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Abstract 

Neurofeedback training (NFT) has shown to be promising and useful to rehabilitate cognitive 

functions. Recently, brain-computer interfaces (BCIs) were used to restore brain plasticity by 

inducing brain activity with a NFT. In our study, we hypothesized that a NFT with a motor 

imagery-based BCI (MI-BCI) could enhance cognitive functions related to aging effects. To 

assess the effectiveness of our MI-BCI application, 63 subjects (older than 60 years) were 

recruited. This novel application was used by 31 subjects (NFT group). Their Luria 

neuropsychological test scores were compared with the remaining 32 subjects, who did not 

perform NFT (control group). Electroencephalogram (EEG) changes measured by relative 

power (RP) endorsed cognitive potential findings under study: visuospatial, oral language, 

memory, intellectual and attention functions. Three frequency bands were selected to assess 

cognitive changes: 12, 18, and 21 Hz (bandwidth 3 Hz). Significant increases (p<0.01) in the RP 

of these frequency bands were found. Moreover, results from cognitive tests showed significant 

improvements (p<0.01) in four cognitive functions after performing five NFT sessions: 

visuospatial, oral language, memory, and intellectual. This established evidence in the 

association between NFT performed by a MI-BCI and enhanced cognitive performance. 

Therefore, it could be a novel approach to help elderly people.  
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1. Introduction 

Advances in signal processing and computing capabilities have enabled people with different 

disabilities to use brain computer interfaces (BCIs) for communication or the control of devices 

without the involvement of peripheral nerves and muscles [44]. Electroencephalography (EEG) 

is the most commonly used method for monitoring brain activity in BCI systems because it is a 

noninvasive technique that requires relatively simple and inexpensive equipment [45]. 

By means of motor imagery strategies, different tasks for the activation or deactivation of 

specific brain signals can be proposed. Motor imagery-based BCI (MI-BCI) applications 

translate brain activity during the motor imagery tasks into control commands. These 

endogenous BCI systems depend on the user’s ability to control the amplitude in a specific 

frequency band of the EEG recorded over a particular cortical area [45]. MI-BCI is based on the 

generation of event-related desynchronization (ERD) and event-related synchronization (ERS) 

in alpha (8-13 Hz) and beta (13-30 Hz) frequency bands of the EEG [20, 33]. These events are 

related to sensorimotor rhythms (SMR). The SMR show a characteristic ERD and subsequent 

rebound, or ERS, after motor imagery task [28]. ERD in hand movement is more prominent 

over the contralateral sensorimotor areas [28]. These spectral changes can be used to provide 

feedback by a MI-BCI system, and, at the same time, to activate endogenous EEG activity in 

alpha and beta frequency bands. Since EEG-alpha and EEG-beta band activity are associated 

with different cognitive and motor functions [3, 15, 20, 31, 32], BCIs have become not only a 

tool to assist people with disabilities, but also a way to rehabilitate or restore motor or cognitive 

functions. Brain plasticity can be restored into a more normal brain function by means of 

inducing brain activity [13]. In this regard, neurofeedback training (NFT) has been shown to be 

an appropriate way to control one’s own brain activity [47]. In fact, NFT can lead to 

neuroplastic changes occurring after NFT [34] and microstructural changes in white and grey 

matter [18]. In previous studies, NFT has been used to treat different diseases such as Attention-

Deficit/Hyperactivity Disorder (ADHD) [2, 17], autism [10], epilepsy [37], or Traumatic Brain 

Injury (TBI) [38], among others. Furthermore, there are some reports indicating that NFT might 

be used to increase cognitive performance [39]. However, the reliability of the NFT effect is 

still not conclusive. Although Bauer [5] found increments in alpha band after NFT, several 

studies [16, 40] reported that changes on the spectral content of the EEG were not always 

present. Furthermore, it was suggested that significant changes in the EEG due to NFT depends 

on the training protocol [16]. 

