental stroke using a middle cerebral artery 
occlusion, developed less pentylenetetrazol evoked seizures, 
were protected from excitotoxic brain damage neurological 
deficits following stroke by site-specific inhibition of gluta-
mate-induced and Ras/ERK-mediated toxicity.162 Contrary to 
this, recent work has also suggested a role of tau phosphory-
lation in diminishing neuronal activity and attenuated seizure 
activity to 4-aminopyridine induction.163,164

These findings support a role for tauopathies in neuronal 
excitability, which may be dependent on the stage of the dis-
ease and may determine a compensatory mechanism to com-
bat disease progression. Nevertheless, tau phosphorylation is 
evidenced to affect neuronal excitability and may alter ex-
citation/inhibition balance providing conditions for epileptic 
seizures to occur. Whether these effects are relevant during 
the early phases of epileptogenesis after an epileptogenic in-
sult is an important question. The activity of protein phos-
phatase 2A (PP2A), the main dephosphorylating enzyme, is 
increased, and glycogen synthase kinase-3B (GSK-3B) and 
cyclin-dependent kinase 5 (CDK5), the primary phosphory-
lating enzymes, decreased, within few hours after the kainic 
acid-induced status epilepticus165 as well as following a trau-
matic brain injury.68 This tips the balance between tau phos-
phorylation and dephosphorylation in favor of the former, 
resulting in an accumulation in the brain of hyperphosphory-
lated tau. This is prevented by the treatment of rats following 
a variety of epileptogenic brain insults with the oxidized se-
lenium salt and sodium selenate, which specifically increases 
the activity and expression of the specific PP2A subunit, 
PR55, that is responsible for dephosphorylating hyperphos-
phorylated tau.15,166,167 Although the exact mechanism of 
how increased phosphorylation induces epileptogenesis is 
yet to be identified, it provides for an exciting target for the 
development of disease-modifying therapies in established 
epilepsies as well as anti-epileptogenesis treatment for inhib-
iting epilepsy after an epileptogenic insult.15,21,167

In the amygdala kindling, post-SE and post-TBI rat mod-
els of acquired epilepsy, treatment with sodium selenate in-
hibited the development of limbic epileptogenesis as well 
as cognitive and sensorimotor impairments.68 Moreover, 

sodium selenate treatment given acutely after the epilepto-
genic insult in these models prevented the decrease in PP2A 
activity and PR55 levels seen following these brain insults, 
as well as reducing the accumulation of hyperphosphorylated 
tau, mitigating neurodegenerative changes in the brain, and 
reducing the number of spontaneous seizures in these animal 
models.15,68 Sodium selenate is currently being evaluated in 
human clinical trials for adult patients with prostate cancer 
and Alzheimer's disease.168,169 Given all this pre-clinical 
evidence, it seems plausible that targeting the tau neurode-
generative pathways with sodium selenate could be an an-
ti-epileptogenic therapy in human TLE.

5 |  AMYLOID-Β PATHWAY IN 
ACQUIRED EPILEPSY

The deleterious effects of overexpression and reduced 
clearance of the amyloid precursor protein (APP) and its 
proteolytic product, the amyloid-β peptide, in Alzheimer's 
disease have been widely documented in the literature.170‒172 
Amyloid-β can be found in different aggregates forms in the 
brain, as soluble monomers, oligomers, or protofibrils be-
fore aggregating into insoluble fibrils.173,174 The amyloid-β 
plaques are usually formed outside the cell and exert neu-
rodegenerative effects influence by different pathological 
mechanisms.171 Patients with Alzheimer's disease have an 
8- to 10-fold risk of developing spontaneous seizures than 
the general population.175‒179 Recently, attention has shifted 
to the importance of these two proteins and the mechanisms 
in the development of epilepsy.180

Dysregulation of APP after brain injury has been demon-
strated in a number of human and animal studies; however, 
the effects of this APP regulation are still under debate.8

Numerous lines of evidence in both humans and in 
pre-clinical transgenic models that express APP have demon-
strated that an epileptogenic brain injury triggers overexpres-
sion of APP.8,180‒185 An increase in APP immunoreactivity 
has been shown in neurons and astrocytes in the weight drop 
model of TBI.186,187 APP protein expression is increased 
post-fluid percussion injury in the cortex and hippocampus 
acutely 1-h injury.184,185 Similar results have been reported 
in the kainic acid-induced post-SE model of acquired epi-
lepsy.188 Similarly, in patients APP can readily be detected 
within hours up to 2.5 years after TBI.181‒183

