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Neurodevelopmental and neuropsychiatric disorders represent an

interconnected molecular system
AS Cristino1, SM Williams1, Z Hawi1,2, J-Y An1, MA Bellgrove1,2, CE Schwartz3, L da F Costa4 and C Claudianos1

Many putative genetic factors that confer risk to neurodevelopmental disorders such as autism spectrum disorders (ASDs) and

X-linked intellectual disability (XLID), and to neuropsychiatric disorders including attention deficit hyperactivity disorder (ADHD)

and schizophrenia (SZ) have been identified in individuals from diverse human populations. Although there is significant

aetiological heterogeneity within and between these conditions, recent data show that genetic factors contribute to their

comorbidity. Many studies have identified candidate gene associations for these mental health disorders, albeit this is often done in

a piecemeal fashion with little regard to the inherent molecular complexity. Here, we sought to abstract relationships from our

knowledge of systems level biology to help understand the unique and common genetic drivers of these conditions. We undertook

a global and systematic approach to build and integrate available data in gene networks associated with ASDs, XLID, ADHD and SZ.

Complex network concepts and computational methods were used to investigate whether candidate genes associated with these

conditions were related through mechanisms of gene regulation, functional protein–protein interactions, transcription factor (TF)

and microRNA (miRNA) binding sites. Although our analyses show that genetic variations associated with the four disorders can

occur in the same molecular pathways and functional domains, including synaptic transmission, there are patterns of variation that

define significant differences between disorders. Of particular interest is DNA variations located in intergenic regions that comprise

regulatory sites for TFs or miRNA. Our approach provides a hypothetical framework, which will help discovery and analysis of

candidate genes associated with neurodevelopmental and neuropsychiatric disorders.
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INTRODUCTION

Neurodevelopmental and neuropsychiatric disorders are complex
traits that result from multiple genetic determinants interacting in
the context of poorly understood environmental factors to give
rise to clinically diverse phenotypes.1–3 Affected individuals
harbour different risk alleles in a heterogeneous genetic
background that make candidate disorder genes difficult to
detect. In spite of this difficulty there are now hundreds of
candidate genes with DNA copy number variations or single
nucleotide polymorphisms (SNPs) characterised from clinically
diagnosed individuals. The power of modern genetic screening
approaches has led to the identification of candidate genes
associated with autism spectrum disorders (ASDs),4–8 X-linked
intellectual disability (XLID),9,10 attention deficit hyperactivity
disorder (ADHD)11–13 and schizophrenia (SZ).14–20 More recently,
whole-genome sequencing (exome capture) coupled with
computational approaches that integrate protein interaction
information have helped to build hypotheses concerning
molecular pathways and processes that are likely to underpin
these disorders.6,7,21

ASDs are a group of clinically diverse neurodevelopmental
disorders (1–2% of the population) with a significant genetic
heterogeneity.7,8,22–24 Although large twin studies have shown
monozygotic concordance rates with high heritability estimates
of B90%,25 the underlying genetic determinants remain
largely unknown. Only three genetic loci (5p14.113, 5p15.214

and 7q31–q35) have statistically significant support with ASDs,
suggesting common variation will account for only a small
proportion of the heritability in ASD.7,26 In contrast, recent copy
number variation and SNP data show many rare variants occur in
key neurological molecules that function in the synaptic junctions
of neurons. These molecules include members of the neurexin-
neuroligin complex (NRXN1, CNTNAP2, NLGN1, NLGN3, NLGN4X,
NLGN4Y, LRRTM1 and LRRTM227,28 and interacting proteins
(SHANK3, PSD95 SHANK2, SHANK1, SYNGAP1, DLGAP2, FOXP1,
GRIN2B, SCN1A and LAMC37,22), suggesting that synapse
development and function represents a major pathogenetic hub
for ASDs and related disorders.27