There are several studies focused on neural changes due to NFT [6, 23, 39, 40]. Although it 

is an unusual method, learning control of brain rhythms using a BCI system has also been 

studied [33]. Similarly, there are also studies that focus on neuropsychological changes due to 

NFT in elderly people [1, 36, 41]. Elderly people undergo numerous changes that imply poorer 

cognitive performance than young adults [6, 19]. For instance, visuospatial perception or 
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memory and attention are cognitive functions that seem to be affected in the elderly [12]. 

Despite of the fact that some older adults perform cognitive tasks as well as young people, 

normal aging implies changes on neural features and brain plasticity which is one of the most 

prominent concerns in the elderly [19]. Furthermore, according to the United Nations [48], one 

in every 3 persons in developed countries will be 60 years or older in 2050. Therefore, it seems 

clear that the study of applications aimed at helping the elderly is of paramount importance. 

Although it is common to find changes in the EEG using different NFT protocols, there is 

controversy about effects on cognitive performance or the transference of the feedback beyond 

the training sessions. Not all the studies obtain cognitive effects due to NFT [36]. It is also 

common to find an increase in cognitive processing speed and executive functions but not in 

memory [1]. However, there are also studies that found an increase of memory when users 

trained theta band [41]. Therefore, further analyses on the effects of NFT in the elderly are 

needed. 

In our study, we apply NFT with MI-BCI to study the potential benefits in elderly people. 

For this purpose, a MI-BCI application was developed, designed and assessed in the present 

work. Traditional NFT methodology provides feedback by means of LED lights or audio tones 

of a specific biofeedback apparatus [28, 29], changes in a display as the saturation of a colored 

square [47] or changing the height of a colored bar [46]. We hypothesized that the proposed 

method (MI-BCI) could be a possible alternative to the traditional NFT approach, avoiding the 

use of conventional apparatus to provide feedback. For this purpose, NFT effects have been 

studied not only observing changes in the EEG spectrum by means of relative power (RP) 

measures, but also through the study of changes in different cognitive functions by means of 

Luria Adult Neuropsychological Diagnosis (Luria-AND). Thus, the aim of this study is to 

compare the traditional NFT approach to the proposed MI-BCI method. 

 

2. Methods  

2.1. Participants 

A total of 63 subjects were recruited by the ‘Centro de Referencia Estatal de San Andrés del 

Rabanedo’ (CRE) through advertisements and informative meetings with elderly people. All 

subjects were older than 60 years, healthy, and with similar educational level. None of them had 

previous BCI experience (BCI-naives). Population was randomly divided (taking into account 

age and gender) into a control group (32 subjects) and a NFT group (31 subjects) 

 The control group was composed of 23 females and 9 males (mean age = 68.0 ± 5.6 years, 

range = 60-80), while the NFT group consisted of 18 females and 13 males (mean age = 68.3 ± 

4.3 years, range = 60-81). Nonsignificant differences were observed in the mean age or gender 

(p > 0.05, Mann-Whitney U-test) between both groups. Participants were recruited in three 

stages: (i) first stage (November-December 2012), 20 participants (10 controls and 10 NFT 
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subjects); (ii) second stage (January-February 2013), 20 participants (10 controls and 10 NFT 

subjects); and (iii) third stage (May-June 2013), a total of 23 participants (12 controls and 11 

NFT subjects. The first and the second stages served for assessing changes in several cognitive 

functions. Then, a new population was recruited in order to consolidate these findings by means 

of the analysis of spectral changes in the EEG. Thus, the protocol was redesigned just to include 

the recording of EEG in resting state conditions before and after using the MI-BCI tool. EEG 

changes were also assessed for reinforcing cognitive changes obtained during the previous 

stages. In summary, during the two first stages, we consider only cognitive changes assessed by 

means of Luria-AND tests. Thus, EEG was not recorded during training sessions. In the third 

stage, cognitive changes were reinforced with EEG spectral changes measured in additional 

subjects. 