Evidence shows that increased amyloid production and 
deposition contribute to the development of acquired ep-
ilepsy,189 and Tg2576 mice that overexpress human APP 
has been shown to be susceptible to the development of 
seizures in the amygdala kindling model of acquired epi-
lepsy.190 Expression levels of APP and amyloid-β protein 
significantly increased in cortex and the hippocampus 
of the patients with temporal lobe epilepsy refractory to 
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medical treatment.191 Furthermore, amyloid-β deposits 
start to accumulate around 10 years before the onset of clin-
ical signs and symptoms of dementia.192 Amyloid-β depos-
its have shown to increase neuronal excitability and induce 
hippocampal network reorganization and hyperactivation 
processes that have been described as epileptogenic.193,194 
Interestingly, in Alzheimer's patients, hippocampal hyper-
activation only occurs in the initial stages of the disease. 
However, epileptiform activity and seizures can occur 
throughout the whole course of disease.192,193,195,196

Consistently with the aforementioned evidence, different 
mice models that overexpress APP also show hyperexcitation 
in individual neurons, interictal spikes, and spontaneous sei-
zures in cortical and hippocampal networks.83,197‒207 One 
of them, the APdE9 transgenic mouse model, generated by 
crossing transgenic mice expressing the APP human protein 
and the human PS1-dE9 (deletion of exon 9),208 has been 
reported to have spontaneous seizures and increased neuro-
nal excitability.204‒207 Similarly, another study analyzed four 
different lines of transgenic mice expressing familial mutant 
or wild-type human APP and reported aberrant synchronous 
activity in cortical and hippocampal networks, as well as 
spontaneous seizures in the mutant mice.63 Moreover, these 
transgenic mice were more susceptible to develop seizures 
after pentylenetetrazol, pilocarpine, or kainic acid adminis-
tration.63 It has been hypothesized that this aberrant excit-
atory neuronal activity induced by human APP and increased 
Amyloid-β production could trigger compensatory inhibitory 
mechanisms constraining the capacity for synaptic plasticity 
and contributing to network dysfunction.63,205 Other mecha-
nisms of epileptogenicity described for amyloid-β deposits 
have been related to the excessive dopamine release and acti-
vation of the dopamine 1 receptor.209‒211 Excessive activation 
of dopamine 1 receptors disrupts the GABAergic inhibitory 
input by reducing GABA release from fast-spiking inter-
neurons.210 This leads to an excitatory/inhibitory imbalance 
and consequently hyperexcitability of pyramidal cells. The 
hyperexcitability of pyramidal cells further increases the am-
yloid-β deposits creating a vicious cycle.212,213 Furthermore, 
amyloid-ß accumulation induces microglia activation and re-
lease of pro-inflammatory mediators, which can promote the 
development of seizures and epilepsy.8

On the other hand, some authors have hypothesized that in-
jured neuronal cells upregulate APP production as an attempt 
to repair the damage caused by injury.8,214‒216 Severe exper-
imental TBI has shown to increase the expression of genes 
encoding proteins involved in amyloid-β clearance and re-
duced amyloid-β plaques in the mouse APP/PS1 model, which 
overexpresses APP.217 Similarly, in the PDAPP mice model, 
which exhibits high human APP expression, amyloid-β depos-
its were reduced even 8 months after TBI, while sham ani-
mals displayed increasing amyloid burden.218,219 Interestingly, 
mice lacking APP (APP-KO) showed increased vulnerability 

to mild TBI compared with the wild-type controls (WT) after 
a mild CCI.220 In addition,  intra cereb roven tricu lar admin 
istra tion of recombinant secreted fragment APPα (sAPPα) in 
APP-KO mice reduced the functional deficits observed after 
moderate TBI.221 This neuroprotective aspect of APP upreg-
ulation is based on the hypothesis that the sAPPα may be 
neuroprotective and the secreted fragment APP ß (sAPPß) is 
not.222,223 However, the exact mechanism by which APP and 
amyloid-β can be epileptogenic needs to be elucidated.

