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Abstract

This work presents a new neuro-evolutionary model, called NEVE (Neuroevolutionary Ensemble), based on an ensemble of
Multi-Layer Perceptron (MLP) neural networks for learning in nonstationary environments. NEVE makes use of quantum-
inspired evolutionary models to automatically configure the ensemble members and combine their output. The quantum-
inspired evolutionary models identify the most appropriate topology for each MLP network, select the most relevant input
variables, determine the neural network weights and calculate the voting weight of each ensemble member. Four different
approaches of NEVE are developed, varying the mechanism for detecting and treating concepts drifts, including proactive drift
detection approaches. The proposed models were evaluated in real and artificial datasets, comparing the results obtained with
other consolidated models in the literature. The results show that the accuracy of NEVE is higher in most cases and the best
configurations are obtained using some mechanism for drift detection. These results reinforce that the neuroevolutionary ensem-
ble approach is a robust choice for situations in which the datasets are subject to sudden changes in behaviour.

Keywords Concept drift - Adaptive learning - Nonstationary environments - Neuroevolutionary ensemble - Quantum-inspired

evolution

1 Introduction

The ability of a classifier to learn from incremental and dy-
namic data extracted from a nonstationary environment (when
data distribution changes over time) poses a challenge to the
field of computational intelligence. In the context of neural
networks, the problem becomes even more complicated, since
most of the existing models must be retrained when a new data
block is available, using the whole set of patterns learned until
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then. To cope with that sort of problem, a classifier must,
ideally, be able to [43]:

— Track and detect any changes in the underlying data
distribution;

— Learn with new data without the need to present the
whole dataset again for the classifier;

—  Adjust its own parameters in order to address the detected
changes on data;

—  Forget what has been learned when that knowledge is no
longer useful for classifying new instances.

All these abilities seek, in one way or another, to deal with a
phenomenon called concept drift [51, 22]. This phenomenon
defines datasets that suffer changes over time, such as when
there is a change in the relevance of the variables, or when the
mean and variance of the variables change.

Many approaches have been devised to accomplish some or
all of the abilities mentioned above. One of the older and simpler
approaches is a sliding window (not always continuous) on the
input data used to train the classifier with the data delimited by
this window [21]. Another method is to detect deviations and, if
they occur, to adjust the classifier [7]. Some models, in turn, use
rule-based classifiers, like [43, 59—61]. A more successful and
widely used approach though is to use a group of different
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classifiers (ensemble) to cope with changes in the environment.
Several different ensemble models have been proposed in the
literature, including recent approaches like [56-58], and may or
may not weigh each of its members. Most models using weight-
ed classifier ensembles determine the weights for each classifier
using a set of heuristics related to classifier performance in the
most recent data received [22].

Although several algorithms have already been proposed in
the literature for classification in concept drift scenarios -
many even using ensembles - for this type of problem,
neuroevolution has still been little explored. Neuroevolution
uses evolutionary algorithms to adjust parameters that affect
the performance of artificial neural networks, such as topolo-
gy, learning rate, weights, among others. In this case, each
solution of the evolutionary algorithm stores a representation
of these parameters, which are evolved to find the optimal
network for the problem. Applied to neural network ensem-
bles, evolutionary algorithm is also able to dynamically adjust
the entire model, a task that would be very arduous if per-
formed manually, due to the complexity of the model.

Because of the architecture complexity, it is necessary that the
neuroevolutionary models based on classifier ensembles have
good computational performance and fast convergence, in order
to be able to be applied in real scenarios. This feature becomes
even more relevant in nonstationary environments, since it is
necessary to update the ensemble each time new data become
available or when some change is detected in data. Thus, this step
must be fast so as not to compromise the overall performance of
the model. To deal with this issue, an interesting and still little-
explored strategy in the literature related to neuroevolutionary
models is the quantum-inspired evolutionary algorithms. This
is a class of evolutionary algorithms developed to achieve better
performance in computationally intensive problems, inspired by
quantum computing principles [17, 18, 2, 39, 52, §]. One of the
main advantages of the quantum-inspired evolutionary models is
that good solutions are obtained with the smallest possible num-
ber of evaluations. This class of algorithms has been previously
used in the literature to solve combinatorial and numerical opti-
mization problems, based on binary [18, 39] and real represen-
tations [2, 39, 52], providing better results and using less com-
putational effort than classical genetic algorithms [47]. Applied
to neural network ensembles, quantum-inspired evolutionary al-
gorithms can be used to model the neural networks and to deter-
mine the voting weights for each ensemble member. Thus, each
time a new block of data arrives, the ensemble can be optimized,
improving its classification performance for the new data.

Models for learning in nonstationary environments can or
cannot contain drift detection mechanisms. Most of the
models found in the literature assume that the changes occur
in a hidden context external to the model itself and, therefore,
the drift cannot be predicted [15]. For this reason, these
models use the passive and reactive approaches, that is, from
the results of the model (in classification problems, the label

predicted by the model is compared with the real label re-
ceived), verify the drift occurrence and react to it only after
the error is observed in the model. However, anticipating the
detection of drift in the input data before they are submitted for
prediction (i.e., before receiving the true labels) seems to be a
more satisfactory approach since it permits to adjust the model
previously to better deal with the new scenario and avoid the
classification error. For this reason, the model proposed in this
work uses this active approach, being an important differential
compared to the existing approaches in the literature.

Given the above, the main objective of this work is to propose
and develop a self-adaptive and flexible model, with good accu-
racy and suitable for learning in nonstationary environments. A
new quantum-inspired neuroevolutionary model, based on a
Multi-Layer Perceptron (MLP) neural network ensemble, will
be presented for learning in nonstationary environments. The
proposed model, called NEVE (Neuroevolutionary Ensemble),
has the following characteristics:

— Contains a concept drift detection mechanism, with the
ability to detect changes proactively or reactively. This
method, already detailed in [10] allows the reaction and
adjustment of the model whenever necessary;

—  Performs the automatic generation of new classifiers for
the ensemble, most suitable for the new input data, using
the quantum-inspired evolutionary algorithm for numeri-
cal and binary optimization (QIEA-BR) [39];

— Automatically determines the voting weights of each en-
semble member, using the quantum-inspired evolutionary
algorithm for numerical optimization (QIEA-R) [2, 52], a
simplified version of QIEA-BR.

Several experiments were performed with artificial and real
datasets to validate and compare the performance of the pro-
posed model with other existing models for learning in non-
stationary environments, verifying how the detection model
affects the performance and accuracy of NEVE.

This work 1is structured in four additional sections.
Section 2 presents a brief review of the literature related to
the fundamentals of concept drift. It also describes the evolu-
tionary models with quantum inspiration used in this work:
QIEA-R and QIEA-BR. Section 3 presents the proposed
neuroevolutionary model (NEVE) and Section 4 discusses
the experimental results. Finally, Section 5 presents the con-
clusions of this work and possibilities of future work.

2 Literature review
2.1 Concept drift

The term concept drift can be defined informally as a change
in the concept definition over time and, hence, change in its
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distribution. Concept drift refers to a supervised learning sce-
nario, where the relationship between the input data and the
target variable changes over time [15]. An environment from
which this kind of data is obtained is considered a nonstation-
ary environment. Formally speaking, considering the posteri-
or probability of a sample x belonging to a class y, according
to [9] concept drift is any scenario in which this probability
changes over time, that is: P,, ()| x) # P(y| x).A practical ex-
ample of concept drift mentioned in [29] is detecting and
filtering out spam e-mails. The description of the two classes
“spam” and “non-spam” may vary over time. They are user
specific, and user preferences also change over time.
Moreover, the variables used at time t to classify spam may
be irrelevant at t + k. In this way, the classifier must deal with
“spammers”, who will keep creating new forms to trick the
classifier into labeling a spam as a legitimate e-mail.

Concept drift is usually classified in abrupt or gradual [15,
51, 54]. The abrupt drift occurs when a concept A is abruptly
switched for another concept B, that is, at time t the source S1
is suddenly replaced by S2. The gradual drift, on the other
hand, happens when a concept A is gradually exchanged for
the other concept B. In this case, while there is no definitive
change from concept A to concept B, we observe more and
more occurrences of B and fewer occurrences of A. Both
sources S1 and S2 are active, but as time passes, the probabil-
ity of sampling the source S1 decreases as the sample proba-
bility of the source S2 increases. At the beginning of this drift,
before more instances are observed, an instance of the S2
source can be easily mistaken for random noise. It is important
to note that noise (or outlier) is not considered a type of drift
because it refers to an anomaly or isolated occurrence of a
random drift. In this case, there is no need to adapt the model,
which should be robust to noise.

The term “Drift Detection” refers to techniques and mech-
anisms for detecting drift by identifying points of change or
small intervals during which the variations occur. In this case,
the environment has sufficiently changed so that the existing
models can no longer be effective to predict the behavior of
the current data [15]. Several drift detection mechanisms have
already been proposed in the literature, but most of them work
reactively: they compare the class predicted by the classifier to
the correct class label received later, noticing the drift only
after its occurrence and the misclassification. Only then, the
reactive detector applies a sequence of procedures to identify
some change in the conditional class distribution - a concept
drift. Examples of reactive detectors can be found in [14, 5,
36,4, 42, 3,31, 23, 13, 46].

Few papers use a proactive approach. [28] applies principal
component analysis (PCA) for features extraction before the
drift detection. The authors discuss and show evidence that
components with lower variance should be stored as the ex-
tracted features, since they are more likely to be affected by a
change. The authors then choose a change detection criterion
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based on the semiparametric log-likelihood function that is
sensitive to changes in the mean and variance of the multidi-
mensional distributions.