All participants (control and NFT groups) were free of psychotropic medication (nicotine not 

included) and without previous history of psychiatric or neurological disorders or substance 

abuse. The study was approved by the local ethics committee (University of Leon, Spain). All 

subjects gave their informed consent for participation in the study. 

 

2.2. EEG recordings 

Sensorimotor rhythms are activated in central brain region [22, 45]. Hence, EEG was 

recorded using 8 active electrodes (F3, F4, T7, C3, Cz, C4, T8, and Pz) placed in an elastic cap 

according to the international 10-20 system [25]. Data were referenced to a common reference 

placed in the ear lobe. The ground electrode was located at AFz channel. Signals were amplified 

by a g.USBamp amplifier (Guger Technologies OG, Graz, Austria) and digitally stored at a 

sampling rate of 256 Hz. 

During NFT tasks, the EEG signals were processed in real time using the BCI2000 general-

purpose system [35] for the NFT group. EEG data were filtered online with a bandpass filter 

between 0.1-60 Hz. Furthermore, additional recordings during a 2-min eyes closed resting-state 

condition were acquired from the NFT group recruited in the third stage. These recordings were 

obtained at the beginning and the end of the NFT protocol in order to assess EEG changes due 

to the five sessions of neurofeedback. Thus, potential cognitive changes in the two first stages 

could be reinforced by spectral changes of the EEG recordings. 

 

2.3 Design of the experiment 

The experiment consisted of four steps: 

 Step 1 (pre-scores): control and NFT groups performed a neurological test called Luria-

AND test [8]. This pre-test serves as the reference to assess neuropsychological 

characteristics of all subjects before the NFT. 
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 Step 2: NFT group performed NFT tasks during five sessions based on motor imagery 

strategies using a BCI system. At the beginning of the first session and at the end of the last 

session, 2-min EEG with eyes closed on resting-state conditions were recorded for offline 

analysis from 11 subjects (last stage of the NFT group). In the present study, our novel MI-

BCI tool was based on controlling the cursor presented in a screen. Users were guided to 

imagine hand movements to lead the cursor to the correct target. This application and the 

implemented task are described in the 2.5 subsection. 

 Step 3 (post-scores): all subjects performed the Luria-AND test again in order to assess 

potential changes in different neuropsychological functions. 

 Step 4: an offline analysis was carried out to evaluate the influence of NFT in the power 

spectrum of the EEG and the Luria-AND scores. 

 

2.4. Luria Adult Neuropsychological Diagnosis 

Luria-AND test includes nine subtests distributed among five different brain functions: 

visuospatial (visual perception and spatial orientation), oral language (receptive speech and 

expressive speech), memory (immediate memory and logical memory), intellectual (thematic 

draws and conceptual activity), and attention (attentional control) [8]. Control and NFT groups 

performed the Luria-AND test twice: at the beginning (pre-scores) and at the end (post-scores) 

of the study. Thereby, it is possible to investigate changes due to NFT tasks in these five 

cognitive functions under study. 

 

2.5. Neurofeedback training protocol by brain computer interface system 

NFT was designed for training motor imagery that implies ERS/ERD of alpha and beta 

frequency bands in the EEG. In order to provide feedback to the users, spatial nearest-neighbors 

laplacian over C3, Cz, and C4 was applied. Spectral bands of 3 Hz centered on 12, 18, and 21 

Hz were used. Since alpha power suppression is positively correlated with cognitive 

performance [33] and beta band activity is associated with different cognitive and motor 

functions [3], training these spectral bands could modify neurocognitive functions. 

NFT experiment consisted of five sessions (once a week). In each session, participants were 

encouraged to perform five different tasks starting with the easiest activities. The difficulty was 

increased in the following sessions.  