Nevertheless, the current evidence in the pre-clinical 
models and in patients suggests that the modulation of APP 
and amyloid-β production, the prevention of amyloid-β ag-
gregation, or promotion of its clearance could be potential 
therapeutic targets to prevent the development of epilepsy.224 
The modulation of APP secretases, proteins that cleaves and 
prevents APP aggregation, has been explored as a thera-
peutic approach with conflicting evidence. Loane and col-
leagues show that pharmacological inhibition of γ-secretase 
decreased APP and amyloid-β production and reduced neu-
rodegeneration and improved motor and cognitive recovery 
after controlled cortical impact-induced TBI.225 In contrast, 
γ-secretase inhibition failed to hypersynchronous oscillatory 
activity and spontaneous seizures in a APP transgenic mice 
model of Alzheimer's disease.212 Intracerebroventricular ad-
ministration of APP96-110, a peptide that interacts with the 
D1 heparin binding site, following controlled cortical impact 
in mice showed promising neuroprotective effects.226,227 
Furthermore, APP96-110 administration in Sprague Dawley 
rats after a diffuse TBI improved cognitive outcomes and re-
duced axonal injury.227

Reduction of inhibition of the c-Jun N-terminal kinase 
(JNK) pathway is another potential therapeutic strategy to 
prevent the development of epilepsy.228 Aberrant activation 
of JNK intracellular signaling cascade has been reported 
in Alzheimer's disease patients and in mouse models, sug-
gesting that it might be involved in a number of neurode-
generative mechanisms associated with the disease.228‒230 
SP600125, a specific JNK inhibitor, has been described to 
reduce APP expression levels and amyloid-ß production, in-
hibition of inflammatory responses, and apoptotic neurode-
generation among other pathological features of after TBI. 
Remarkably, treatment with SP600125 also seems to redirect 
APP processing from the amyloidogenic to the non-amyloi-
dogenic pathway, without affecting amyloid-ß clearance but 
suppressing its production.228

Valproic acid, one of the most commonly prescribed an-
tiseizure drugs, has shown to affect the production of amy-
loid231 and to reduced epileptiform activity in mice models 
that overproduce amyloid-ß; however, the effects are not sus-
tained after treatment discontinuation.232 Similar effects have 
been shown with lamotrigine233 and bexarotene.234 Huperzine 
A, an acetylcholinesterase inhibitor, has shown promising an-
ticonvulsant,235 reducing amyloid accumulations and synaptic 

https://www-sciencedirect-com.ezp.lib.unimelb.edu.au/topics/medicine-and-dentistry/intracerebroventricular-drug-administration
https://www-sciencedirect-com.ezp.lib.unimelb.edu.au/topics/medicine-and-dentistry/intracerebroventricular-drug-administration


144 |   CASILLAS-ESPINOSA Et AL.

deficits.236,237 Levetiracetam reduces abnormal spike-wave 
activity, and in chronic use (12 days), reverses hippocampal 
remodeling and cognitive deficits in mice model that overex-
presses human APP.238

Although these approaches have been widely explored in 
the TBI and Alzheimer's disease research field, the findings 
can promote insights and bolster the rationale for develop-
ing an APP and amyloid target therapy as disease-modify-
ing or anti-epileptogenic therapy in acquired epilepsy.8

6 |  MECHANISTIC TARGET 
OF MAMMALIAN RAPAMYCIN 
PATHWAY

The mammalian target of rapamycin (mTOR) is another 
pathway that can contribute to neurodegeneration in epi-
lepsy as well established to be involved in neurodegenera-
tive conditions such as Alzheimer's and Parkinsonism.239 
mTOR is an intracellular signaling protein that belongs to 
the phosphatidylinositol 3-kinase (PI3K)-related kinase 
family, whose activity is mediated through a serine-threo-
nine protein kinase and has been recognized as one of the 
pivotal cellular signal pathway to control cell survival and 
proliferation.240 mTOR exists in two multiprotein com-
plexes, namely mTORC1 that is rapamycin-sensitive and 
mTORC2 that is rapamycin insensitive. mTOR signaling 
is regulated by signals from growth factors and nutrients 
that bind to receptors at the membrane to activate intracel-
lular signaling mechanisms such as PI3K, and generates 
PIP3 to activate mTOR, which induces protein kinase B 
(Akt) signaling. This inhibits negative regulators of mTOR 
such as tuberous sclerosis complex (TSC1/2) and induces 
mTOR signaling to lead protein translation of key proteins 
involved in synaptic plasticity, learning, and memory apart 
from the proteins involved in cell growth mechanisms. 
In the brain, mTORC1 regulates neuronal excitability, 
memory formation, and learning, and on the other hand, 
mTORC2 is found to be involved in cytoskeletal integrity 
and cell migration.241 For a detailed review of mTOR sign-
aling, readers are referred to Perluigi et al239