XLID accounts for 5–10% of intellectual disability in males. There
are over 150 XLID syndromes, including fragile X syndrome and
Rett syndrome and numerous non-syndromal XLID disorders
many, of which are caused by 102 genes on the X chromosome.29

Among these are genes that also contribute to ASD (that is,
NLGN4, RPL10 and RAB39). Although familial linkage studies have
facilitated a better understanding of the biological basis of XLID,
the genetic basis for autosomal intellectual disability remains
poorly defined.10

ADHD is a neuropsychiatric condition of childhood. Although
underlying molecular mechanisms are poorly understood, genetic
influences are recognised as important aetiological components
of ADHD. Large twin studies show heritability estimates of
75–90%30 for this disorder. A polygenic model is consistent with
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the high prevalence of ADHD (2–10%) and high concordance in
monozygotic twins, but modest risk to first-degree relatives.
Pathogenetic models of ADHD have traditionally focused on
molecules involved in neurotransmission and catecholamine
synaptic dysfunction,31,32 including dopamine transporter DAT1
(SLC6A3), dopamine receptors DRD4, DRD5 and synaptosomal
protein SNAP-25.11 More recently neural developmental genes
including cadherin 13 (CDH13) and cGMP-dependent protein
kinase I (PRKG1)33–36 have been associated with ADHD.
SZ is similarly a highly heritability disorder (B80%) with

monozygotic twin concordance rates estimated to be as high as
40–65%.37,38 Similar to ASD and ADHD, there have been
significant efforts to identify possible common and rare genetic
variants that might explain susceptibility to this disorder. Recent
genome-wide association studies39 have confirmed a substantial
polygenic component associated with SZ. Not unlike ASD and
ADHD, SZ is likely to encompass a broad genetic aetiology.
Increasing evidence suggests the onset of neurological symptoms
probably occur when a threshold of cumulative genetic liability is
reached.40 A compelling feature concerning SZ is the number of
genetic factors that are shared with other disorders. DNA
variants identified in SZ have also been associated with bipolar
disorder,41 ASD,23,42 mental retardation,43,44 and ADHD.12 A
notable example of genetic comorbidity is the documented
structural variation in the neurexin-1 (NRXN1) gene that increases
risk for both ASD and SZ.45

Here, we propose a novel biological systems approach, a
hypothetical ‘gene network model’ that can be used to analyse
candidate genes and predict the association of genetic screening
data with ASD, XLID, ADHD and SZ. This is based on observed
differences in gene distributions and functional patterns that
are informative for each disorder. The gene network model was

successfully validated using cohort data from six recent disorder
studies.

MATERIALS AND METHODS

A diagram of our computational approach is depicted in Supplementary
Figure S1. Detailed description of genes, biological databases and
computational and statistical methods used in this study are presented
in the Supplementary Information.

RESULTS

Primary database of neurodevelopmental and neuropsychiatric
disorder genes

Our approach used current information concerning genes that
have a documented association with neurodevelopmental and
neuropsychiatric disorders. We used publicly available molecular
data to create a comprehensive database of primary candidate
genes associated with ASD, XLID, ADHD and SZ. For candidate
genes to be included in the analysis, we required evidence of DNA
variation including SNPs, insertion and deletions and larger copy
number variations. A primary database of 700 genes comprising
361 genes for ASD,4,7 93 for XLID,9,10 158 for ADHD11,12,33–36 and
218 for SZ14–20 provided a priori information for our analyses
(Supplementary Table S1). There were 125 genes found to be
associated with more than one disorder (Figure 1a).