It is important to clarify that the training was not performed in the traditional way. Usually, 

NFT protocols use commercial NFT apparatus [28, 29, 46]. However, in this work, a MI-BCI 

system was used for feedback, resulting in an interactive application. It was not necessary to use 

a conventional NFT apparatus. In this approach, we used: (i) EEG recording system; (ii) laptop 

to process the EEG in real time; (iii) the developed MI-BCI system installed in the laptop and; 
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(iv) an additional display to provide feedback to the user. The feedback was provided by means 

of the movement of an item in a screen, which is controlled by motor imagery tasks. 

The new application was developed in C++ language as an extension of the BCI2000 system 

[35], using Microsoft® Visual Studio 2010. The application was installed in a laptop with an 

Intel Core i7-2600 @ 2.30 GHz processor and 8 GB RAM with Windows 7 operating system 

installed. 

The five types of NFT activities, performed by the MI-BCI system, are described below 

(figure 1): 

 T1. The first task consists of learning to imagine hand movements. Hence, the proposed 

interface is composed of two types of exercises: imagining right hand movements when a 

closed door is displayed on the screen and the similar procedure with the left one when a 

 

Fig. 1 Screenshots of the five NFT tasks: a) T1 during motor imagery of left hand (top) and the 

right hand (bottom); b) T2 during motor imagery of the right hand (top) and the left hand 

(bottom); c) T3 during motor imagery of the right hand (top) and the left hand (bottom); d) T4 

during two different moments of the task where the user must overcome an obstacle; and e) T5 

during three different moments of the task, where the user must remember the repeated item and 

reach the correct side moving the red ball. The MI-BCI system provides feedback opening the 

door or window (T1), or moving the cursor (T2, T3, T4 and T5), when spectral changes in the 

trained frequency bands in contralateral sensorimotor areas are detected 
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closed window is displayed instead (figure 1a). The visual feedback (open or not the door 

or window) allows the user to know when he/she is executing the proposed task suitably so 

that he/she can keep or change the strategy. 

 T2. The second task is aimed at moving a cursor in horizontal direction in order to reach a 

target randomly located on the right or the left of the screen. The user has to imagine hand 

movements again and the cursor moves continuously over the screen. This continuous 

feedback allows the user to keep or change the motor imagery strategy. The cursor and 

targets are represented by different pairs of related pictures: person-house, fish-fridge, and 

trousers-wardrobe (figure 1b).  

 T3. The task increases the difficulty by showing two possible targets on the screen: a right 

one (a picture related to the cursor) and a wrong one (unrelated to the cursor) (figure 1c). 

Users have to move the cursor towards the correct target by means of motor imagery. 

 T4. In this task, a path crossing a park is shown to the user. The screen displays a person 

walking forward continuously. The user is able to control the horizontal movement, by 

means of hand motor imagery strategies, overcoming different obstacles that appear across 

the path: puddles, trees, animals, etc. (figure 1d). 

 T5: This exercise combines hand motor imagery tasks with memory exercises. Firstly, two 

images are displayed on the screen during three seconds. Then, they disappear and two 

images are newly shown at the right and left of the screen: only one matches some of the 

initial images. The user has to identify what of these images appeared at the beginning of 

the trial and move the cursor towards it (figure 1e). 

Figure 2 shows the equipment necessary to carry out the NFT in the approach presented in 

this work. In addition, figure 2 also show a real user performing the training (T4). 

The two first sessions contain several trials of T1 in order to learn and practice motor 

imagery strategies, as figure 3 shows. The next tasks consisted of logical relation (T2, T3, and 

T4) and memory exercises (T5) that have to be solved by means of the movement of a 1D 

cursor. This increases the intra- and inter-session complexity of the training without increment 

excessively the duration of each session, which leads to an increase of training efficiency. 

Duration of each session was approximately 90 minutes, depending on the inter-trial and inter-

task and pauses. Thus, each trial requires the following durations to perform it: 

 Each trial of T1 task requires a fixed time of 8 seconds. 

 Each trial of T2 and T3 tasks requires a maximum of 18 seconds. 