With regard to the role of mTOR pathway in neuro-
degeneration, a major focus of research attention has been 
mechanisms related to autophagy,242,243 a self-consuming 
mechanism that plays a key role in cell survival by remov-
ing toxic proteins and defunct organelles.244 Similarly, mi-
tochondria-mediated mechanisms of inducing apoptosis 
are also associated with this pathway.245 Accumulation or 
aggregation of pathological proteins is a common mecha-
nism among neurodegenerative conditions and is negatively 
regulated by autophagy.246 mTOR pathway–mediated regu-
lation of autophagy has been increasingly investigated and 
rapamycin led inhibition of this pathway has exhibited strong 

effects in inhibiting aggregation of the pathological mis-
folded proteins.247,248 Indeed, rapamycin-mediated inhibition 
of mTOR against neurodegeneration has been described to be 
neuroprotective in Parkinson's, Alzheimer's, and Huntington 
diseases.248‒250

Considering neurodegenerative pathology in epilepsy, it 
is indeed relevant that mTOR pathway is involved in epilep-
togenesis and seizure-inducing mechanisms.241 Abnormal 
mTOR activation has been reported in both genetic and ac-
quired epilepsies. Mutations and genetic polymorphisms of 
TSC1 or TSC2 proteins that are intrinsic inhibitors of mTOR 
pathway leading to its over-activation have been associated 
with the development of epilepsy in humans.251,252 Similar 
outcomes have also been reported in transgenic TSC1 and 2 
mouse models, with rapamycin showing antiseizure and an-
ti-epileptogenesis effects.253‒255 Accordingly, other intracel-
lular signaling mechanisms of mTOR such as phosphatase 
and tensin homolog deleted on chromosome ten (PTEN), 
Akt, and DEPDC5 have all been associated with the devel-
opment of epilepsy.256‒259 Similarly, dysregulation of the 
mTOR signaling has also been observed in acquired epilep-
sies, including increased expression of phosphor-mTOR pa-
tients with mesial temporal lobe epilepsy.260,261 Further, the 
mTOR pathway is reported to be dysregulated after experi-
mental epileptogenic insults in animal models, including SE 
and traumatic brain injury.262,263 Inhibiting mTOR signaling 
by rapamycin has been reported to provide anti-epilepto-
genesis effects in animal models following an epileptogenic 
insult,264,265 as well as in animal models following the estab-
lishment of pharmacoresistant epileptic seizures.261

While considering the mechanisms by which mTOR path-
way contributes to epilepsy, it is important to recognize the 
myriad of the cellular process involved and how a dysregula-
tion of those could affect neuronal excitability and contribute 
to neuronal circuit reorganization to promote epileptic sei-
zures. Apart from neurodegeneration, mTOR pathways are 
involved in neurogenesis, newborn cell survival and migra-
tion, axonal sprouting, neuronal plasticity, and altered expres-
sion of ion channels and receptors, all of these mechanisms 
have been considered to be characteristic of epileptogenesis 
and may contribute to an excitable brain network.266

Rapamycin inhibits mTORC1 and has been shown to have 
antiseizure effects.17,267 Treatment with rapamycin during or 
after the initial epileptogenic injury has shown to reduce the 
percentage of mice that developed post-traumatic epilepsy 
and the frequency of spontaneous seizures, as well as neuro-
nal degeneration.268,269 Similar results have also been shown in 
the post-SE18,20 and neonatal hypoxia models of acquired epi-
lepsy.19,270 However, these results have not been replicated in the 
amygdala kindling271 and in the pilocarpine-induced post-SE 
mice model of TLE16 where rapamycin treatment was unable 
to reduce the occurrence of spontaneous seizures. Similarly, 
rapamycin did not persistently prevent mossy fiber sprouting 
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and was unable to reduce granule cell proliferation, hilar neu-
ron loss, or generation of ectopic granule cells.16,17,19,268,272