Protein–protein interaction networks of neurodevelopmental and
neuropsychiatric disorders

A computational analysis was designed to build a functional map
of the neurodevelopmental and neuropsychiatric disorder genes
based on the fundamental features of protein–protein interaction

Figure 1. (a) Venn diagram of primary candidate genes associated with four disorders: blue (ASD), green (SZ), yellow (ADHD) and red (XLID).
(b) Venn diagram of primary candidate genes and their first degree interacting neighbours in the PPI network. (c) PPI networks of all four
disorders showing primary candidate genes and their adjacent neighbours. The AXAS–PPI network is the union of all four disorder PPI
networks. Those genes that overlapped more than one disorder are marked as black circles (Supplementary Table S1 and S2).
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(PPI) and gene regulation (that is, identifying transcription
factor (TF) and microRNA (miRNA) regulatory sites). First, a
database of nonredundant PPIs was created by joining the
BioGRID (biological general repository for interaction data sets)46

and HPRD (human protein reference database) databases47–49

(Supplementary Table S2).
The BioGRID database (version 3.1.77) includes 9115 proteins

and 37 748 interactions between proteins, and the HPRD (release 9)
comprises 9563 proteins and 38 774 interactions. The union of the
two major PPI networks yields a nonredundant network with
11 028 proteins and 58 256 interactions. This indicates that more
than 80% of these proteins and 65% of the interactions are
commonly found in both databases (Supplementary Table S2).
The PPI network is represented as a graph where the nodes are

proteins and the edges are interactions between proteins. PPI
networks for ASD, XLID, ADHD and SZ were created by retrieving
all possible interactions from the PPI database between primary
candidate genes and their respective first-order interactors
(Table 1). A total of 534 out of 700 (76%) encoded primary
candidate genes were found in the merged PPI database. We built
a neurodevelopmental and neuropsychiatric disorder PPI network
named AXAS to reflect the precise origins of the data (ASD, XLID,
ADHD and SZ). The AXAS–PPI network was created by joining
these 534 encoded proteins with 3413 first-order interacting
proteins. Many proteins of the AXAS–PPI network were found to
interact with primary candidate genes from more than one
disorder (Figure 1b).
The AXAS–PPI network reconstructed from 534 candidate

genes represents 35% (3946 out of 11 028; see Table 1 and
Figure 1c) of the merged BioGRID–HPRD PPI network. Strikingly,
the AXAS–PPI network encompasses B20% of encoded genes
found in the human genome. We also validated the neurological
context of the AXAS–PPI network using available transcriptome
data for the whole brain.50 A nucleotide sequence comparison of
3946 protein-coding genes found that 92% of genes in the AXAS–
PPI network are expressed in the human brain (Supplementary
Table S3).
All four individual disorder PPI networks, as well as the entire

AXAS–PPI network were characterised using six structural proper-
ties of complex networks (Table 1). We further tested whether the
distributions of the structural properties were similar or different
between AXAS–PPI networks and PPI networks constructed from
an equivalent number of randomly sampled proteins from the
merged PPI database (Table 1 and Supplementary Figure S2).
Komolgorov–Smirnov tests showed that the structural properties
of average degree, density and clustering coefficient were
significantly higher in the AXAS–PPI networks than in the random

networks, while the average path length was smaller in the
disorder PPI networks (Table 1). This control analysis confirms that
genes previously associated with neurodevelopmental and
neuropsychiatric disorders are significantly more interconnected
than expected by chance. A functional enrichment analysis of the
534 primary candidate genes revealed that specific biological
processes are overrepresented in each of these disorders. This
higher-order functional pattern provides a basis to discriminate
between these polygenic disorders (Table 2 and Supplementary
Table S4). There is no single functional domain that clearly
characterises any one disorder.
Another common property of biological networks is community

structure.51,52 We found that the AXAS–PPI network is highly
modular (Q¼ 0.61), being subdivided into 30 structural commu-
nities (modules). The AXAS–PPI modules were ranked in order of
the number of proteins that contribute to each module; M1 is the
largest with 700 proteins, whereas M30 is the smallest with only
three proteins. Most of the AXAS–PPI modules (21 out of 30) also
show a significant enrichment of proteins that are functionally
clustered (Supplementary Table S5). To illustrate these features,
the AXAS–PPI network was summarised as a simple graph
showing the contribution of modules to the four disorders
(Figure 2). Interestingly M2 (synaptic transmission, signal transduc-
tion and phosphorylation) interacts with 12 other modules and is
the main protein hub or functional focus of the network. M2
significantly integrates key biological processes, including the
regulation of transcription and biosynthetic processes (M1), cell
cycle (M3), cell–cell adhesion and development (M4) and cell–cell
communication and differentiation and protein transport (M5)
(Supplementary Table S5). Although primary candidate genes
associated with ASD, XLID, ADHD and SZ contribute to most of the
AXAS–PPI modules; they are not equally distributed in 9 out of 13
modules (Supplementary Table S6).