 Each trial of T4 task requires a fixed time of 24 seconds. 

 Each trial of T5 task requires a maximum of 17.7 seconds. 
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The basis of all these NFT tasks is motor imagery strategy presented by the developed MI-

BCI tool. Therefore, the training is based on voluntary modulation of EEG around 12, 18, and 

21 Hz. These frequencies are used to provide the feedback to the user. Brain activity of these 

mental work focuses on the area of centroparietal brain [32]. However, working memory is 

associated with frontal cortex [9] and posterior areas of the brain (for the maintenance function), 

including the parietal cortex [11]. Hence, several regions of the brain are trained modifying the 

plasticity of different cognitive functions. 

 

Fig. 2 a) EEG recording equipment (Guger Technologies OG, Graz, Austria): the cap with 8 

active electrodes, the amplifier and the gel for reduce the impedance; b) a real end-user 

performing the training (T4), the EEG recording equipment, a laptop with the MI-BCI system 

installed for processing the signals in real time and a display for providing feedback 

 

Fig. 3 Experimental design of each session (once per week). Complexity is increased across 

sessions by means of including more logical relationships and memory tasks. The number of 

trials of each type is shown 
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2.6. Offline data processing 

2.6.1. Luria analysis 

Luria-AND scores were analyzed in two ways. First, subtests of the nine cognitive features 

were analyzed separately. The nine cognitive features are: visual perception, spatial orientation, 

receptive speech, expressive speech, immediate memory, logical memory, thematic draws, 

conceptual activity, and attentional control. This feature scores were provided by the Luria-

AND test [8]. Secondly, statistical analyses by means of Wilcoxon and Mann-Whitney tests (see 

statistical analysis section for details) provide independent measures of the potential changes of 

each subtest.  On the other hand, a global analysis was carried out. Therefore, by means of a 

normalization of the test scores, data can be clustered into a single neurocognitive value (SNV) 

for all tests. Then, the neurocognitive scores of SNV for control and NFT groups were 

compared.  

 

2.6.2. EEG analysis 

EEG data were processed using Matlab R2011b, MathWorks Inc, USA, by means of custom 

scripts and the available functions on Statistics and Machine Learning Toolbox and Signal 

Processing Toolbox. Ocular artefact correction was carried out by means of independent 

component analysis (ICA) [24]. Next, for each channel, the RP for the 3 Hz bands centered at 

12, 18, and 21 Hz was computed for the 2-min rest measurements for the NFT group recruited 

in the third stage. RP is defined as the ratio of the area enclosed under the power spectral 

density (PSD) in the frequency band of interest to the total area under the PSD: 
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For this purpose, the PSD was previously computed using the nonparametric Welch method, 

which is suitable for the analysis of nonstationary signals [43]. Hamming window of 213 

samples (32 seconds), along with a 90% overlap and FFT of 213 points was used. This epoch 

length is long enough to collect several signal periods of alpha or beta frequency bands taken 

into account the sampling rate of 256 Hz. Then, each PSD was normalized dividing the 

amplitude by its total power. Finally, the ERD/ERS were analyzed by means of Mann-Whitney 

U-test. 

 

 

 



Page nr. 11 of 20 

2.6.3. Statistical analysis 

Concerning Luria-AND tests, descriptive analysis was carried out in order to explore the 

distribution of the pre and post-scores. First, the Kolmogorov-Smirnov test and the Levene test 

were applied to evaluate the normality and the homoscedasticity of the distributions, 

respectively. After we observed that the pre and post-scores did not meet the parametric 

assumptions, nonparametric tests were used in order to evaluate our results. Scores of these tests 

were analyzed in two ways: (i) nonparametric Mann-Whitney U-test (statistical significance 

p<0.01) was used to assess the statistical differences in the scores of each neuropsychological 

feature between both groups (intergroup analysis) and (ii) nonparametric Wilcoxon signed-rank 

test (p<0.01) was applied in order to assess the statistical differences between the scores of pre 

and post-tests (intragroup analysis). Hence, a total of five p-values were calculated for each 

cognitive feature: 

 Comparison of Luria-AND pre-scores between control and NFT group using Mann-

Whitney test. 