7 |  NEUROINFLAMMATION

Neuroinflammation plays a substantial role in promoting 
neurodegenerative changes in acquired epilepsies.273,274 On 
the other hand, neuroinflammation could be promoted by 
cells undergoing death by the release of damage-associated 
molecular patterns (DAMPs) such as high-mobility group 
box 1 proteins, purine metabolites, or proteins released 
from damaged extracellular matrix due to the dying of neu-
rons.275 These events lead to a cycle of pathways that lead 
to enhanced neuroinflammation and promoting further cell 
loss. Such events could contribute both to the pathological 
and functional outcomes of an epileptogenic insult. A de-
tailed discussion of the inflammatory molecules involved in 
human and experimental acquired epilepsies and how such 
molecules may be involved in promoting seizures and epi-
leptogenesis is discussed in another review in this special 
issue.276 Pharmacological target of neuroinflammation, par-
ticularly modulating interleukins, cyclooxygenase-2, pros-
tanoid pathways, and several chemokines are promising 
anti-epileptogenic and disease-modifying targets.277,278 Of 
particular interest has been the involvement of interleukin-1β 
(IL-1β) in the pathogenesis of acquired epilepsies, with con-
sistent reports of either its receptor blockers or inhibitors 
of biosynthesis providing neuroprotective, anticonvulsant, 
or anti-epileptic effects as well as disease-modifying ef-
fects in epilepsy models.279‒283 Interestingly, an increased 
inflammation has also been reported in models of genetic 
epilepsies,284,285 with inhibition of IL-1β synthesis provid-
ing a seizure-suppressant effect.285 Furthermore, blockage of 
purinergic receptor P2X7 receptor involved in the release of 
pro-inflammatory cytokines has been reported to reduce epi-
leptic seizures or overall frequency of spontaneous recurrent 
seizures.286,287

High-mobility group box 1 protein (HMGB-1) is another 
molecule that has been increasingly investigated recently, in 
terms of anti-epileptic effects as well as promising find-
ings of it providing a potential biomarker of epilepsy.288 
HMGB-1 is a DAMP and is secreted by neurons and glial 
cells following the formation of inflammasome and leads to 
the release of pro-inflammatory cytokines after activation 
of its receptors—Toll-like receptor 4 (TLR-4) and recep-
tor for advanced glycation end products (RAGE).275 Along 
with the potential of HMGB-1 in suppressing seizures289,290 
along with reported disease-modifying effects,291 the patho-
logic disulfide isoforms of HMGB-1 have been reported 
to be a prospective biomarker for experimental acquired 
epilepsies292 as well as in human childhood and adult ep-
ilepsies.288,292 Notably, it has also been associated with a 

decline in the cognitive functions,293 a major neuropsychi-
atric comorbidity associated with acquired epilepsies.

In addition to the cytokines, chemokines are other mol-
ecules contributing to the inflammatory response by mo-
bilizing the immune cells to the site of injury. Chemokines 
and its receptor systems such as fractalkine/CX3CR1 and 
CCL2/CCR5 systems have been reported to be involved in 
neurodegenerative mechanisms following an epileptogenic 
insult.273,294‒296 Despite reports of inhibiting the signaling of 
these chemokines displaying neuroprotective and antiseizure 
effects, a disease-modifying or anti-epileptic effects of them 
are yet to be established.

Finally, the role of promoting anti-inflammatory cyto-
kines to induce neuroinflammation toward an M2 phenotype 
has been increasingly investigated in epilepsy models.274 
This is important considering the fact that inflammation is a 
fairly heterogeneous process and is also involved in repair of 
damaged tissue. A disturbed balance in pro- and anti-inflam-
matory response has been shown in models of acquired and 
genetic epilepsies.297,298 Though, directly attempting to re-
lease anti-inflammatory cytokines at the epileptogenic focus 
did not provide protective effects against epileptogenesis or 
neuroprotection.299 Overall, future studies are warranted to 
investigate the potential of other strategies modulating neu-
roinflammation in this manner.

8 |  CONCLUSIONS

There are significant neuropathological and neurobiological 
parallels between neurodegenerative diseases and acquired 
epileptogenesis, and both are commonly comorbid in pa-
tients and chronic animal models. All current therapies just 
systematically suppress seizures, but have no sustained effect 
to prevent the development of epilepsy, and do not mitigate 
its progression, or to reverse once it is established. Novel 
therapies targeting neurodegenerative pathways, such as tau, 
amyloid-β, mTOR, and neuroinflammation, have potentially 
to be anti-epileptogenic and/or disease-modifying therapies 
for patients with acquired epilepsy. These therapies may not 
only have beneficial effects on the epilepsy itself, but also on 
the associated neurocognitive and neuropsychiatric comor-
bidities. There is promising evidence from animal models of 
acquired epilepsy that compounds targeting these neurode-
generative pathways may have such anti-epileptogenic ef-
fects. However, further research is needed to validate these 
findings before proceeding into clinical trials.
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