In [10], we proposed a new drift detection mechanism,
called DetectA (Detect Abrupt Drift), which uses a proactive
detection approach. This model is used in the experiments of
this work and comprises three basic steps: (i) label the patterns
from the test set (an unlabelled data block), using an unsuper-
vised method; (ii) compute some statistics from the training
and test sets, conditioned to the given class labels provided in
the training set; and (iii) compare the training and testing sta-
tistics using a multivariate hypothesis test. Based on the re-
sults of the hypothesis tests, we attempt to detect the drift on
the test set, before the real labels are obtained.

Algorithms for handling concept drift problems can be cat-
egorized in several ways. Table 1, based on [9, 27, 29, 30],
summarizes the most commonly used classifications in the
literature, with their respective definitions.

Algorithms that use the passive approach (without drift
detection) regularly update the model as new data arrives
and a forgetting heuristic is used, independently of the exis-
tence of change. For example: in a classifier ensemble, the
weights of the members are updated after each new data re-
ceived (individual or in blocks), based on the recent accuracy
of ensemble members. Without concept drift, the classifica-
tion accuracy will be stable and the weights will converge. If
any changes occur, the weights will change to reflect them,
without the need for explicit detection [29].

However, this can be very costly if the amount of data that
arrives is excessively large or if the application require user feed-
back to label the data, which can be time-consuming. One way to
reduce this problem is to use special techniques to detect changes
and adapt the model only when unavoidable, using the active
approach [51], also called trigger approach. In general, when
active approaches detect a drift, some action is taken, for exam-
ple, configuring a window with the latest data and retraining the
classifier, or adding a new classifier to the ensemble.

Thus, the active method seeks to point out when the drift
occurred and allows the model to modify itself or continue
learning in the same way. A disadvantage of this method is
the risk of having an imperfect mechanism that can produce
false alarms, which is very common particularly in noisy
datasets. In the passive mechanism, the learner believes that
the environment can change at any time or can be continuous-
ly changing. The algorithm then continues to learn from the
environment, building and organizing its knowledge base. If a
change has occurred, it is learned. If nothing happened, the
existing knowledge is reinforced [9]. The majority of literature
ensembles follow a passive schema of adaptation, whereas
active approaches are usually used with single online classi-
fiers [27]. The models [24, 26, 48] are examples of passive
approaches and the models [14, 5, 3638, 32] are examples of
active approaches.
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Table 1 — Types of Algorithms

Passive x Active Approach

Passive Assume possibly ongoing drift and continuously update the model with each new data
(set). If a change has occurred, it is learned; else, the existing knowledge is reinforced.
Active Uses some drift detection mechanism, learning only when the drift is detected.

Individual input x Input in Blocks
Individual

Learn one instance at a time. They have better plasticity but poorer stability properties.

They also tend to be more sensitive to noise as well as to the order in which the data are presented.

In blocks

Requires blocks of instances to learn. They benefit from the availability of larger amounts of data,

have better stability properties, but can be ineffective if the batch size is too small, or if data
from multiple environments are present in the same batch. Typically use some form of
windowing to control the batch size.

Single Classifier x Ensemble
Single classifier Uses only one classifier.

Ensemble

Combines multiple classifiers.

Regarding data entry, it is worth emphasizing that individ-
ual patterns can be converted into batches or blocks of data.
The opposite is also possible, but block data can come in large
quantities, making instance-based processing very time-
consuming [29].

Comparing single classifier x ensemble approaches,
ensemble-based approaches are newer and tend to have better
accuracy, flexibility, and efficiency than those using a single
classifier [29]. It is important to remember that in massive
datasets it is often preferred to use simple models - such as
single classifiers - since there may not be time to execute and
update an ensemble. On the other hand, some authors argue
that a simple ensemble may be easier to use than certain sim-
ple adaptive classifiers, such as decision trees. When time is
not the main concern, but high accuracy is required, an en-
semble becomes the natural solution. For example, in mam-
mography screening for tumors, it is acceptable to take a few
minutes per image [30]. Ensemble approaches can use differ-
ent methods to adapt to a concept drift.

As mentioned earlier, responding to several types of con-
cept drift is a difficult task for a simple classifier. For this
reason, several systems based on classifier ensembles have
recently been proposed to deal with concept drift learning,
such as [49, 48, 11, 12, 44, 24-26, 45, 9, 33, 53, 6, 50]. The
main novelty proposed in this work is the possibility of using
an active drift detection mechanism (DetectA) together with
an ensemble of neural networks, trained and combined
through quantum-inspired evolutionary algorithms, allowing
automatic and dynamic adjustment of the classifiers and their
weights in the ensemble, using less computational time.

2.2 Quantum-inspired evolutionary algorithms

Classical evolutionary algorithms have been used successfully
to solve complex optimization problems in a wide range of

fields, such as automatic circuit design and equipment, task
planning, software engineering and data mining, among many
others [1, 2]. The fact that this class of algorithms does not
require rigorous mathematical formulations about the problem
to be optimized, besides offering a high degree of parallelism
in the search process, are some of the advantages of the use of
evolutionary algorithms.

However, some problems are computationally costly re-
garding the evaluation of the fitness function during the
search process, making optimization by evolutionary algo-
rithms a slow process for situations where a fast response is
desired (as in online optimization problems). In order to
address these issues, quantum-inspired evolutionary algo-
rithms have been developed, which are a class of estima-
tion distribution algorithms that perform better in combi-
natorial and numerical optimization when compared to
their homologous canonical genetic algorithms [1, 2, 8,
17, 18, 39, 52].

These algorithms are inspired by concepts of quantum
physics, in particular in the concept of superposition of
states, and were initially developed for optimization prob-
lems using binary representation, such as the Quantum-
Inspired Evolutionary Algorithm (QIEA-B) [17-20],
which uses a chromosome formed by g-bits. Each g-bit
consists of a pair of numbers («, ), where || +|3%| =
1. The value |o?| indicates the probability that the g-bit
has value 0 when observed, while value || indicates the
probability that the g-bit has value 1 when observed.
Thus, in QIEA-B, a quantum individual is formed by M
g-bits, according to (1):

Qi1 Q2 QM
I 1
6215, 1 ! M)

wherei=1, 2, 3, ..., M.
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Quantum-inspired evolutionary algorithms were then ex-
tended to real representation, to better deal with numerical
optimization problems. In these problems, the direct represen-
tation is more appropriate, in which real numbers are directly
encoded in a chromosome rather than converting binary
strings into numbers. With real numerical representation, the
memory demand is reduced while the precision is increased
[1]. Thus, the Quantum-Inspired Evolutionary Algorithm with
Real Representation (QIEA-R) was developed [1, 2], inspired
by the concept of multiple universes of quantum physics. In
this scenario, the algorithm allows performing the optimiza-
tion process with a smaller number of evaluations, substan-
tially reducing the computational cost. Next sections describe
the QIEA-R and QIEA-BR models, which are better suited to
neuroevolution.

2.2.1 Quantum-inspired evolutionary algorithm with real
representation (QIEA-R)

Originally proposed in [1], this algorithm was used to solve
numerical optimization benchmark problems and the neural
evolution of recurrent neural networks. The results obtained
demonstrated the efficiency of this algorithm in the solution of
these types of problems.

In QIEA-R, the quantum population Q(t) consists of N
quantum individuals qi (i=1, 2, 3, .., N) which are composed
of G quantum genes. Each quantum gene is formed by a prob-
ability density function (PDF), which represents the superpo-
sition of states and is used to observe the classical gene.
Quantum individuals can be represented by:

q; = g1 = Pu(x), 80 = Pp(X), -, &ic = Pic(¥)] (2)

where i=1, 2, 3, ..., N, j=1, 2, 3, ...,G and pij functions
represent the probability density functions used by the
QIEA-R to generate the values for the genes of the classical
individuals. In other words, the pij(x) function represents the
probability density of observing a given value for the quantum
gene when its overlap is collapsed. The probability density
function used by [1] is the square pulse, an uniform function
of simple geometry, which can be defined by eq. 3:

_ U,]_LH,LUSXSUU
pyx) = {0,0Iherwise (3)

where Lij is the lower limit and Ujj is the upper limit of the
interval in which the gene j of the i-th quantum individual can
collapse, i.e., assume values when observed.

For the case where pij(x) is a square pulse, the quantum gene
can be represented by storing the position of the center point of
the square pulse and its width: j1; and oy, respectively. The
QIEA-R also uses a population of quantum individuals, which
are observed to generate the classical individuals. The updating
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of the quantum individuals is carried out based on the evaluation
of the classic individuals: p; and o; are altered in order to bring
the pulse to the most promising region of the search space, in-
creasing the probability of observing a certain set of values for
the classical gene in the vicinity of the most successful individ-
uals in the classical population. The pseudocode of the QIEA-R
algorithm is shown in Appendix 1.

In this work, the QIEA-R is used to evolve voting weights
for each classifier member of the ensemble and thus determine
the final decision of the ensemble. In this way, the chromo-
some will have size n, where n represents the number of en-
semble members. Each gene, in turn, will represent the voting
weight associated with each classifier. Further details on
QIEA-R can be found in [1, 2, 52].

2.3 Quantum-inspired evolutionary algorithm
with binary-real representation (QIEA-BR)

The main motivation for creating an algorithm with mixed rep-
resentation is that many real problems cannot be solved only by
numerical decisions or combinatorial decisions. More specifi-
cally in the field of neural networks, the modeling process may
involve combinatorial decisions (selection of the most relevant
variables to the input layer, how many neurons should be used
in the middle layer, etc.) and, simultaneously, numerical deci-
sions (optimal values for synaptic weights).