 Comparison of post-scores between control and NFT group using Mann-Whitney test. 

 Comparison of the differences () in Luria-AND pre-scores and post-scores between 

control and NFT groups using Mann-Whitney test. 

 Comparison of the pre and post-scores in the control group using Wilcoxon test. 

 Comparison of the pre and post-scores in the NFT group using Wilcoxon test. 

Regarding EEG data, changes in the 3 Hz bands centered at 12, 18, and 21 Hz were assessed. 

Since intragroup data did not meet parametric assumptions, RP values at these frequency bands 

were compared using boxplots and Wilcoxon statistical test. 

3. Results 

3.1. Luria results 

The main findings of the analysis of Luria-AND test results are summarized in table 1. It 

shows several aspects that are important to note: 

 The analysis of intergroup pre-scores suggests that both groups (NFT and control groups) 

presented similar distribution for each neuropsychological feature: there were no 

significant differences (p<0.01) between control and NFT groups before starting the NFT 

protocol. 

 In regard to the intergroup post-scores, there are significant differences in the score 

distribution between both groups for three features: visual perception (p=0.00017), 

immediate memory (p=0.00058) and conceptual activity (p=0.00651). 

 Changes () in pre- and post-scores between both groups were assessed and four out of 

them were significant: visual perception (p=0.00013), receptive speech (p=0.00288), 

immediate memory (p=0.00005), and thematic draws (p=0.00260). 
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 About intragroup analysis, no statistical significant differences between pre and post Luria-

AND scores were found for the control group. 

 Increments in all cognitive features, except for attentional control, were significant for the 

NFT group (p<0.01). 

In order to facilitate the perception of the changes in Luria-AND scores, the average among 

all subjects of pre and post-scores for both groups are shown in figure 4. While scores for the 

control group almost remained unchanged, scores for the NFT group increased after performing 

the NFT protocol. 

With the purpose of measuring global changes in all neuropsychological functions, scores of 

all Luria-AND tests were normalized between 0 and 1. Then, average of the scores of all 

cognitive functions was calculated obtaining the SNV. Histograms were constructed from these 

values for the post-test in the control and the NFT groups, which are shown in figure 5. Then, 

the corresponding curve approximation for each histogram was estimated by means of 

polynomial fitting with least squares error of fifth order. While the median of the histogram for 

the control group did not almost shift to larger scores (from 0.598 to 0.615), the median for the 

NFT group moved rightward from 0.628 to 0.706, reflecting the global increase in the 

neurocognitive scores. 

3.2. EEG results 

EEG signals were processed in order to obtain RP in the 3 Hz bands centered at 12, 18, and 

21 Hz. Thus, 264 RP values were obtained for the pre-NFT (11 subjects × 8 channels × 3 

spectral bands) and the same for the post-NFT. Figure 6 shows the differences in RP between 

the pre-NFT and post-NFT. When the difference is positive, it means that RP in the post-NFT 

for that channel is larger than RP in the pre-NFT. All differences were positive in this study. 

Thus, RP increased for each of the channels. Particularly, channels marked with one asterisk (*) 

imply p<0.05, while two asterisks (**) mean p<0.01. In general, frontal and temporal regions 

showed the largest increases. Furthermore, the RP average from each channel of all participants 

in NFT-session was compared with the same measure in the post-NFT for 12, 18, and 21 Hz.  

Table 1. Statistics associated to Mann-Whitney U-test (intergroup analysis) and Wilcoxon signed-rank test 
(intragroup analysis) for the scores of the Luria tests for each neuropsicological feature. The significant values (p-
value < 0.01) have been highlighted. 

Neuropsychological 
function 

Feature 
NFT group vs. 