cis-Regulatory networks of neurodevelopmental and
neuropsychiatric disorders

We analysed the upstream control region (genomic DNA contain-
ing cis-regulatory elements) and downstream untranslated
regions (30-UTR) of putative mRNA transcripts in the 30 AXAS–
PPI modules. The aim was to test the hypothesis that genes in the
same functional module or disorder share a common pattern of
regulatory elements. In addition to identifying candidate genes
that are TFs or containing miRNAs, we characterised the number
and distribution of TF binding and miRNA target sites associated
with genes of the AXAS–PPI network. This upstream control region
analysis identified overrepresented DNA motifs in the upstream

Table 1. Structural properties of PPI networks

Disorder N n (% of N) Number of
components

Number of
nodes (main
network)

Number of
edges (main
network)

Average degree
(D; P-valuea)

Clustering
coefficient
(D; P-valuea)

Average path length
(D; P-valuea)

Density
(D; P-valuea)

ASD 361 281 (77%) 39 2743 (2647) 4562 (4496) 3.2 0.087 4.3 0.0013
0.51; Po0.01 0.15; Po0.01 0.60; Po0.01 0.29; Po0.01

ADHD 158 92 (58%) 28 949 (819) 1050 (942) 2.1 0.017 5.5 0.0028
0.60; Po0.01 0.20; Po0.01 0.12; Po0.01 0.99; Po0.01

SZ 218 189 (86%) 18 2039 (1981) 2830 (2784) 2.7 0.045 4.5 0.0014
0.44; Po0.01 0.16; Po0.01 0.39; Po0.01 0.31; Po0.01

XLID 93 72 (77%) 19 876 (824) 945 (909) 2.1 0.005 5.3 0.0027
0.16; Po0.01 0.08; Po0.05 0.24; Po0.01 0.46; Po0.01

Total 700 534 (76%) 45 4052 (3946) 7738 (7662) 3.7 0.078 4.4 0.0013
0.34; Po0.01 0.12; Po0.01 0.69; Po0.01 0.81; Po0.01

Abbreviations: ASD, autism spectrum disorder; ADHD, attention deficit hyperactivity disorder; SZ, schizophrenia; XLID, X-linked intellectual disability.

N¼number of candidate genes. n¼number of candidate genes that contribute to PPI networks. aKolmogorov-Smirnov significance test compared disorder

PPI networks with arbitrary PPI networks created from a random selection of genes from the merged BioGRID–HPRD database.
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regions of genes that group in the same biological processes and
disorder (Supplementary Figure S3). We used functional criteria
defined by the Gene Ontology consortium to identify TF binding

sites in the 13 most populated AXAS–PPI modules (Figure 2 and
Supplementary Table S5). A total of 401 functional groups were
identified among the hierarchical levels in the Gene Ontology
database (Supplementary Table S5), including 52 DNA motifs that
were found to be enriched in these functional groups
(Supplementary Table S7). Of the 52, 38 show similarity to TF
binding sites previously described in the TRANSFAC53 or JASPAR54

databases. The remaining 14 are novel motifs that are likely to
function as binding sites for unknown TFs or other regulatory
molecules. Interestingly, more than 80% of the TFs that bind to
these enriched DNA target sites are proteins found in the AXAS–
PPI network (Supplementary Table S7). This indicates that TFs,
which are part the AXAS–PPI network also regulate many of the
genes in this network.
The 30-UTR analysis was designed to identify enriched miRNA

