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Biomarkers of neurodegeneration and neuronal injury have the potential to improve

diagnostic accuracy, disease monitoring, prognosis, and measure treatment efficacy.

Neurofilament proteins (NfPs) are well suited as biomarkers in these contexts because

they are major neuron-specific components that maintain structural integrity and are

sensitive to neurodegeneration and neuronal injury across a wide range of neurologic

diseases. Low levels of NfPs are constantly released from neurons into the extracellular

space and ultimately reach the cerebrospinal fluid (CSF) and blood under physiological

conditions throughout normal brain development, maturation, and aging. NfP levels in

CSF and blood rise above normal in response to neuronal injury and neurodegeneration

independently of cause. NfPs in CSF measured by lumbar puncture are about 40-fold

more concentrated than in blood in healthy individuals. New ultra-sensitive methods now

allow minimally invasive measurement of these low levels of NfPs in serum or plasma

to track disease onset and progression in neurological disorders or nervous system

injury and assess responses to therapeutic interventions. Any of the five Nf subunits –

neurofilament light chain (NfL), neurofilament medium chain (NfM), neurofilament heavy

chain (NfH), alpha-internexin (INA) and peripherin (PRPH) may be altered in a given

neuropathological condition. In familial and sporadic Alzheimer’s disease (AD), plasma

NfL levels may rise as early as 22 years before clinical onset in familial AD and 10 years

before sporadic AD. The major determinants of elevated levels of NfPs and degradation

fragments in CSF and blood are the magnitude of damaged or degenerating axons of

fiber tracks, the affected axon caliber sizes and the rate of release of NfP and fragments

at different stages of a given neurological disease or condition directly or indirectly

affecting central nervous system (CNS) and/or peripheral nervous system (PNS). NfPs

are rapidly emerging as transformative blood biomarkers in neurology providing novel
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insights into a wide range of neurological diseases and advancing clinical trials. Here we

summarize the current understanding of intracellular NfP physiology, pathophysiology

and extracellular kinetics of NfPs in biofluids and review the value and limitations of NfPs

and degradation fragments as biomarkers of neurodegeneration and neuronal injury.

Keywords: neurofilament, NFL, pNfH, biomarker, CSF, blood, neurodegeneration, neuronal injury

INTRODUCTION

It is widely accepted that the pathophysiology underlying
many neurodegenerative disorders, such as Alzheimer’s disease
(AD), originates many years prior to clinical symptoms.
AD evolves through three stages – an early, preclinical
stage with no detectable symptoms; a middle stage of mild
cognitive impairment; and a late stage marked by symptoms
of dementia. The lack of success in identifying treatments that
cure AD or alter its progression has been attributed in part
to the implementation of candidate treatments at a disease
stage that is too advanced to blunt the disease triggering
mechanism(s) or halt early progression before momentum builds
to irreversible levels. There is a growing need for reliable non-
invasive blood-based biomarkers for AD that can facilitate
diagnosis, predict disease progression, and provide evidence of
disease modification.

Neurofilament proteins (NfPs) appeared in the last few
years as the most promising blood biomarkers of neuroaxonal
integrity or damage. Nfs are classified as a type IV class of
intermediate filaments (IFs) specific to neurons (Yuan et al.,
2017). They are protein polymers measuring 10 nm in diameter
and many micrometers in length. Together with microtubules
(25 nm) and microfilaments (7 nm), they form the neuronal
cytoskeleton. Much interest in the field has been recently
focused on the detection of NfPs and degradation fragments
released from neurons into blood as surrogate markers of
neuronal damage in neuropathic states. The rationale for
NfPs and fragments as biomarkers of neuronal damage is
that they are not only responsive to neuronal injury but
are also prominent components of abnormal intraneuronal
aggregates in varied neurodegenerative diseases, including
AD, dementia with Lewy bodies (DLB), Parkinson’s disease
(PD), frontotemporal dementia (FTD), amyotrophic lateral
sclerosis (ALS), Charcot-Marie-Tooth disease (CMT), multiple
sclerosis (MS), giant axonal neuropathy (GAN) and toxic
neuropathies. Although amyloid-beta and tau proteins are
widely regarded as useful diagnostic biomarkers of AD, tau
proteins increase only in specific neurodegenerative diseases
such as AD and unaltered in other neurological diseases that
are clearly neurodegenerative, such as tau-negative FTD caused
by granulin or C9orf72 mutations (Foiani et al., 2018) where,
by contrast, CSF and serum neurofilament light chain (NfL)
fragment levels are more than 8 times higher in patients than
in pre-symptomatic carriers or healthy controls (Meeter et al.,
2016). Furthermore, in Huntington disease (HD), CSF NfL
fragment levels correlate more strongly with disease progression
than do CSF tau levels (Niemela et al., 2017). Moreover,
studies using a stable isotope labeling method to investigate