Control group 

(Pre vs. Pre) 

NFT group vs. 

Control group 

(Post vs. Post) 

Δ Control group 

vs. Δ NFT group 

Δ Control group 

(Pre vs. Post) 

Δ NFT group 

(Pre vs. Post) 

Visuospatial 
Visual perception 0.34578 0.00017 0.00013 0.04241 0.00000 

Spatial orientation 0.82959 0.47123 0.12854 0.01121 0.00466 

Oral language 
Receptive speech 0.63202 0.12163 0.00288 0.10427 0.00000 

Expressive speech 0.24178 0.01025 0.02275 0.07707 0.00016 

Memory 
Immediate memory 0.18705 0.00058 0.00005 0.36352 0.00000 

Logical memory 0.74545 0.25419 0.06112 0.04240 0.00068 

Intellectual 
Thematic draws 0.21621 0.01661 0.00260 0.65469 0.00001 

Conceptual activity 0.05581 0.00651 0.07305 0.06688 0.00015 

Attention Attentional control 0.36600 0.16619 0.98565 0.13780 0.13714 
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Fig. 4 Radial graphics for the control group (a) and the NFT group (b) of the scores of Luria-

AND test. Scores for the control group did not change, while scores of all neurocognitive 

functions increased after NFT for the other group 

 

Fig. 5 SNV for the control group in the pre-test (a), for NFT group in pre-test (b), for control 

group in the post-test (c) and for NFT group in the post-test (d). Scores were increased (moved 

rightward) when users performed the NFT protocol 
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These changes were significant for frequency bands centered in 18 Hz (p=0.00062) and in 21 

Hz (p=0.00186), but not for the band centered in 12 Hz (p=0.23450). However, five out of the 

eight channels achieved significant differences in the intrachannel comparison for frequency 

band centered in 12 Hz, as it is shown in figure 6. 

4. Discussion 

In the present study, a motor imagery-based BCI was used as a strategy to slow down the 

effect of aging. To achieve this goal, we implemented a MI-BCI application to carry out NFT 

tasks. Methodology assessment was performed looking for significant differences in Luria-AND 

test and RP. We observed that, regarding intergroup comparisons in table 1, no significant 

differences were found between the control group and the NFT group of Luria-AND values 

during the pre-test. It indicates that the score distributions of the groups are similar before NFT. 

This finding is relevant because it provides greater value to intergroup comparisons after 

training. In this regard, the intergroup evaluation of post-scores together with the comparison of 

the increments between pre and post scores reveals significant differences in most of the 

cognitive functions after performing NFT. With regard to intragroup scores, our results show 

that there were not significant changes for any of the cognitive functions for the control group. 

On the other hand, in the NFT group, statistical significant differences (p<0.01) were found in 

all cognitive functions except for the attentional control one. Hence, according to these 

evidences, cognitive improvements in the visuospatial, language, memory, and intellectual 

functions could be linked with NFT. 

Previous researches focusing on the alpha frequency (8-13 Hz) suggest that this brain 

activity plays a role in intelligence and memory [5, 14, 27]. Furthermore, changes in alpha 

 

Fig. 6 Boxplots of RP of the differences (post-pre) for spectral band centered in 12 Hz (a), 18 Hz 

(b) and 21 Hz (c). Significant differences with p<0.05 are marked with one asterisk while 

significant differences with p<0.01 are marked with two asterisk 
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rhythm symmetry during learning seem to be related with visuospatial cognitive function [7]. 