With this motivation, [40] proposed the creation of an algo-
rithm with quantum inspiration and binary-real representation,
called QIEA-BR, for simultaneous optimization of combinatorial
and numerical problems, that is, of mixed nature. The QIEA-BR
algorithm was the first evolutionary algorithm with quantum
inspiration and mixed representation proposed in the literature
and will inherit the main characteristics of its precursors, such
as global problem-solving ability and probabilistic representation
of the search space. This mixed representation results in high
population diversity in each quantum individual and the need
of fewer individuals in the population to explore the search space.

The QIEA-BR algorithm also requires a population of quan-
tum individuals that represents the overlap of possible states that
the classical individuals can assume when observed. The quan-
tum population Q(t), at any instant t of the evolutionary process,
is formed by a set of N quantum individuals qi (i=1, 2, 3, .., N).
Each quantum individual qi of this population is formed by L
genes gij G=1, 2, 3, .., L). The main difference between the
QIEA-BR and its predecessors is that part of the L genes is
represented by g-bit, similar to QIEA-B, and another part by real
quantum genes (qg-real, similar to QIEA-R). Thus, the represen-
tation of a quantum individual i at any time instant t is given by:

q; = [(Qi)b(qi)r} (4)

where the index b represents the binary part (q-bit) and the index
r represents the real part (g-real). Thus a quantum individual can



Neuroevolutionary learning in nonstationary environments

1595

Fig.1 - The QIEA-BR individual

structure [40] Binary genes
Variablesto be | Neurons to be Activation Activation
selected for the | selected forthe | functions for functions for
input layer hidden layer | the hidden layer | the hidden layer
Numerical genes
Synaptic weights of the hidden Synaptic weights of the output
layer, including bias layer, including bias

be described by:
o= lanan,) = (151052 1151) (1. te)) (5)

In this work, the QIEA-BR is used to perform the complete
modeling of an artificial MLP neural network. The binary part
selects the most appropriate input variables; defines which
neurons (of a maximum number of neurons) are active in the
hidden layer (1 active neuron, O inactive); and specifies the
activation function of each neuron in the network (1 hyper-
bolic tangent and 0 sigmoid). The real part determines the
values of all weights. Figure 1 illustrates the information that
is encoded in each of the quantum genes, binary or real, of a
QIEA-BR chromosome. This chromosome will be used in the
neuroevolutionary models presented in Section 4.

In QIEA-BR, the evolution of the weights and activation
function of a certain neuron in the quantum and classical chro-
mosomes is conditioned to that neuron being active in the corre-
sponding binary part. That is, the genes representing the weights
and activation functions will remain unchanged by quantum and
classical evolutionary process if this neuron is inactive.

The neural network created by QIEA-BR is similar to that
shown in Fig. 2: the effective number of attributes in the input
layer and of neurons in the hidden layer are evolved by the
QIEA-BR, with the maximum size of inputs equal to the number

of available attributes in the dataset (k) and the maximum num-
ber of neurons in the hidden layer (nh) configured by the user.
Thus, the number of genes is given by:

NitMgenes = (k + 2nh + nc), + ((k + 1) x nh) + ((nh + 1) x ne), (6)

where nc is the number of classes in the classification prob-
lem. In this case, the evaluation function used is the classifi-
cation accuracy given by:

1
Accuracy = 1-=Y% |C,-—(é’,-\ (7)
ni

where C; is the class of the i-th pattern, while C’,« is the class
predicted by the individual (MLP). When C; = €; then the
result is zero, otherwise it is equal to one. Each individual is
submitted to this evaluation function, in such a way that the
best individuals are those who have greater accuracy. Further
details on QIEA-BR can be found in [40, 52].

3 NEVE: Neuroevolutionary Model
for Learning in Nonstationary Environments

This section presents the proposed new quantum-inspired
neuroevolutionary model, which is a self-adaptive and flexible

Fig. 2 - Neural Network Created
by QIEA-BR

num __ genes = (k +2nh+nc), + ((k +1)xnh)+ (nh+1)x nc)),

k= max
number of
inputs

nh = max number of
neurons in hidden layer

& nc = number of
y &2 classes
(classification
o= output)
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model, with good accuracy and suitable for learning in non-
stationary environments. The model is based on an ensemble
of neural networks Multi-Layer Perceptron (MLP), where
each neural network member is trained and has its parameters
(topology, weights, among others) optimized by QIEA-BR
algorithm (see Section 2). This neuroevolutionary model is
called NEVE (Neuroevolutionary Ensemble) and is composed
of three main modules, detailed below and illustrated in Fig. 3:

—  Drift Detection;
—  Classifier Creation;
—  Evaluation and combination weights.

The Drift Detection module is optional. If activated, for
each new input data block received, the detection module
checks if any drift has occurred. The model works with data
blocks of configurable size. If it is necessary (or desired) to
work with individual data inputs, the block can be set to size to
1. However, it is important to mention that the strategy of
working with one instance at a time is not the most suitable
for this model, as it may compromise its computational per-
formance. Two methods of detection were proposed: proac-
tive and reactive detection methods, resulting in four different
approaches implemented for this drift detection module [10]:

— No detection;

— Reactive detection: waits until the real data block labels
are available to check if a drift has occurred in relation to
the previous data block;

—  Proactive detection (Group Label approach): for each
new data block received, a clustering algorithm is per-
formed using the centroids of the previous labeled data
block as initial centroids. Based on the results of the clus-
tering algorithm, the detection mechanism checks if a

Fig. 3 - Modular structure of
NEVE

Input Data
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drift has occurred in relation to the previous block and,
if so, a new MLP is created and trained with the new
block and the class labels suggested in the clustering;

— Proactive detection (Pattern Mean Shift approach):
similar to the Group Label approach, with the difference
that when a drift is detected, instead of creating a new
MLP with the new data block, the old data block is used
to train the MLP and the drift is “removed” from the new
data block. While in the Group Label approach the new
MLP is adjusted to the new data, in Pattern Mean Shift
approach the new data is adjusted to the old MLP.

The Classifier Creation Module is responsible for creating
a new classifier, which may or may not be added to the en-
semble, depending on its maximum size defined by the user. It
is worth mentioning that the decision to create a new neural
network is linked to the drift detection mechanism used,
which will be better detailed in the following subsections. If
created, the new classifier is added to the ensemble if space is
available or by replacing an older classifier of worse accuracy.
This approach gives the ensemble the ability to learn the new
data without having to analyze the old data, as well as
allowing to forget the data that is no longer needed. In short,
the classifier creation module determines the complete config-
uration of the new MLP network ensemble member using the
QIEA-BR algorithm (presented in Section 2). The algorithm
selects the most relevant input variables, specifies the number
of neurons in the hidden layer (respecting the maximum limit
configured by the user), and determines the weights and acti-
vation functions of each neuron. The number of output neu-
rons is equal to the number classes in the application.

Finally, the Evaluation Module is responsible for determin-
ing the final response of the classifier ensemble by combining
the results presented by the classifier members. The QIEA-R
algorithm is used to determine the most suitable voting weight

DETECTION
MODULE

Detection
module inactive

& OR drift detected
A | CLASSIFIER
" CREATION MODULE

1 Possible heuristic to add

Drift |
undetected :

v

EVALUATION
MODULE

Il

OUTPUT

Adds new
classifier to the
ensemble
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for each classifier dynamically. The optimization of weights
allows the model to easily adapt to sudden data changes by
assigning higher weights to the classifiers best suited to the
current concepts that govern the data. Three possible voting
methods were implemented:

— Linear Combination: It uses the QIEA-R algorithm to
generate a voting weight for each classifier, which is mul-
tiplied by the output of each ensemble member (between
0 and 1), on a weighted average. The result of this weight-
ed average is used to determine the ensemble response. If
the problem has only two classes, the output is assigned to
class 0 if the result is less than 0.5 and to class 1 other-
wise; in case of problems with multiple classes, the class
will be the one that presents the output with the highest
value;

—  Weighted Majority Voting: As in the previous case, it
uses the QIEA-R algorithm to generate a voting weight
for each classifier. However, the outputs of the neurons
from each ensemble network are first rounded (for values
0 or 1) and then multiplied by the corresponding classifier
weight, thus forming a weighted average. Similar to the
linear combination, in problems with only two classes,
the output is defined as class 0 if the result of the weighted
average is less than 0.5 and as class 1 otherwise; in the
case of problems with multiple classes, the class associ-
ated with the output with the highest value is defined;

—  Simple Majority Voting: The output of each ensemble
member is rounded to one of the possible classes, and the
ensemble final output is the most chosen class among all
classifiers. In this case, there is no need to determine
voting weights.

In summary, considering the detection mechanism used,
there are four possible variations of the NEVE model pro-
posed and detailed in the following subsections:

— ND-NEVE, without detection

— RD-NEVE, with reactive detection

— PDGL-NEVE, with proactive detection and the Group
Label approach

— PDPMS- NEVE, with proactive detection and the Pattern
Mean Shift approach

The following subsections detail each of the four proposed
NEVE variations. For each variation, an explanatory text and
a pseudocode of the algorithm is presented.

3.1 ND-NEVE (without detection)

The first variation of NEVE, “NEVE without Detection” (ND-
NEVE), as the name implies, does not use any detection
mechanism. It consists of an ensemble of MLP neural

networks that, with each new data block received, it trains a
new MLP that can be added to the ensemble if space is
available.