tau metabolism demonstrate that the production rate of tau
positively correlates with the amount of amyloid plaques,
suggesting that increased tau levels in AD could be due to
elevated transcription, synthesis or secretion from neurons in
response to amyloid-beta pathology rather than reflect actual
neurodegeneration (Sato et al., 2018). Thus, as general neuronal
integrity markers, NfPs and their fragments may be more
sensitive to neurodegeneration than is tau.

In individuals with inherited forms of AD, levels of NfL
fragments in blood may be altered 22 years before symptoms
begin (Quiroz et al., 2020). NfL responds more sensitively to
subclinical cognitive decline than amyloid-beta or tau (Bos et al.,
2019; Kern et al., 2019; Merluzzi et al., 2019). Moreover, mean
NfL fragment plasma levels increased 3.4 times faster in subjects
who developed AD compared to those who remained dementia-
free in a trajectory analysis of 4444 non-demented participants
in the Rotterdam study at baseline and up to 14 years follow-
up. In this review, we summarize the current understanding
of NfPs and fragments as biomarkers in neurodegeneration
and neurological injuries and draw attention to important
unanswered questions.

PROPERTIES OF NEUROFILAMENTS
RELEVANT TO THEIR USE AS
BIOMARKERS

The Physiological Basis of Neurofilament
Proteins as Biomarkers of Neuronal
Structural Integrity
For a blood-based biomarker to reflect the structural integrity of
neurons in human brains, it has to be a structural constituent
of the neuron, impacted by the neuropathological process, and
easily detectable in blood. The composition of intermediate
filament subunits in neurons varies depending on the nerve cell
type and stage of development (Figure 1). At the earliest stage of
embryonic development, neural stem cells express nestin (NES), a
type VI intermediate filament protein that is down-regulated after
differentiation and replaced by cell type-specific intermediate
filament proteins (Lendahl et al., 1990). Vimentin (VIM), a type
III intermediate filament protein of mesenchymal cells, is also
transiently co-expressed with nestin in precursor nerve cells
(Yabe et al., 2003). VIM is gradually replaced by peripherin
(PRPH), alpha-internexin (INA), neurofilament medium chain
(NfM), and NfL during embryonic development. Neurofilament
heavy chain (NfH) chain expression is low in developing neurons
and increases postnatally (Shaw and Weber, 1982; Pachter and
Liem, 1984).
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FIGURE 1 | Structure, assembly and cytoarchitecture of Nfs. (A) Domain structure of Nfs in precursor and mature neurons. Precursor neurons contain nestin and

vimentin while mature neurons have NfPs consisting of NfL, NfM, NfH, INA, and/or PRPH. All Nf subunits include a conserved alpha-helical rod domain,

amino-terminal globular head regions and carboxy-terminal tail domains. Phosphorylation and O-linked glycosylation sites are shown. (B) Nf assembly. Nf monomers

form coiled-coil heterodimers, then tetramers and unit-length filaments and gradual end-to-end annealing of which results in filament elongation to form mature Nfs

with a diameter of about 10 nm after radial compaction. (C) Moderate number of Nfs in corpus callosum axons vs. large number of Nfs in sciatic axons in mice.

(D) Ultrastructural representations of Nfs from mouse optic nerves in cross and longitudinal sections.