Nevertheless, Bauer did not found significant enhancement in these cognitive functions after the 

training of 13 participants [5]. There are several possibilities to explain the fact that NFT of 

alpha band do not show discernible effect on short-term memory performance [40]: the limited 

number of NFT sessions and the need of separating alpha into distinct components (e.g. in upper 

alpha). Vernon [40] suggested that lower alpha frequencies are associated with attentional 

demands, while the upper alpha frequency is related to semantic memory [40]. This could 

explain why, in the present study, improvements in Luria-AND scores for the memory and 

intellectual functions were found but not in attentional control, since only upper alpha was 

trained. Furthermore, our results suggest that a reduced number of sessions (5 NFT sessions) 

may be enough to appreciate cognitive changes in memory and visuospatial functions. This may 

be due to the use of our novel motor imagery-based BCI application for the performing of the 

NFT protocol. 

Regarding beta frequency band (13-30 Hz), different studies reported correlation between 

this frequency range and cognitive functions, such as language and memory [4, 26, 42]. 

Specifically, these studies showed a relationship between beta1 (13-18 Hz) and memory, while 

language processing was related to beta frequency band in two aspects [42]: (i) semantic 

features of word categories and lexical-semantic and (ii) complex linguistic sub-processes, such 

as parsing as well as syntactic and semantic binding operations. With the aim of measuring 

potential changes in language and memory, we focus on the NFT protocol to train beta activity. 

Thus, frequency bands of 3 Hz centered in 18 and 21 Hz were included in our NFT. Results 

showed clear evidences of changes in both cognitive functions despite the reduced number of 

training sessions. 

These results were reinforced with quantitative analysis of EEG changes in the trained 

frequency bands. In this way, it is more plausible to associate cognitive changes with NFT, 

since otherwise, it could be due to other external unmeasured causes [40]. In the present study, 

significant differences in all channels except in C4 were found in some of the trained 

frequencies. Nevertheless, regarding C4, most of the subjects increased their RP in all frequency 

bands under study. 

Two of the most widely used methods to stimulate certain frequencies are evoking emotions 

[47] or presenting emotional faces [21]. Pineda et al. [33] presented MI-BCI as an alternative, 

which is relatively simple to perform by participants. They develop a BCI tool with a visual 

feedback where five participants learned to control mu rhythms by means of videogames. In 

fact, motor imagery has shown to be useful to control sensorimotor rhythms, often with a visual 

feedback and sometimes with audio feedback [30]. However, to the best of our knowledge, this 

is the first study that used MI-BCI to evaluate neurological changes due to NFT in elderly 

people. BCIs offer a user-friendly design of interfaces so that participants are more motivated to 
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perform the training. Furthermore, it appears to be an efficient strategy, since scores in several 

cognitive functions and the spectral power in the corresponding trained frequency bands showed 

statistical significant increments. These results were achieved carrying out only five BCI-based 

NFT sessions. Therefore, the proposed method could be an alternative to traditional NFT 

approaches. 

The present study has some limitations that must be noted. Firstly, it would be desirable to 

extend the population under study for statistical reasons, in particular population which 

performs 2-min recordings with eyes closed on resting-state conditions. Therefore, additional 

studies are needed to support such evidences. Nevertheless, the total population (63 

participants) is larger than similar studies [1, 33]. The second limitation is the study of the 

possible long-term effects of the training. A follow up of the cognitive improvements is 

necessary, especially due to the specific population involved in this study (elderly people). One 

could ascertain whether our NFT protocol served as enforcement for the elderly brain fitness or 

just a temporary improvement was found. Thus, a follow up of the population involved in the 

study is necessary in order to assess the long term cognitive improvements. Future works may 

be focused to resolve this lack for the particular population of elderly people. 

 

5. Conclusions 

This study presents promising results about the usefulness of BCI-based NFT to increase 

four neuropsychological features that could help in the enhancement of the brain plasticity, 

which is one of the most the prominent concerns in the elderly [19]. A software application 

controlled by means of motor imagery-based BCI allows interactive and attractive training, 

obtaining significant EEG and cognitive changes after only five sessions. According to the 

results, MI-BCI may improve four cognitive functions in elderly people, such as visuospatial, 

language, memory, and intellectual. This study enforces previous findings, while it opens the 

possibility of designing new NFT based on motor imagery strategies. 
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