The operation of ND-NEVE can be generalized as: when a
data block t arrives (without the class labels), a new MLP
network is trained using the QIEA-BR algorithm and t-1 block
with the real class labels. The new network is provisionally
added to the ensemble and the ensemble is tested with block t.
Voting weights of all networks are determined using the
QIEA-R algorithm and block t-1. The final ensemble classifi-
cation is calculated using the test results with block t, the
voting weights and the chosen voting method. Finally, we
assume that the actual labels of block t become available and
then, the permanence of the new network in the ensemble is
evaluated. The pseudocode of the ND-NEVE is demonstrated
in Appendix 2.

3.2 RD-NEVE (with reactive detection)

The second variation of NEVE is “RD-NEVE (with reactive
detection)”. This variation uses the reactive detection mecha-
nism, detailed in [10]. For each new data block received, the
ensemble classifies it and, as soon as the real class labels are
obtained, the detection mechanism checks if a drift has oc-
curred from the previous data block. If so, a new MLP is
created, which is added to the ensemble if space is available.

The operation of RD-NEVE can be generalized as follows:
when a data block t arrives, the voting weights of all ensemble
members are determined using the QIEA-R algorithm and the
t-1 block. The ensemble is tested with block t and classifica-
tion results are combined with the weights calculated by
QIEA-R, using the chosen voting method to determine the
final ensemble classification. It is assumed that the real labels
of block t are later available and the reactive detection can be
applied [10]. If a drift has occurred in block t, a new MLP
network is created using the QIEA-BR algorithm and trained
with block t. The new network is added to the ensemble if
space is available or if it is better than at least one of the old
networks, replacing it on the ensemble. The pseudocode of the
DE-NEVE is demonstrated in Appendix 2.

3.3 PDGL-NEVE (with proactive detection and Group
Label approach)

The third variation of NEVE is “PDGL-NEVE (with proactive
detection and Group Label approach)”. This variation uses the
proactive mechanism of detection [10], where each new data
block is clustered, using the centroids of the previous data
block as the initial centroids of the algorithm. Based on the
clustering results, the detection mechanism checks if a drift
has occurred from the previous data block; if so, the model
trains a new MLP with the new data block and the class labels
suggested by the clustering algorithm.
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The operation of PDGL-NEVE can be summarized as:
when block t arrives, its instances are grouped using the real
classes of block t-1 as the initial suggestion of centroids, since
the real class labels of block t are still unknown. Then, it is
verified if a drift has occurred in block t in relation to block t-1.
If so, a new MLP network is created using the QIEA-BR
algorithm and trained using block t with the class labels pro-
vided by the clustering algorithm. The new network is provi-
sionally added to the ensemble, which is tested with block t.
The voting weights for all networks are determined using the
QIEA-R algorithm and block t, also with the labels provided
the clustering algorithm. The classification results and weights
are combined using the chosen voting method to determine
the final ensemble classification. It is assumed that the real
labels of block t are later available and the initial centroids
for the next grouping are updated, now considering the real
class labels of the data block. The permanency of the new
network in the ensemble is evaluated: it stays if space is avail-
able or if it is better than at least one of the old networks,
replacing it in the ensemble. The pseudocode of the PDGL-
NEVE is demonstrated in Appendix 2.

3.4 PDPMS-NEVE (with proactive detection
and Pattern Mean Shift approach)

The fourth variation of the NEVE is “PDPMS-NEVE (with
proactive detection and Pattern Mean Shift approach)”. This
variation also uses the proactive detection [10]. As in the pre-
vious variation, each new data block is grouped to verify if a
drift has occurred from the previous data block. If so, a new
MLP is trained with the previous labeled data block, and the
new data block is “adjusted” towards the previous data block.
In other words, when a drift is detected, instead of creating a
new MLP using the new data block (as performed by the
Group Label approach), the old data block is used to train
the network and the drift is “removed” from the new data
block. While in the Group Label approach the new network
is suitable for the new data, in Pattern Mean Shift approach the
new data is adjusted to the old network (trained with the old
data). The pseudocode of the PDPMS-NEVE is demonstrated
in Appendix 2.

Briefly, the main difference between PDGL-NEVE and
PDPMS-NEVE is that in PDPMS-NEVE, when a drift is de-
tected, a new MLP is created using the previous labeled data
block (and not the new data block with the labels provided in
the grouping, as in the PDGL-NEVE). Then, the new data
block is “adjusted” in the direction of the previous data block
and it is submitted to the ensemble classification. In the
PDGL-NEVE, on the other hand, the new data block is tested
by the ensemble without adjusting the data. Additionally, in
PDPMS-NEVE the data block used to determine the weights
of each MLP is the old data block with the real labels, while in
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the PDGL-NEVE the new data block is used with the labels
provided by the grouping.

This section presented the neuroevolutionary model for
learning in nonstationary environments proposed in this paper
and detailed its four variations. The next section describes the
experiments performed with the proposed detection methods.

4 Experiments

To assess the ability of the proposed model to learn in nonsta-
tionary environments and also to verify the best variations and
configurations of the models regarding accuracy and compu-
tational performance, six different datasets were used on dif-
ferent simulations and scenarios. For the experiments, the four
variations of the proposed model (described in Section 3) were
used: ND-NEVE, RD-NEVE, PDGL-NEVE and PDPMS-
NEVE. All experiments were run using standard libraries of
MATLAB, as well as its Neural Networks package to train the
baseline networks.

4.1 Datasets description

The datasets used in the experiments are: the SEA Concepts
(an artificial dataset with a more controlled environment about
the drifts) and four real datasets (Nebraska, Electricity, Cover
Type and Poker Hand), where the exact moment that the drift
occurs is unknown.

The SEA Concepts dataset was artificially created by
[49]. It is characterized by extensive periods without major
changes in the environment, but with occasional abrupt
drifts. The Nebraska dataset presents a compilation of cli-
mate measurements from the Offutt Air Force Base substa-
tion in Bellevue, Nebraska. Its objective is to predict
whether a rainfall may appear, using data from the last
30 days. Both datasets are available in [41]. The
Electricity dataset is extracted from the Australian New
South Wales Electricity Market and the class label defines
the price change related to a moving average of the last
24 h. The purpose of the problem is to predict whether
the price will go up or down. The Cover Type dataset
contains information cells corresponding to a forest cover
of 30 x 30 meters, extracted from the US Forest Service
(USFS). Its goal is to predict the type of forest cover
among seven possible values (therefore, a multi-class prob-
lem). The Poker Hand dataset has ten possible categories
as output, representing the poker hand that contains 5
cards. The purpose is to identify the type of a Poker hand
among the ten possibilities. These datasets are available in
[34]. Table 2 presents the main features of each dataset, as
well as the block size and number of blocks used in the
experiments.
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Table 2 — Datasets Details

Dataset Block Size  Number Number Number
of Blocks  of Inputs  of Classes

SEA Concepts 250 400 3 2

Nebraska 30 583 8 2

Electricity 48 944 8 2

Cover Type 500 1162 54 7

Poker Hand 500 1658 10 10

4.2 Execution details

All executions begin at t = 0 and end when consecutive T data
blocks are presented for training and testing, with each block
being able to suffer different scenarios of concept drift with
unknown rates and natures.

As detailed in Section 3, the QIEA-BR algorithm evolves
the topology of each new neural network, which is created
following the criteria of each variation of the proposed model.
The number of input variables is selected by QIEA-BR among
the available variables in each dataset. For all datasets, a single
hidden layer was used, whose number of neurons is evolved
by QIEA-BR, having a maximum value specified by the user.
The number of neurons in the output layer is equal to the
number of classes in each dataset. The synaptic weights and
activation functions of the hidden layer and the output layer
are also determined by QIEA-BR.

The parameters of the quantum evolutionary algorithms
are the same as those used by [1, 40] and they are detailed
in Table 3. The three voting methods detailed in Section 3

were evaluated: linear combination, weighted majority vot-
ing and simple majority voting. The maximum ensemble
size is also a parameter defined by the user. Table 3 pre-
sents the configuration of the parameters used in all the
experiments.

Thus, for each dataset, 72 different configurations of the
model (4 x 3 x 3 x2) were used, representing each possible
combination of the parameters to be evaluated, as shown in
Table 3. For each configuration, 30 simulations were per-
formed and the average accuracy and computational time of
these runs were calculated.

5 Results

The experiments presented below aimed at investigating
the difference between accuracy (the ratio of number of
correct predictions to the total number of input samples)
and computational performance (execution time in sec-
onds) among each of the four variations of the NEVE mod-
el, as well as the impact of the voting method, ensemble
size and number of neurons in the hidden layer. Therefore,
the objective of the experiment is to analyze how these
modifications affect the results of the models for each
dataset.