Mature mammalian neurons usually express five different
NfPs: NfL, NfM and NfH chains, as well as INA and PRPH. In
mature neurons in the CNS, Nfs are generally composed of NfL,
NfM, NfH, and INA (Yuan et al., 2006), whereas, in the peripheral
nervous system, they mainly consist of NfL, NfM, NfH and PRPH
(Yuan et al., 2012). Like all IF proteins, NfPs all share a common
alpha-helical rod domain that assembles to form a filament
backbone, flanked by variable amino and carboxy-terminal
domains that regulate polymer assembly and interactions. NF
heteropolymer assembly starts with the formation of NfP dimers
and antiparallel aggregation of these dimers leads to formation of
tetramers which are thought to be the basic subunit of NFs during
assembly (Mucke et al., 2018) and usually consist of NfL and one
or more of the other Nf proteins. NfPs of mature neurons in vivo
are mainly stable polymers and the pool of soluble NfP is small.

Neurofilament proteins are mainly synthesized in the cell
body and transported as hetero-oligomeric assemblies and short
filaments into axons and dendrites (Pachter and Liem, 1984; Yuan
et al., 2003, 2009; Yan and Brown, 2005) to establish a highly
stable regionally specialized NF network (Nixon and Logvinenko,
1986; Nixon et al., 1994; Sanchez et al., 1996). Nf mRNAs are also
transported out of cell bodies into dendrites, spines, and axons

and localized NfP synthesis in these cytoplasmic extensions is
used to spatially and temporally regulate their protein content
in these subcellular domains (Alami et al., 2014). NfPs can be
proteolyzed by calpains, the proteasome, and autophagy into
many smaller degradation products (Yuan et al., 2017).

The Neuropathological Basis for
Neurofilament Proteins as Biomarkers
Biochemical, genetic, and animal model evidence implicates
NfPs as a pathogenic culprit playing primary or secondary
roles in nervous system diseases. NfPs are involved in
the pathophysiological processes underlying many states
of neurological injury and neurodegeneration, reflecting
changes in structural integrity and abnormal accumulation or
maldistribution of NfPs (Hamberger et al., 2003).

Animal Studies

Proper levels of NfPs are important for the normal functions
of nervous systems in animals. Absence of NfL from neurons
reduces axon diameters and causes sensorimotor and cognitive
impairments in quails (Yamasaki et al., 1991) andmice (Zhu et al.,
1997; Yuan et al., 2018). Single deletion of NfM, NfH or PRPH
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in mice can lead to age-related atrophy of motor axons (Elder
et al., 1999), decrease in conduction velocity (Kriz et al., 2000) and
reduced numbers of unmyelinated sensory axons (Lariviere et al.,
2002), respectively. Deletion of INA in the absence of NfL (Yuan
et al., 2003) or both NfL and NfH results in reduced transport
of NfM into axons (Yuan et al., 2015b). Overexpression of NfL,
NfM, NfH or PRPH in animals can produce neuropathology of
motor neuron diseases (Cote et al., 1993; Xu et al., 1993; Beaulieu
et al., 1999; Gama Sosa et al., 2003) while overexpression of
INA leads to motor coordination deficits (Ching et al., 1999). In
addition to the importance of NfP levels, expression of an NfL
mutation in mice which causes human disease (Zuchner et al.,
2004; Filali et al., 2011; Liu et al., 2011; Shen et al., 2011; Pisciotta
et al., 2015) also leads to motor neuropathology (Lee et al., 1994)
and phenotype of CMT (Filali et al., 2011) probably due to
disruption of Nf assembly (Perez-Olle et al., 2002; Tradewell et al.,
2009) and transport (Brownlees et al., 2002), and abnormal Nf
accumulation (Zhai et al., 2007).

Human Studies

Clinical studies demonstrate presence, normal structure and
assembled network of NfPs are critical for human health. NfL
loss of function mutations in cases of human neuropathy which
causemarkedly lowered NfL protein levels reduce axon diameters
and cause sensorimotor and cognitive impairments in humans
(Yum et al., 2009; Sainio et al., 2018). NfL and NfH mutations
can cause Nf accumulation in CMT type 2E/1F/CMTDIG (Lerat
et al., 2019) and CMT2CC (Ikenberg et al., 2019). In AD, NfPs
are integral components of neurofibrillary tangles (Rudrabhatla
et al., 2011; Figure 2) and NfH and NfM are 4–8-fold more
phosphorylated than normal (Rudrabhatla et al., 2010). In PD,
Lewy bodies contain NfPs (Goldman et al., 1983) and a cage-
like Nf structure encapsulates Lewy bodies (Moors et al., 2019).
In Nf inclusion disease, a form of FTD, prominent aggregations
of NfPs, especially INA, are the neuropathologic hallmark of the
condition (Cairns et al., 2004). Abnormal NfP accumulations
are also a hallmark pathologic feature of ALS (Cleveland and
Rothstein, 2001). In MS, increased expression of phosphorylated
NfH (pNfH) is observed in spinal motor neuron perikarya
(Muller-Wielsch et al., 2017) and Nfs accumulate excessively in
axons in GAN (Bomont et al., 2000).