target sites of genes in the AXAS–PPI modules. We used available
sequence data from the miRBase database55, which contains 1223
human miRNA sequences (miRBase version 16). We identified 621
miRNAs that have target sites enriched in the AXAS–PPI network,
including 154 that were enriched in the 534 primary candidates
genes (1.5-fold enriched; P-valueo0.01; Supplementary Table S8).
A total of 683 miRNAs target a greater percentage of genes in the
AXAS–PPI network than in the whole-genome (Supplementary
Figure S4). We also found 3.9% (149) of the genes in the AXAS–PPI
network contain miRNAs embedded within their predicted
transcripts, and that this occurrence is nearly twice that observed
for the whole-human genome (2.0%; P-valueo0.01). Furthermore,
although the AXAS–PPI network only represents B20% of
encoded genes in the human genome, more than half of the
known miRNAs (56%) target transcripts of this network. We also
show that the number of DNA motifs enriched in the upstream
control regions is positively correlated with the number of miRNA
target sites in the 30-UTRs (Pearson’s correlation¼ 0.64; t¼ 4.67;
df¼ 32; P-valueo0.01; Supplementary Figure S5). The correlation
between increased transcriptional and post-transcriptional control
suggests that the molecular network that underpins neurodeve-
lopmental and neuropsychiatric disorders is likely to be evolving
in a concerted manner.

SNP loci associated with neurodevelopmental and
neuropsychiatric disorders are enriched with regulatory elements

On the basis of analysis of data from recent autism26,56 and SZ
genome-wide association studies41,57–61 (Supplementary Table
S9), we created a database comprising 4850 unique SNPs
associated with ASD and SZ, and found that a number of these
SNPs map to TF binding sites enriched in the AXAS–PPI network
(Supplementary Table S7 and S9). The most overrepresented DNA
motifs in the genome-wide association data sets were binding
sites for STAT1 and STAT6 (signal transducer and activator of
transcription) TF proteins. SNP loci associated with STAT1 and
STAT6 binding sites were overrepresented in seven out of eight
genome-wide association data sets (Supplementary Table S9). Our
analyses also highlight that TF binding sites for SREBF1 (sterol
regulatory element binding factor 1) and CREB (cAMP response
element binding) are exclusively associated with autism and SZ,
respectively.
There are 789 of 4839 nonredundant SNPs (16%) located near

or within 435 genes in the AXAS–PPI network (Supplementary
Table S10). Only 4% of 789 SNPs (32) occur within coding regions,
whereas 81% (636) are located within intronic regions and include
SNPs that map to alternate promoter regions of genes. The
remaining 15% were located within 10 kb of the 50-upstream (54)
or 30-downstream (67) regions of AXAS–PPI genes. We also
compared SNP data with TF binding sites data validated by
chromatin immunoprecipitation-sequencing at ENCODE (Encyclo-
paedia of DNA Elements)62, and found that 113 SNP loci (14%)
were associated with at least one TF binding site. Interestingly,

Table 2. Functional analysis of primary candidate disorder genes

Disorder Number
of genes

GO–biological
process

GO ID P-value

ASD 281 Nervous system
development

GO:0007399 2.9E� 17

Synaptic
transmission

GO:0007268 1.7E� 05

Blood circulation GO:0008015 4.5E� 05
Amino acid
derivative
metabolic process

GO:0006575 4.4E� 04

Learning or
memory

GO:0007611 5.5E� 04

Catecholamine
metabolic process

GO:0006584 6.4E� 04

Regulation of cell
communication

GO:0010646 4.8E� 03

G-protein
signalling,

GO:0007187 8.4E� 03

Coupled to cyclic
nucleotide second
messenger

XLID 72 Nervous system
development

GO:0007399 8.2E� 05

ADHD 92 Synaptic
transmission

GO:0007268 3.9E� 10

Catecholamine
metabolic process

GO:0006584 2.1E� 07

G-protein
signalling,

GO:0007187 3.4E� 06

Coupled to cyclic
nucleotide second
messenger
Regulation of
synaptic
transmission