Tables 4, 5, 6 and 7 show the results of the experiments
performed considering the accuracy and the computational per-
formance measured in seconds. It should be noted that execu-
tion time is provided only for the SEA Concepts, Nebraska
and Electricity datasets. Due to the considerable size of

Table 3 — Experiments Settings
Parameter

Possible Values

Model variation

Voting method

Ensemble size

ND-NEVE (without detection)

RD-NEVE (reactive detection)

PDGL-NEVE (proactive detection, Group Label)
PDPMS-NEVE (proactive detection, Pattern Mean Shift
Linear Combination

Weighted Majority Voting

Simple Majority Voting

5

10

Unlimited

Maximum Number of neurons in the hidden layer 5

Quantum evolutionary algorithms parameters

10

Lambda (penalization parameter) = 0.001

Quantum population size = 10

Classical population size =20

Number of generations = 100

Quantical and classical crossover rate =0.1

Number of generations before checking improvement =4
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Table 4 — Results for Dataset SEA Concepts

SEA Accuracy Time in seconds
Hidden 10 5 10 5 10 10 5 10 5 10
Ensemble 5 10 10 Un Un 5 10 10 Un Un
lin. comb. | 0,91 | 0,91 | 0,91 | 0,90 | 0,87 | 0,87 270 | 311 | 356 | 364 | 527 | 549
Ligh. maj | 0,90 | 0,90 | 0,89 | 0,89 | 0,83 | 0,85 438 | 401 421 424 | 590 | 603
simpl. maj | 0,90 | 0,90 | 0,90 | 0,90 | 0,86 | 0,86 378 | 367 | 387 | 378 | 486 | 521
lin. comb. | 0,90 | 0,90 | 0,90 | 0,91 | 0,87 | 0,87 289 | 328 | 374 | 379 | 536 | 568
Ligh. maj | 0,90 | 0,90 | 0,90 | 0,88 | 0,86 | 0,86 444 | 408 | 429 | 429 | 611 | 599
simpl. maj | 0,90 | 0,90 | 0,90 | 0,90 | 0,86 | 0,86 279 | 274 | 282 | 280 | 292 | 289
PDGL-NEVE PDGL-NEVE
lin. comb. | 0.72 | 0.73 | 0.73 | 0.74 | 0.75 | 0.75 364 | 377 | 382 | 374 | 469 | 459
[ weigh. maj | 0.69 | 0.69 | 0.68 | 0.68 | 0.59 | 0.59 403 | 414 | 447 | 443 | 607 | s0s
simpl. maj | 0,76 | 0,76 | 0,77 | 0,77 | 0.81 | 0,80 288 | 288 | 290 | 290 | 307 | 310
PDPMS-NEVE PDPMS-NEVE
lin. comb. | 0,87 | 0,87 | 0,87 | 0,87 | 0,85 | 0,85 276 | 334 | 366 | 394 | 568 | 567
w_eigh. maj | 0,87 | 0.88 | 0,86 | 0,86 | 0,61 | 0.64 422 | 411 438 | 444 | 612 | 598
simpl. maj | 0,87 | 0,87 | 0,87 | 0,87 | 0,85 | 0,85 288 | 296 | 297 | 287 | 302 598
Poker Hand and Cover Type datasets, their execution re- — In general, the ND-NEVE, RD-NEVE and PDPMS-
quired the parallelization on several computers, making the NEVE approaches provided the best accuracy, while the
comparison of runtime between simulations impracticable. PDGL-NEVE had the worst accuracy;
In all cases, the observed standard deviation was less than —  Considering computational performance, the ND-NEVE,
2%. We highlighted the best 20% results in bold and gray RD-NEVE and PDPMS-NEVE approaches presented the
and the worst 20% results in italics and underlined. best computational times, and the PDGL-NEVE ap-
The analysis of Tables 4 to 7 shows that: proach, the worst. It was observed, however, that the
Table 5 — Results for Dataset Nebraska
Nebraska Accuracy Time in seconds
Hidden 5 10 5 10 5 10 10 5 10 5 10
Ensemble 5 5 10 10 Un Un 5 10 10 Un Un
ND-NEVE ND-NEVE
lin. comb, | 0,69 | 0,69 | 0,70 | 0,70 | 0,70 | 0,70 1052 ] 1047 ] 1030 ] 1041 ) 1277 | 1283
weigh. maj | 0,67 | 0,68 | 0,68 | 0,67 | 0,70 | 0,70 1169 ] 1161 ] 1170 ] 1178 ) 1668 | 1630
simpL. maj | 0,69 | 0,70 | 0,70 | 0,69 | 0,70 | 0,70 1058 | 1056 ] 951 | 863 | 1196 ] 1231
RD-NEVE RD-NEVE
lin. comb. | 0,69 ] 0,69 | 0,70 | 0,70 | 0,70 | 0,70 1022 ] 1025] 1017] 1008 | 1252 1253
weigh. maj | 0,68 | 0,67 | 0,68 | 0,68 | 0,69 | 0,70 1124 ) 1127 1122 1125 I{S_J Lﬂ
simpl. maj | 0,69 | 0,70 | 0,70 | 0,70 | 0,70 | 0,70 800 | 792 | 794 | 737 | 753 | 749
PDGL-NEVE PDGL-NEVE
lin. comb. | 0.53 | 0.53 | 0.53 | 0.53 | 055 | 0.55 1020 | 1024 ] 1022] 1037 1266 | 1261
weigh. maj | 0.48 | 0.45 | 0.43 | 0.44 | 0.33 | 0.34 1137 ) 1145] 1154 | 1140 | 1594 | 1437
simpl. maj | 0,55 | 0,55 Q‘___ﬁ_éig 0,56 | 0,57 660 | 668 | 688 | 689 | 785 | 786
PDPMS-NEVE PDPMS-NEVE
lin. comb. | 0,65 | 0,65 | 0,67 | 0,66 | 0,68 | 0,68 1047 | 1055 1034 | 1034 | 1262 | 1261
weigh. maj | 0,63 | 0,63 | 0,63 ] 0,63 | 0.36 | 0.37 1149 | 1147 1157 ] 1165 | 1592 | 1591
simpl. maj | 0,67 | 0,67 | 0,67 | 0,67 | 0,69 | 0,69 824 | 816 | 817 | 758 | 768 | 761
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Table 6

Table 7

— Results for Dataset Electricity
Electricity Accuracy Time in seconds
Hidden s | 10] s | 1w] s | 10 1w | s || s | 10
Ensemble 5 5 10 10 Un Un 5 10 10 Un Un
lin. comb. | 0,54 | 0,54 | 0,54 | 0,55 | 0,56 | 0.50 1428 | 1451 | 1523 | 1645 | 2907 | 2490
weigh. maj | 0,55 | 0,55 | 0,60 | 0,59 | 0,62 | 0,62 1673 | 1660 | 1694 | 1691 | 2947 | 2754
simpl. maj | 0,55 | 0,53 ] 0,55 | 0,56 | 0.44 | 0.49 1481 | 1444 | 1423 ] 1486 | 2495 | 2592
lin. comb. | 0,53 | 0,53 | 0,54 | 0,55 | 050 | 0.52 1366 | 1376 | 1389 | 1393 | 2431 | 2599 |
weigh. maj | 0,56 | 0,56 | 0,59 | 0,59 | 0,63 | 0,62 1671 | 1629 | 1580 | 1592 | 2793 | 2829 |
simpl. maj | 0.52 | 0.52 | 0,55 | 0,53 | 0.45 | 0.45 1124 | 1116 | 1101 | 1089 | 1384 ] 1416
PDGL-NEVE PDGL-NEVE
lin, comb. | 0,71 | 0,71 | 0,71 | 0,71 | 0,72 | 0,72 1391 | 1390 | 1443 | 1456 | 2506 | 2513 |
weigh. maj | 0,71 | 0,72 | 0,71 | 0,72 | 0,66 | 0,66 1614 | 1543 | 1557 1579 | 2712 | 2604
simpl. maj | 0,69 | 0,68 | 0,70 | 0,70 | 0,71 | 0,69 1049 | 1036 | 1031 | 1050 | 1335 | 1348
PDPMS-NEVE PDPMS-NEVE
lin, comb. | 0,53 | 0,53 | 0,53 | 0,54 | 0,54 | 0.46 1382 | 1363 | 1347 1352 | 2308 | 2626
weigh. maj | 0,55 | 0,55 | 0,57 ] 0,58 | 0,58 | 0,58 1703 | 1615 | 1562 | 1561 | 2566 | 2601
simpl. maj | 0.52 | 0.52 | 0,54 | 0,54 | 0.44 | 0.46 1121 | 1083 | 1077 | 1067 | 1297 | 1282
dataset also has a great influence on this criterion: the model by determining the voting weights of the networks.
slowest was Electricity, which is the dataset that has the Possibly, the early rounding performed in the weighted
highest number of attributes and also a greater number of majority resulted in in attaining a lower average accuracy
blocks among the datasets evaluated; than the linear combination;
The best voting methods in terms of accuracy are, in this  —  As for the computational performance, the best voting
order: linear combination, followed by weighted majority method was the simple majority, which was already ex-
and simple majority. This shows that the quantum algo- pected since this method does not perform the determina-
rithm is contributing positively to the accuracy of the tion of weights via quantum algorithm;
— Results for Datasets Poker Hand e Cover Type
Poker Hand - Accuracy Cover Type - Accuracy
Hidden 5 |wo]| 5| 1w0] 5] 1w 5 | w0)] 5] 1w0] 5| 10
Ensemble 5 5 | 10| 10] un] Un g 5 | 10| 10| Un] Un
ND-NEVE ND-NEVE
lin, comb. | 0,59 | 0,60 | 0,61 | 0,60 | 0,63 | 0,63 0,74 | 0,73 | 0,75 | 0.73 | 0,58 | 0,53
weigh. maj | 0,59 | 0,59 | 0,60 | 0,60 | 0,64 | 0,63 0,75 | 0,74 | 0,73 | 0,71 | 0,59 | 0,58
simpl. maj | 0,56 | 0,56 | 0,54 | 0,54 | 0,53 | 0,54 0,69 | 0,70 | 0,70 ] 0,71 | .50 | 0.49
lin. comb, | 0,59 | 0,60 | 0,61 | 0,60 | 0,63 | 0,63 0,74 | 0,73 | 0,75 ] 0,73 | 0,59 | 0,54
weigh. maj | 0,59 | 0,58 | 0,61 | 0,60 | 0,64 | 0,64 0,75 | 0,75 | 0,74 | 0,73 | 0,61 | 0,56
simpl. maj | 0,57 | 0,56 | 0,54 | 0,54 ] 0,54 | 0,54 0,69 | 0,71 | 0,70 | 0,69 | 051 | 0,52
PDGL-NEVE PDGL-NEVE
lin. comb. | 0.25 | 0.25 | 0.37 | 038 [ 041 | 035 | ) 0,51 | 051 | 0,54 | 054 | 0.47 | 0.49
weigh. maj | 0.23 | 0.22 | 041 | 041 | 0.38 | 0.40 0.50 | 049 | 0,54 | 0,55 | 050 | 050
simpl. maj | 0,47 | 0,47 | 0,48 | 0,46 | 0.40 | 0.41 0,56 | 0,57 | 0,55 ] 0,56 | 0.46 | 0.42
PDPMS-NEVE PDPMS-NEVE
lin. comb. | 0,58 | 0,57 | 0,56 | 0,57 | 0,58 | 0,57 0,72 | 0,70 | 0,70 | 0,72 | 0,59 | 0,53
weigh. maj | 0,57 ] 0,57 | 0,56 | 0,57 | 0,59 | 0,59 0,72 | 0,72 | 0,70 ] 0,71 | 0.56 | 0.55
simpl. maj | 0,55 | 0,55 | 0,53 ] 0,52 ] 0,51 | 0,53 0,71 | 0,70 | 0,70 | 0,69 | 0,49 | 0.42
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— It is observed that, in general, the strategy of unlimited
ensemble has lower accuracy than the limited ensembles.
There was no significant difference in accuracy between
the 5 and 10 ensemble size, which is a positive point,
because the unlimited ensemble strategies also presented
the worst computational performance, as expected. The
unlimited ensemble tends to provide worse accuracy
probably due to the increase in the search space of the
QIEA-R for determining the voting weights when there
are too many networks: it is enough to observe that, in all
the datasets used, there are at least 400 data blocks, which
allows ensembles of 400 networks for the unlimited case;