Neurofilament Proteins Released From
Neurons Gain Access to Blood Under
Physiological and Pathological
Conditions
Recent Technology Breakthroughs for the Reliable

Detection of Neurofilament Proteins in the Peripheral

Circulation

Low levels of NfPs are constantly released from neurons into CSF
and blood under physiological conditions and rise above normal
in pathological states.

Rosengren et al. (1996) first tested NfPs as possible
biomarkers using enzyme-linked immunosorbent assay (ELISA)
with polyclonal rabbit antisera specific against the individual
NfPs and showed that CSF NfL levels were increased in patients

with ALS and AD compared to controls. However, the sensitivity
of ELISA and the later developed electrochemiluminescence
(ECL) immunoassay does not allow small, disease-related
changes to be reliably detected in peripheral circulation. In 2010,
single-molecule enzyme-linked immunosorbent assay (Simoa)
was initially described (Rissin et al., 2010) which later enabled
reliable quantification of NfL in serum or plasma samples
(Gisslen et al., 2016) using NfL-specific monoclonal antibodies
(mAb47:3) (Norgren et al., 2002). More recently, Meso Scale
Discovery, immunomagnetic reduction technologies and the
Ella platform based on microfluidic channels have also been
developed to detect low NfP levels in blood (Liu H.C. et al., 2020;
Lombardi et al., 2020; Gauthier et al., 2021).

Neurofilament Proteins in Exosomes

The fact that plasma NfL levels are enriched in neuron-derived
exosomes compared to total exosomes isolated from blood
in healthy individuals (Sun et al., 2017) suggests the NfPs
are released from neurons at least in the form of exosomes
(Figure 3). Moreover, plasma neuron-derived exosomes contain
about 74-fold more NfL than plasma astrocyte-derived exosomes,
which have only negligible amounts (Winston et al., 2019).
NfP-containing exosomes or NfPs or degradation fragments
released into the extracellular space may be eliminated from
the CNS along intramural peri-arterial drainage pathway
(Engelhardt et al., 2017).

Neurofilament Protein Forms in Peripheral Circulation

Identity of the NfL forms in plasma exosomes is still unclear but
a 22 kDa NfL degradation fragment has been revealed with an
anti-NfL antibody and shown to be increased in ALS patients
(Lombardi et al., 2020). Also identified are a 30 kDa fragment
of NfL in Nf-containing aggregates from human blood (Adiutori
et al., 2018) and a 10 kDa fragment of NfL in mouse CSF.
Since no full length NfL has been ever reported in CSF or blood
(Brureau et al., 2017), the detected Simoa signal is, therefore,
NfL immunoreactivity or NfL breakdown product. By contrast,
full length (200 kDa) or oligomeric NfH were predominant in
CSF and blood (Petzold et al., 2003; Shaw et al., 2005; Lewis
et al., 2008). Recent studies also suggest full length (150 kDa)
or trimeric NfM (450 kDa) in blood (Haggmark et al., 2014).
A comprehensive list of widely used capture and detection
antibodies to NfPs in ELISA is shown in Table 1.