GO:0050804 5.5E� 04

Learning or
memory

GO:0007611 2.0E� 03

Positive regulation
of cellular process

GO:0048522 6.2E� 03

Cell migration GO:0016477 9.2E� 03

SZ 189 Synaptic
transmission

GO:0007268 2.7E� 14

Nervous system
development

GO:0007399 3.3E� 11

Signal
transduction

GO:0007165 7.0E� 10

Regulation of
transport

GO:0051049 2.9E� 08

Positive regulation
of cellular process

GO:0048522 4.1E� 08

Learning or
memory

GO:0007611 6.8E� 08

Regulation of
synaptic
transmission

GO:0050804 8.1E� 08

Regulation of
secretion

GO:0051046 1.4E� 07

Dopamine
metabolic process

GO:0042417 1.4E� 06

Regulation of
apoptosis

GO:0042981 1.1E� 05

Regulation of cell
communication

GO:0010646 1.3E� 05

Glutamate
signalling pathway

GO:0007215 9.3E� 04

Inflammatory
response

GO:0006954 5.7E� 03

Blood circulation GO:0008015 8.2E� 03

Abbreviations: ASD, autism spectrum disorder; ADHD, attention deficit

hyperactivity disorder; SZ, schizophrenia; XLID, X-linked intellectual

disability; GO, Gene Ontology.
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we found 12 autism and 13 SZ SNPs associated with seven
validated TF binding sites (STAT1, STAT3, YY1, SP1, ETS1, E2F1 and
USF2) enriched in our AXAS–PPI network (Supplementary Table
S11). Most of these SNPs are associated with genes involved in
synaptic transmission, with multiple different SNPs often occurring
in the same gene. These genes include NTRK3 (neurotrophic
tyrosine receptor kinase, type 3), NRXN1, SLC25A12 (solute carrier
family 25, mitochondrial carrier, Aralar, member 12), GRID1
(glutamate receptor, ionotropic, delta 1) and SDC2 (syndecan 2).
Approximately 50% of the 789 SNPs map to three functional
modules: M2 (25%, synaptic transmission), M1 (14%, regulation of
transcription), and M4 (11%, cell–cell adhesion) (Supplementary
Figure S5A). Our approach offers the potential to characterise
SNPs according to molecular function, with an example being
shown for NTRK3 and NRXN1 (Supplementary Figure S5B and S5C).
These functions only become apparent when integrating informa-
tion concerning gene organisation, regulatory mechanisms and
PPI.

Cross-validation of the AXAS–PPI network

We have tested our gene network model using genetic data from
six recent studies; ASD,5,6,63 XLID,64 ADHD65 and SZ66

(Supplementary Table S12). A binomial test and a standardised
score (Z-score) were used to assess how these data sets would be
distributed across the disorders represented in our AXAS–PPI
network. A compelling result of the analysis was a demonstrated
capacity to correctly predict the association of these data with
ASD, XLID, ADHD and SZ, based on the highest Z-score (Figure 3;
Supplementary Table S13). Our analysis also confirms cohort
screening data can vary significantly in genetic composition
between studies of the same disorder. Interestingly, two data sets
(ASD5 and XLID64) show significant Z-scores for more than one
disorder. Although cross-validation analysis shows the AXAS–PPI

network model can potentially assess risk from large genetic
screens, to assess individual risk, we would need to build a reliable
classifier based on the statistical representation of gene variants
across different populations.