— No substantial differences were observed either in the
average accuracy or in the average computational perfor-
mance considering the strategies of 5 and 10 neurons
maximum in the hidden layer.

Figure 4 presents a comparative graph of the computational
time for the three binary datasets: SEA, Nebraska and Electricity
datasets. It can be observed that the computational time of the
ND-NEVE approach is superior to the others, whereas ap-
proaches with some type of detection present a similar mean
computational time. This confirms that the proposed detection
mechanism contributes to reducing the average execution time of
the models.

The accuracy of the proposed NEVE approaches was also
compared with DWM [26], Learn ++, NSE [9], RCD [16],
EFPT [55] and AMANDA [56] models. We used 3 different
drift detectors for the RCD algorithm: DDM [14], EDDM [5]

and ECDD [42]. These simulations were carried out using
MOA [35], an open source framework for data mining that
includes several learning algorithms implemented for classifi-
cation, regression, clustering, concept drift detection, among
others. For this comparison, we used the same block size
chosen for NEVE simulations for all the datasets. In order to
make a more coherent comparison with NEVE and to discard
the influence of the base classifier on the accuracy of the
model, in all other models, the MLP neural networks were
used as base classifiers. All the models were parameterized
using values indicated by the respective authors.

Table 8 presents the results of the best reached configura-
tion (in terms of accuracy) of each NEVE variation, compared
to the results of the other models. We highlighted the best
results, by dataset, in bold and underlined, the second best in
bold and the worst in italics and underlined. When more than
one value is highlighted, it means that there is no statistically
significant difference in the performance of the classifiers for

< 0.05, according to Wilcoxon test. We made 30 runs for
each possible configuration and each dataset. In all cases, the
observed standard deviation was less than 2%.

We can see from Table 8 that NEVE approaches obtained
the best result in 2 datasets and the second best in the other 3.
Apparently, the ND-NEVE and RD-NEVE approaches pro-
vide uniformly superior results in terms of accuracy. What is
noticeable in this experiment, in general, is that the EFPT model
is the main competitor of the NEVE in terms of accuracy con-
sidering SEA, Nebraska and Electricity datasets (as the author
didn’t performed tests with Poker and Covtype datasets, we

Table 8 — Comparison of results: Best case of NEVE x other models

Best ND-NEVE RD-NEVE PDGCL-NEVE PDPMS-NEVE RCD RCD RCD DWM Lean™ EFPT Amanda
(DDM) (EDDM)  (ECDD) NSE

SEA 90.53 90.53 81,08 87,56 82,50 80,22 80,37 60,67 3531 91.60 N/A

Nebraska 70,13 70,20 56,74 68,76 40,28 46,16 64,00 50,08 30.05 71,11 67,90

Electricity 62,03 63,04 71,68 58,04 52,41 48,22 49,41 67,16 4246 77,90 69,00

Poker 64,34 63,77 47,52 59,02 60,37 59,30 40.44 73,78 47,76 N/A  N/A

Covtype 75,30 74,83 57,04 72,48 46,34 33,78 57,19 81,91 28.05 N/A  N/A
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could not compare the models in this datasets) and the DWM
models seems to be the main competitor of the NEVE in terms of
accuracy considering Poker and Covtype datasets.

From the results presented, we can highlight that NEVE
provides good results without the need for a detection method;
however, by adding one, substantial gains in accuracy and
computational performance can be obtained. This fact rein-
forces that the neuroevolutionary ensemble approach is a ro-
bust choice for situations in which datasets are subject to sud-
den behavioral changes.

6 Conclusion

This work presented a new neuroevolutive model with quan-
tum-inspiration, based on a multi-layer perceptron (MLP)
neural network ensemble for learning in nonstationary envi-
ronments, called NEVE (Neuro-EVolutionary Ensemble).
This model can be used in conjunction with the DetectA con-
cept drift detection model [10], which has the ability to detect
changes both proactively and reactively. The use of Quantum-
Inspired Evolutionary Algorithms in conjunction with NEVE
allows the automatic generation of new classifiers for the en-
semble (including the decision of its topology, the most ap-
propriate input variables and its weights) and determining the
voting weights of each neural network member of the
ensemble.

Four different variations of NEVE were implemented: ND-
NEVE (without detection), RD-NEVE (with reactive detection),
PDGL-NEVE (with proactive detection and Group Label ap-

Appendix 1 - Pseudocode of the QIEA-R
algorithm

The pseudocode of the QIEA-R algorithm is shown as
follows.

1. t <=1
2. Create quantum pop. Q(t)
3. while (t <= T)
3.1. Create the PDF’s
3.2. E(t)
individuals
if (t=1) then
1. C(t) <= E(t)
else
.1. E(t) <- Crossover between E(t)

Evaluate E (t)

.3. C(t) <= K best individuals from

Q(t+l) <- update Q(t)
t <— t+1

WwWwwwwwww
OO S DN W W
)

proach), PDPMS-NEVE (with proactive detection and Pattern
Mean Shift approach). These variations differ from each other in
the way they detect and treat drifts, and were used in experi-
ments with real and artificial datasets in order to evaluate which
model variation and configurations achieved the best results. We
varied the voting method, the maximum number of neurons in
the hidden layer and the maximum size of the ensemble. It was
found that the ND-NEVE, RD-NEVE and PDPMS-NEVE ap-
proaches produce best results in terms of accuracy and compu-
tational performance. It was also observed that the linear com-
bination is the best voting method in terms of accuracy, and
simple majority voting the best in terms of computational per-
formance. The unlimited ensemble strategy has worse accuracy
and computational performance than limited ensembles, with no
significant difference between the 5 and 10 networks.

Compared with other consolidated models of the literature,
the accuracy of NEVE was found to be superior in most cases.
It appeared that the ND-NEVE and RD-NEVE approaches pro-
vide uniformly superior results in terms of accuracy, but the
addition of the detection method in some cases has resulted in
substantial gains. This fact reinforces that the neuroevolutionary
ensemble approach was a robust choice for situations in which
datasets are subject to sudden behavioral changes.

As future work, we intend to integrate, in a single evolu-
tionary model, the creation of the neural network and the
determination of voting weights, in order to perform the evo-
lution process in a single integrated process. Also, it is
intended to use NEVE for real applications, in order to vali-
date its practical use, although it is very hard to know for sure
if a dataset contains concept drift or not.

with N individuals with G genes

for the quantum individuals
<- generate classical individuals observing quantum

and C(t)

[E(t) + C(t)]

using N best individuals from C(t)
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Appendix 2 - Pseudocode of NEVE algorithms
The pseudocode of the ND-NEVE is demonstrated as follows.

Create an empty ensemble of classifiers P

1. Set s as the maximum ensemble size
2. Create a new MLP classifier ¢’ using the data block D; and QIEA-BR
and add it to the ensemble P

3. Test ¢’ with the data block D,

4. Ensemble final decision = ¢’ decision

5. Receive real labels of D,

6. For each data block D,and i = 3, 4..., m do

6.1. Create a new MLP classifier and train it using data block D;_;
and QIEA-BR

6.2 Add the new classifier provisionally to the ensemble

6.3 Test each ensemble classifier with the data block D;

6.4. Evolve voting weights w; for each classifier using the last data
block D;_; and QIEA-R

6.5. Determine the ensemble final decision using the chosen voting
method

6.6. Receive real labels of D;

6.7. Calculate the classification error E’ for the new classifier c¢’
and E; for each ensemble classifier c¢; and data block D;

6.8. Calculate the ensemble classification error

6.9. If ensemble is full (number of classifiers = s) then

1) If (E/ < max(E;))

a. Replace classifier with max(E;) by the new classifier
The pseudocode of the DE-NEVE is shown as follows.