Neurofilament Light Chain Levels in Normal

Individuals

Intracellular NfPs have long half-lives ranging from 55 days in
axons (Nixon and Logvinenko, 1986; Yuan et al., 2015a) to 64–
72 days at synapses (Heo et al., 2018), indicating their slow
turnover rates inside neuronal compartments. Upon release into
the extracellular space, serum or plasma NfL levels in healthy
individuals are about 2.5% of the levels in CSF and correlate
highly with the 40-fold higher NfL concentrations in CSF with
typical R values ranging from 0.6 to 0.7 (Disanto et al., 2017;
Pereira et al., 2017; Khalil et al., 2020; Alagaratnam et al.,
2021), suggesting that most of the NfL signal in blood is CNS-
derived and could be used as a proxy measure for CSF NfL
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FIGURE 2 | Pathological basis of NfPs as biomarkers in neurologic diseases and neuronal injury. (A) NFTs in AD brain are stained with pNfH with mouse monoclonal

phospho-NfH antibody RT97 under the condition it does not cross-react with phosphor-tau (adapted from Rudrabhatla et al., 2010). (B) Cytoplasmic inclusions in

NIFID brain, a type of FTD, are stained with antibody to alpha-internexin (adapted from Cairns et al., 2004). (C) Cytoplasmic Lewy bodies in PD brain are stained with

antibody to NfH (adapted from Goldman et al., 1983). (D) Masses of Nf swelling in ALS spinal cord are stained with Silver (adapted from Cleveland and Rothstein,

2001). (E) Anterior horn cell perikarya in MS spinal cord are prominently stained with antibody to pNfH (SMI31) whereas healthy controls remain almost non-reactive

(F) (adapted from Muller-Wielsch et al., 2017). Ischemia-affected areas in mouse brain 24 h after experimental stroke induction are demarcated by an increase of NfL

degradation fragments immunoreactivity (G), while the immunosignals for NfH (H), alpha-internexin (INA) (I), and NfM (J) are decreased (adapted from

Mages et al., 2018).

levels (Gisslen et al., 2016). The NfL levels in blood are most
often tested in serum and less frequently in EDTA-plasma with
serum levels slightly higher than in plasma (Hviid et al., 2020b).
Either specimen type is acceptable, however, when used in either
research or clinical setting a single specimen should be selected
for use. Plasma NfL levels measured in the morning may be more
than 10% higher than those measured in the evening, suggesting
that synaptic remodeling during sleep might alter NfL kinetics
(Benedict et al., 2020; Thebault et al., 2021). CSF NfL levels
in healthy females are about 20% lower than levels in healthy
males (Bridel et al., 2019) although the reverse was true in an
ALS cohort (Thouvenot et al., 2020). Concentrations of CSF and
serum NfL increase with age in healthy controls (Yilmaz et al.,
2017) with an increase in adult control serum NfL levels of 2.2%
per year of age (Disanto et al., 2017; Barro et al., 2018). These
increases accompany hippocampal atrophy in cognitively healthy
older adults, which has suggested possible AD-independent, age-
expected hippocampal decline (Idland et al., 2017). However,
younger children have higher serum NfL levels than older
children reaching the lowest level between the age of 10 and
15 years, then increasing in a linear fashion until the age of
60 years and accelerating non-linearly afterward (Evers et al.,
2020; Khalil et al., 2020; Reinert et al., 2020). There are various
proposed bases for serum NfL elevation in aging, including
subclinical senescence with greater neuronal apoptosis (Khalil
et al., 2020) and increased disruption of blood-brain barrier
(Sweeney et al., 2018). Levels of serumNfLmay also be affected by
race, systolic blood pressure, decreased renal function, glycemic

control measured by hemoglobin A1C (Korley et al., 2019) and
pregnancy (Cuello et al., 2019). The multiplicity of influences
on these levels prompts caution in controlling stringently for
confounding variables in clinical studies.

Contribution of Neurofilament Proteins or Fragments

From Different Neuronal Compartments

Besides calpains, the proteasome and autophagy (Smerjac et al.,
2018), other non-specific proteases, including cathepsin D
(Nixon and Marotta, 1984) and caspases 6 and 8 (Shabanzadeh
et al., 2015) can also trigger Nf turnover and generate Nf peptides.
Nf assembly confers significant proteolytic resistance to Nf
subunits: deletion of three Nf subunits leads to degradation of the
fourth subunit (Yuan et al., 2015b). Phosphorylation also protects
Nfs against proteolysis (Goldstein et al., 1987; Pant, 1988; Rao
et al., 2012). NfPs or their degradation fragments are released into
biofluids following any damage to nervous system. Therefore,
they are neither able to determine brain region specific alterations
nor differentiate disease specific pathophysiological process.