DISCUSSION

The AXAS–PPI network indicates that there are up to 4000 genes
that may contribute to neurodevelopmental and neuropsychiatric
disorders (Figure 1). Therefore, the number of polygenic
combinations including de novo variants67,68 that potentially
contribute to a neurological deficit, will be extraordinarily large.
However, how can this diversity manifest with high incidence (that
is, B1–2% for ASD, B1% for SZ) in the human population. The
answer may lie in the ‘small world’ properties of the AXAS–PPI
network, which is characterised by a small clustering coefficient
and average shortest path length (Table 1). Greater than 90% of
the B4000 genes function with less than 4.0 degrees of
separation between any two genes (average path length equals
4.4). Evidently, DNA variation is anchored by functional proximity
(many genes contributing to the same pathways and processes)
and neurodevelopmental and neuropsychiatric disorders are not
unlike a journey where there are various paths to the same
destination.
For this reason we can look to higher order interactions

including biochemical pathways and biological processes to
examine the nature of neurodevelopmental and neuropsychiatric
disorders. We observed that genes associated with ASD, XLID,
ADHD and SZ are mainly distributed in 13 modules, whose
encoded proteins are predominantly involved in the regulation of
transcription, synaptic transmission, cell–cell communication,
intracellular signalling pathways, cell cycle, metabolic processes
and nervous system development. However, the number of genes
associated with ASD, XLID, ADHD and SZ are not equally

Figure 2. Graphical representation of the 13 most populated protein modules of the AXAS–PPI network. The size of each module is
proportional to the number of proteins. Weighted lines with numbers represent protein interactions between modules. Distributions of
primary candidate genes are shown as a pie chart for each module. The proteins and intraconnections of each module are described in
Supplementary Table S5. Modules with significant differences in the frequency of primary candidate genes are indicated by *(Supplementary
Table S6).
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distributed in 9 out of 13 modules. Some functional domains such
as synaptic transmission (M2), proteolysis (M6), phosphorylation
(M10) and G-protein signalling (M12) seem to be commonly
affected in all four disorders yet other modules, such as regulation
of transcription (M1), vesicle-mediated transport (M11) and
protein kinase signal transduction (M7) are overrepresented in
ASD, ADHD and SZ, respectively (Figure 2).
The great majority of proteins (92%) in the AXAS–PPI network

were found to be expressed in adult human brain and are likely to
be regulated by similar mechanisms. We addressed this possibility
by analysing the regulatory elements in the upstream control
region and 30-UTR of disorder genes in AXAS–PPI modules. A
number of TF and miRNA binding sites were found to be
significantly enriched in the non-coding regions of these genes.
These analyses confirm that genes found in functional modules of
the AXAS–PPI network are likely to be coregulated. It is also worth
noting that genes with alternatively spliced 30-UTRs are potentially
regulated by different miRNAs. This is particularly important for
neurodevelopmental and neuropsychiatric disorders considering
that alternative splicing of genes is more prevalent in the brain
and liver than in other tissues.50 An inherent capacity to target
many specific genes or variant transcripts in parallel makes
miRNAs a powerfully configurable regulatory mechanism that has
evolved for dynamic control of genes, biochemical pathways and
biological processes.69,70 Although miRNAs can be thought of as
fine-tuning controls,69 transcript levels of some genes in the brain
might be under a dynamic balance that is delicate enough that
even a slight change mediated by a miRNA or miRNA target
mutation could translate into an observable phenotype. The
importance of transcript levels might be demonstrated in certain
genes, where haploinsufficiency can be enough to cause
phenotypic effects.71

In summary our hypothetical framework can be used to
examine the molecular basis of neurodevelopmental and neu-
ropsychiatric disorders, and to assist with the selection of
candidate genes for further analysis. A noteworthy outcome of
this approach is the potential to classify, which disorder would
arise from a particular set of genetic variations, with the eventual
possibility of new diagnostic tools and therapeutic strategies.
However we are mindful of genetic heterogeneity in different
populations, sparse statistical representation and potential

problems with clinical/behavioural diagnosis. These issues will
need to be addressed in order to build a more specific and
sensitive diagnostic tool capable of assessing risk for individual
genotypes.
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