Create an empty ensemble of classifiers P
1. Set s as the maximum ensemble size

2. Create a new MLP classifier ¢’ using the data block D; and QIEA-BR
and add it to the ensemble P

3. Test ¢’ with the data block D,

4. Ensemble final decision = ¢’ decision

5. Receive real labels of D,

6. If a drift is detected between data blocks D; and D,

6.1. Create a new MLP classifier and train it using data block D, and
QIEA-BR

7. For each data block D;and i = 3, 4..., m do

7.1. Evolve voting weights w; for each classifier using the last data
block D;; and QIEA-R

7.2. Test each ensemble classifier with the data block D;

7.3. Determine the ensemble final decision using the chosen voting
method

7.4. Receive real labels of D;

7.5. If a drift is detected between data blocks D;_; and D;

7.6. Create a new MLP classifier and train it using data block D; and
QIEA-BR

7.7. Add the new classifier provisionally to the ensemble

7.8. Calculate the classification error E’ for the new classifier c”’
and E; for each ensemble classifier c; and data block D;

6.10. If ensemble is full (number of classifiers = s) then

i) If (E/ < max(Ej))

a. Replace classifier with max(E;) by the new classifier

7.9. Calculate the ensemble classification error
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The pseudocode of the PDGL-NEVE is demonstrated as follows:

N

w w

w w w w

N =

Create an empty ensemble of classifiers P

Set s as the maximum ensemble size

Create a new MLP classifier ¢’ using the data block D; and QIEA-BR

and add it to the ensemble P

For each data block D;and i = 2, 3..., m do

Group D; using D;.; classes as suggestions of centroids

If a drift is detected between data blocks D;.; and D;

.1.Create a new MLP classifier and train it using data block D;
with labels provided in clustering and QIEA-BR

.2.Add the new classifier provisionally to the ensemble

Test each ensemble classifier with the data block D;

Evolve voting weights w; for each classifier using the data

block D; with labels provided in clustering and QIEA-R

Determine the ensemble final decision using the chosen voting

method

Receive real labels of D;
Calculate the classification error E’ for the new classifier ¢’
and E; for each ensemble classifier c¢; and data block D;
Update the suggestions of centroids for next clustering using
data block D; and the real labels
If a new classifier was created and if ensemble is full (number
of classifiers = s) then

1) If (E’ < max(Ej))

a. Replace classifier with max (E;) by the new classifier

The pseudocode of the PDPMS-NEVE is demonstrated as

follows:

N

w w w w

w w w w

NN

W NN

Create an empty ensemble of classifiers P

Set s as the maximum ensemble size

Create a new MLP classifier ¢’ using the data block D; and QIEA-BR

and add it to the ensemble P

For each data block D;and i = 2, 3..., m do

Group D; using D;.; classes as suggestions of centroids

If a drift is detected between data blocks D;.; and D;

.1.Create a new MLP classifier and train it using data block D;_;
with real labels and QIEA-BR

.2.Add the new classifier provisionally to the ensemble

.3.Adjust data block D; to make it similar to data block D;_;

Test each ensemble classifier with the data block D;

Evolve voting weights w; for each classifier using the data

block D;; with real labels and QIEA-R

Determine the ensemble final decision using the chosen voting

method

Receive real labels of D;

Calculate the classification error E’ for the new classifier c¢’

and E; for each ensemble classifier c¢; and data block D;

Update the suggestions of centroids for next clustering using

data block D; and the real labels

If a new classifier was created and if ensemble is full (number
of classifiers = s) then
i) If (E’ < max(E;))

a. Replace classifier with max (E;) for the new classifier

@ Springer



1606

T. Escovedo et al.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

10.

11.

12.

13.

14.

Abs da Cruz AV (2007) Algoritmos evolutivos com inspiragao
quantica para otimizag¢do de problemas com representacdo
numérica. PhD Thesis, Pontifical Catholic University of Rio de
Janeiro, Rio de Janeiro, (in portuguese)

Abs da Cruz AV, Vellasco MMBR, Pacheco MAC (2008)
Quantum-inspired evolutionary algorithm for numerical optimiza-
tion. In Quantum inspired intelligent systems, pp. 115-132.
Springer, Berlin Heidelberg

Alippi C, Liu D, Zhao D, Bu L (2014) Detecting and Reacting to
Changes in Sensing Units: The Active Classifier Case. IEEE
Transactions on Systems, Man, and Cybernetics: Systems 44(3):
353-362

Bach SH, Maloof MA (2012) Paired Learners for Concept Drift.
Proc. of the 8th IEEE Int. Conf. on Data Mining (ICDM). IEEE,
23-32. Charts for Detecting Concept Drift. Pattern Recogn. Lett.
33,2, pp. 191-198

Baena-Garcia M, Del Campo—Avila J, Fidalgo R, Bifet A (2006)
Early drift detection method. Proc. of the 4th ECML PKDD
International Workshop on Knowledge Discovery From Data
Streams (IWKDDS’06), Berlin, Germany, pp. 77-86

Brzezinski D, Stefanowski J (2014) Reacting to different types of
concept drift: The accuracy updated ensemble algorithm. IEEE
Trans on Neural Netw Learn Syst 25(1):81-94

Carvalho V, Cohen W (2006) Single-Pass Online Learning:
Performance, Voting Schemes and Online Feature Selection. Proc.
of the 12th ACM SIGKDD Int. Conf. on Knowl. Disc. and
DataMining (KDD) ACM, pp. 548-553

Dias DM, Pacheco MAC (2012) Quantum-inspired linear genetic
programming as a knowledge management system. Comput J
56(9):1043-1062

Elwell R, Polikar R (2011) Incremental Learning of Concept drift in
Nonstationary Environments. IEEE Trans Neural Netw 22(10):
1517-1531

Escovedo T, Koshiyama A, Abs da Cruz A, Vellasco M (2017)
DetectA: Abrupt Concept Drift Detection in Non-Stationary
Environments. Appl Soft Comput (accepted for publication)

Fan W (2004) StreamMiner: a classifier ensemble-based engine to
mine conceptdrifting data streams. In Proceedings of the 30th
International Conference on Very Large Data Bases, pp. 1257-1260
Fan W (2004) Systematic data selection to mine concept-drifting data
streams. In Proceedings of the 10th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 128-137
Frias-Blanco I, del Campo-Avila J, Ramos-Jimenez G, Morales-Bueno
R, Ortiz-Diaz A, Caballero-Mota Y (2015) Online and Non-Parametric
Drift Detection Methods Based on Hoeffding’s Bounds. IEEE
Transaction On Knowledge Data Engineering 27(3):810-823

Gama J, Medas P, Castillo G, Rodrigues PP (2004) Learning with
drift detection. Advances in Attificial Intelligence - SBIA 2004,
17th Brazilian Symposium on Artificial Intelligence, Sao Luis,
Maranhao, Brazil, pp. 286-295

Gama J, Zliobaite I, Bifet A, Pechenizkiy M, Bouchachia A (2014)
A survey on concept drift adaptation. ACM Computing Surveys
(CSUR) 46(4):44

@ Springer

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Gongalves Janior PM (2013) Multivariate Non-Parametric
Statistical Tests to Reuse Classifiers in Recurring Concept
Drifting Environments. PhD Thesis, Federal University of
Pernambuco, Recife

Han K, Kim J (2000) Genetic quantum algorithm and its application
to combinatorial optimization problem. Proceedings of the 2000
Congress on Evolutionary Computation 2:1354—1360

Han K, Kim J (2002) Quantum-inspired evolutionary algorithm for
a class of combinatorial optimization. IEEE Trans Evolutionary
Computation 6(6):580-593

Han K, Kim J (2003) On setting the parameters of qea for practical
applications: Some guidelines based on empirical evidence.
GECCO0:427-428

Han K, Kim J (2004) Quantum-inspired evolutionary algorithms
with a new termination criterion, He gate, and two-phase scheme.
IEEE Trans Evolutionary Computation 8(2):156—169

Hulten G, Spencer L, Domingos P (2001) Mining time-changing
data streams. In Proc. of The 2001 ACM Sigkdd Intl. Conf. on
Knowledge Discovery and Data Mining, pp. 97-106

Karnick T, Ahiskali M, Muhlbaier M, Polikar R (2008) Learning
concept drift in nonstationary environments using an ensemble of
classifiers based approach. IJCNN, pp. 3455-3462

Khamassi I, Sayed-Mouchaweh M (2014) Drift detection and moni-
toring in non-stationary environments. Evolving and Adaptive
Intelligent Systems (EAIS), 2014 IEEE Conference on, pp. 1-6. IEEE
Kolter J, Maloof M (2003) Dynamic weighted majority: a new
ensemble method for tracking concept drift. Proceedings of the
3rd International IEEE Conference on Data Mining, pp. 123-130
Kolter J, Maloof M (2005) Using additive expert ensembles to cope
with concept drift. In Proceedings of the 22nd International
Conference on Machine Learninig, pp. 449456

Kolter J, Maloof M (2007) Dynamic weighted majority: An ensem-
ble method for drifting concepts. ] Mach Learn Res 8:2755-2790
Krawczyk B, Minku LL, Gama J, Stefanowski J, Wozniak M
(2017) Ensemble learning for data stream analysis: A survey.
Information Fusion 37:132-156

Kuncheva LI, Faithfull WJ (2014) PCA Feature Extraction for Change
Detection in Multidimensional Unlabeled Data. IEEE Transactions on
Neural Networks and Learning Systems 25(1):69—-80

Kuncheva LI (2004) Classifier ensemble for changing environ-
ments. in Multiple Classifier Systems, vol. 3077. New York:
Springer-Verlag