Mechanisms for Neurofilament Protein and Fragment

Release From Neurons

The exact mechanisms governing NfP release into biofluid
are not fully understood. Release of NfPs or fragments from
neurons may be a direct passive consequence of the loss of
membrane integrity or may follow the known pathways for active
secretion of other neuronal peptides and proteins. Intracellular
endosomal organelles known as multivesicular bodies may play
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FIGURE 3 | 22 kD fragment of NfL and full length NfH in blood. (A) Low levels of NfPs in blood can be detected with single molecule array technology (Simoa/digital

ELISA). A 22 kDa degradation fragment of NfL (B, adapted from Lombardi et al., 2020) and full length NfH (adapted from Adiutori et al., 2018) were detected in

blood (C). (D) Isolated exosomes from blood (adapted from Zhang et al., 2020). (E) NfL signal is enriched in neuron-derived exosomes compared to total or

astrocyte-derived exosomes in blood (adapted from Sun et al., 2017). *** Indicates highly significant.

critical roles in the release of peptides (Von Bartheld and
Altick, 2011). This may happen though “back-fusion” events
and budding from the plasma membrane to generate micro-
vesicles (Kleijmeer et al., 2001) or through release of smaller
endosomally derived exosomes (Lachenal et al., 2011). Levels
of NfL signals in isolated neuron-derived exosomes accounting
for a small percentage of total NfL concentration in plasma
suggest that active secretion is at least one of the mechanisms
for NfP release from neurons. After release from neurons,
some NfPs and fragments can be degraded and cleared by
varied extracellular proteinases andmicroglia and these processes
may even further generate the fragments from a larger form.
Pathways for degradation could be differentially critical in the
context of healthy, injured or chronically damaged neurons.
Expression of NfP genes is not elevated in ALS (Wong et al.,
2000) and neither NfP gene (Robinson et al., 1994) nor protein
expression (Ashton et al., 2019) is elevated in AD, suggesting that

the increased NfP signal in biofluids is not due to a compensatory
overproduction.

Major Determinants of Neurofilament Protein and

Fragment Levels in Cerebrospinal Fluid and Blood

Studies have linked NfP levels in blood to changes in white
matter (Moore et al., 2018; Spotorno et al., 2020; Maggi et al.,
2021), gray matter (Jakimovski et al., 2019a; Kang et al., 2020),
or both (Johnson et al., 2018), yielding a confusing picture
of what variables dictate the highly variable levels found in
different disorders. Some likely determinants of blood/CSF levels,
however, include the composition of the diseased or injured area
(relative abundance of large caliber axons that have high Nf-
content) and size of the damaged region. NfL and NfH content
in spinal cord is several fold higher than in corpus callosum
(Yuan et al., 2012) and at least 10-fold higher than in cortex
(Shaw et al., 2005). Accordingly, a spinal cord injury released
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TABLE 1 | NfP and fragment measurement as biomarkers.

Capture antibodies Detection antibodies References

ELISA for measuring Nf subunits as biomarkers

NfL Chicken polyclonal anti-NfL Rabbit polyclonal anti-NfL Rosengren et al., 1996

NfL mAb 47:3, core domain (aa92-396) NfL mAb 2:1 Norgren et al., 2003

Polyclonal antibody R61d to NfL, NfM and NfH NfL mAb NR4 Hu et al., 2002

NfL 21 mAb, core domain (aa93-396) NfL 23 mAb Gaetani et al., 2018

NfH SMI31 mAb anti-NfH and NfM Anti-NfH NA211 Hoglund et al., 2012

SMI34 mAb anti-NfH Rabbit polyclonal anti-NfH Zucchi et al., 2018

SMI35 mAb anti-NfH Chicken polyclonal anti-NfH Petzold et al., 2003

Chicken polyclonal anti-NfH Rabbit polyclonal anti-NfH Shaw et al., 2005

AH1 mAb anti-NfH NAP4 mAb anti-NfH Boylan et al., 2009

Polyclonal antibody R61d to NfL, NfM and NfH SMI31, SMI32, SMI33 and SMI34 Hu et al., 2002

pNfH mAb 9C9 NfH polyclonal antibody Koel-Simmelink et al., 2014

NfM Polyclonal antibody R61d to NfL, NfM and NfH SMI31, SMI32 and SMI33 Hu et al., 2002