Kuncheva LI (2008) Classifier ensemble for detecting concept
change in streaming data: Overview and perspectives. In Proc.
Eur. Conf. Artif. Intell, pp. 5-10

Maayan H, Mannor S, El-Yaniv R, Crammer K (2014) Concept
Drift Detection Through Resampling. In ICML, pp. 1009-1017
Minku L, White A, Yao X (2010) The impact of diversity on online
ensemble learning in the presence of concept drift. IEEE Trans
Knowl Data Eng 22(5):730-742

Minku L, Yao X (2012) DDD: A New Ensemble Approach for
Dealing With Concept Drift. IEEE Transactions on Knowledge
and Data Engineering, IEEE 24(4):619-633

MOA Datasets (2018) MOA — Massive Online Analysis. Avaliable
at: http://moa.cms.waikato.ac.nz/datasets/

MOA (2018) MOA — Massive Online Analysis. Available at: http:/
moa.cms.waikato.ac.nz/

Nishida K, Yamauchi K (2007) Adaptive classifiers-ensemble sys-
tem for tracking concept drift. In Proceedings of the Sixth
International Conference on Machine Learning and Cybernetics
(ICMLC’07), Honk Kong, pp. 3607-3612

Nishida K, Yamauchi K (2007) Detecting concept drift using sta-
tistical testing, Discovery Science. Springer Berlin Heidelberg
Nishida K (2008) Learning and detecting concept drift. PhD Thesis,
Hokkaido University, Japan


http://moa.cms.waikato.ac.nz/datasets/
http://moa.cms.waikato.ac.nz/
http://moa.cms.waikato.ac.nz/

Neuroevolutionary learning in nonstationary environments

1607

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

S8.

Pinho AG, Vellasco M, Abs da Cruz AV (2009) A new model for
credit approval problems: A quantum-inspired neuro-evolutionary
algorithm with binary-real representation. Nature & Biologically
Inspired Computing (NaBIC). World Congress on. IEEE

Pinho AG (2010) Algoritmo evolucionario com inspiragéo quantica
e representagdo mista aplicado a Neuroevolucao. Master’s
Dissertation, Pontifical Catholic University of Rio de Janeiro, Rio
de Janeiro, (in portuguese)

Polikar R, Elwell R (2013) Benchmark Datasets for Evaluating
Concept drift/NSE Algorithms. Avaliable at: http://users.rowan.
edu/~polikar/research/NSE

Ross GJ, Adams NM, Tasoulis DK, Hand DJ (2012) Exponentially
weighted moving average charts for detecting concept drift. Pattern
Recogn Lett 33(2):191-198

Schlimmer J, Granger R (1986) Incremental learning from noisy
data. Mach Learn 1(3):317-354

Scholz M, Klinkenberg R (2005) An ensemble classifier for drifting
concepts. In Proceedings of the 2nd International Workshop on
Knowledge Discovery in Data Stream, pp. 53—64

Scholz M, Klinkenberg R (2007) Boosting classifiers for drifting
concepts. Intelligent Data Analysis 11(1):3-28

Sebastido R, Gama J, Mendongca T (2017) Fading histograms in
detecting distribution and concept changes. International Journal
of Data Science and Analytics:1-30

Silveira L, Tanscheit R, Vellasco M (2017) Quantum Inspired
Evolutionary Algorithm for Ordering Problems. Expert Syst Appl
67:71-83

Stanley KO (2003) Learning concept drift with a committee of
decision trees. Department of Computer Sciences, University of
Texas at Austin, Tech. Rep. AI-03-302

Street WN, Kim YS (2001) A streaming ensemble algorithm (SEA)
for largescale classification. In Proceedings of the 7th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 377-382

Sun Y, Wang Z, Liu H, Du C, Yuan J (2016) Online Ensemble
Using Adaptive Windowing for Data Streams with Concept Drift.
International Journal of Distributed Sensor Networks

Tsymbal A (2004) The problem of concept drift: Definitions and
related work. Tech. Rep

Vellasco MBR, Abs da Cruz AV, Pinho AG (2010) Quantum-
inspired evolutionary algorithms applied to neural network model-
ing. In IEEE world congress on computational intelligence
(WCCI), pp. 125-150

Wozniak M, Kasprzak A, Cal P (2013) Application of combined
classifiers to data stream classification. In Proceedings of the 10th
International Conference on Flexible Query Answering Systems
FQAS 2013, LNCS, page in press, Berlin, Heidelberg, SpringerVerlag
1. Zliobaite (2009) Learning under Concept Drift: An Overview.
Tech. rep. Vilnius University

Jorge PMC (2018) Sintese de Comité de Arvores de Padrdes Fuzzy
através da Programagdo Genética Cartesiana em Ambientes Nao
EstacionArios. MSc Dissertation, State University of Rio de
Janeiro, Rio de Janeiro

Ferreira RS, Zimbrao G, Alvim LGM (2019) AMANDA: Semi-
supervised density-based adaptive model for non-stationary data
with extreme verification latency. Inf Sci 488:219-237

Krawczyk B, Cano A (2018) Online ensemble learning with
abstaining classifiers for drifting and noisy data streams. Appl
Soft Comput 68:677-692

Ye R, Dai Q (2018) A novel greedy randomized dynamic ensemble
selection algorithm. Neural Process Lett 47(2):565-599

59. Cano A, Krawczyk B (2018) Learning classification rules with
differential evolution for high-speed data stream mining on GPU
s. 2018 IEEE Congress on Evolutionary Computation (CEC). IEEE

60. Cano A, Krawczyk B (2019) Evolving rule-based classifiers with
genetic programming on gpus for drifting data streams. Pattern
Recogn 87:248-268

61. Angelov PP, Zhou X (2008) Evolving fuzzy-rule-based classifiers
from data streams. IEEE Trans Fuzzy Syst 16(6):1462—1475

Publisher’'s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Tatiana Escovedo received the
BSc and MSc degrees in
Computer Science from the
Pontifical Catholic University of
Rio de Janeiro (PUC-Rio),
Brazil, in 2005 and 2007, respec-
tively, and the PhD degree in
Electrical Engineering from the
Pontifical Catholic University of
Rio de Janeiro (PUC-Rio) in
2015. Dr. Escovedo is currently
the coordinator of artificial intelli-
gence of Petrobras’ digital trans-
formation department in Rio de
Janeiro, Brazil, and assistant pro-
fessor at PUC-Rio. She is the author of several papers in the area of
software engineering and machine learning. Her research interests include
Data Science, Artificial Intelligence, Software Engineering, Machine
Learning and Business Intelligence.

Adriano Soares Koshiyama re-
ceived his BSc degree in
Economics from UFRRJ and
MSc degree in Electrical
Engineering from PUC-Rio.
Nowadays is a PhD Candidate in
Computer Science at University
College London (UCL), with its
main research subject being in
Financial Computing and
Analytics. Its main research topics
are related to: Machine Learning,
Statistical Methods, Optimization
and Finance.

@ Springer


http://users.rowan.edu/~polikar/research/NSE
http://users.rowan.edu/~polikar/research/NSE

1608

T. Escovedo et al.

Andre Vargas Abs da Cruz re-
ceived the BSc. in Computer
Engineering at the Pontifical
Catholic University of Rio de
Janeiro (1998), MSc. in Electric
Engineering (Support Decision
Methods) at the Pontifical
Catholic University of Rio de
Janeiro (2003) and DSc. in
Electric Engineering (Support
Decision Methods) at the
Pontifical Catholic University of
Rio de Janeiro (2007). Did a
post-doctoral research in bioinfor-
matics. Has experience on the fol-

lowing subjects: optimization, evolutionary algorithms, quantum com-
puting, bioinformatics and neural networks. He currently works as a
Data Scientist for MDC Partners in Antwerp, Belgium.

@ Springer

Marley Maria Bernardes
Rebuzzi Vellasco received the
BSc and MSc degrees in
Electrical Engineering from the
Pontifical Catholic University of
Rio de Janeiro (PUC-Rio),
Brazil, in 1984 and 1987,
respectively,and the PhD degree
in Computer Science from the
University College London
. (UCL) in 1992. Dr. Vellasco is
A \ A currently Head of the Electrical
\ W Engineering Department of
\R\ \\ PUC-Rio and of the
Computational Intelligence and
Robotics Laboratory (LIRA) of PUC-Rio. She is the author of four books
and more than 60 papers in professional journals, 340 papers in confer-
ence proceedings and 17 book chapters in the area of soft computing and
machine learning. Her research interests include Neural Networks, Fuzzy
Logic, Neuro-Fuzzy Systems, Neuro-Evolutionary models, Robotics, and
Intelligent Agents, applied to decision support systems, pattern classifi-
cation, time-series forecasting, control, optimization and Data Mining.




	Neuroevolutionary learning in nonstationary environments
	Abstract
	Introduction
	Literature review
	Concept drift
	Quantum-inspired evolutionary algorithms
	Quantum-inspired evolutionary algorithm with real representation (QIEA-R)

	Quantum-inspired evolutionary algorithm with binary-real representation (QIEA-BR)

	NEVE: Neuroevolutionary Model for Learning in Nonstationary Environments
	ND-NEVE (without detection)
	RD-NEVE (with reactive detection)
	PDGL-NEVE (with proactive detection and Group Label approach)
	PDPMS-NEVE (with proactive detection and Pattern Mean Shift approach)

	Experiments
	Datasets description
	Execution details

	Results
	Conclusion
	Appendix 1 – Pseudocode of the QIEA-R algorithm
	Appendix 2 – Pseudocode of NEVE algorithms
	References