Monoclonal anti-NfM Monoclonal anti-NfM Martinez-Morillo et al., 2015

Polyclonal anti-NfM Polyclonal anti-NfM Zucchi et al., 2018

PRPH Rabbit polyclonal anti-PRPH Chicken polyclonal anti-PRPH Finderlater, 2010

Unknown Unknown Sabbatini et al., 2021

Proteomics for measuring NF subunits as biomarkers

NfM Haggmark et al., 2014;

Martinez-Morillo et al., 2014;

Remnestal et al., 2020

INA Martinez-Morillo et al., 2014

PRPH Liang et al., 2019

about 12-fold more NfH into blood than a brain injury of
comparable size (Shaw et al., 2005). Demyelinating damage to
CNS axons associated with clinical or MRI (magnetic resonance
imaging) disease activity in MS can cause a spike of more than
20-fold in the levels of serum NfL which may be lowered with
effective treatment (Akgun et al., 2019). Only about 20% of
the NfL fragment present in blood comes from neuron-derived
exosomes (Altick et al., 2009; Winston et al., 2019; Guedes et al.,
2020) so the extent of loss of membrane integrity affecting NF-
rich axons, or even to a lesser extent synapses, is likely the major
determinant of NfP and fragment levels in CSF and blood. In
a limited region of involvement as in the substantia nigra pars
compacta in PD, NfL fragment level increases in CSF and serum
are modest. By contrast, in FTD/ALS, widespread degeneration
of large caliber Nf-rich axonal fibers in the spinal cord and brain
results in one of the highest elevations of NfP and fragment
blood levels among neurodegenerative diseases. More studies
are warranted to determine the relative gray and white matter
contributions to NfP and fragment levels in biofluids at different
stage of a specific disease.

Mechanisms of Neurofilament Protein or Peptide

Trafficking Between Brain and Blood

Since the main source of serum NfPs is the CNS, it is not fully
clear how NfPs traffic between parenchymal, CSF and blood
compartments. NfPs or their degradation fragments could also
follow the apparent general pathways by which molecules such
as amyloid-beta peptides pass from the interstitial fluid (ISF) of
the brain into CSF and blood. Soluble metabolites or peptides
from cells in most organ are absorbed directly into the blood or

drain via lymphatic vessels to regional lymph nodes (Engelhardt
et al., 2017). Soluble tracers such as serum albumin injected
into ISF of the brain drain to cervical lymph nodes along the
walls of cerebral arteries (Szentistvanyi et al., 1984) through
intramural peri-arterial drainage pathway (IPAD) (Albargothy
et al., 2018) including initially along basement membranes that
surround capillaries and then along the basement membranes
between smooth muscle cells in the tunica media of intracerebral
and leptomeningeal arteries (Carare et al., 2008). About 85% of
a tracer injected into the cerebral hemispheres passes to cervical
lymph nodes via IPAD (Szentistvanyi et al., 1984) while only 10–
15% passes into the CSF (Szentistvanyi et al., 1984; McIntee et al.,
2016). Future studies need to measure the proportion of NfPs
and degradation fragments released from neurons that reaches
the CSF. Drainage of CSF into lymphatic vessels of the nasal
mucosa via the cribriform plate appears to be a major lymphatic
drainage pathway (Kida et al., 1993; De Leon et al., 2017) andmay
also include dural lymphatics (Aspelund et al., 2015). The glial-
lymphatic or glymphatic pathway is recently identified in rodent
brain, which sub-serves the flow of CSF into the brain along
perivascular spaces and then into the brain interstitium facilitated
by aquoporin-4 water channels (Rasmussen et al., 2018). This
pathway then directs flow toward the venous perivascular and
perineuronal spaces, ultimately clearing solutes from neuropil
into meningeal and cervical lymphatic drainage vessels.

Dynamics of Extracellular Neurofilament Proteins and

Fragments

In acute neurological diseases with a known timepoint for
neuronal or axonal damage such as traumatic brain injury (TBI)
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(Bergman et al., 2016; Shahim et al., 2017), stroke (Gattringer
et al., 2017; Tiedt et al., 2018) and MS (Rosso et al., 2020), CSF
and serum NfP signals increased over a few days and remained
elevated over many months. It may be difficult to investigate the
dynamics of CSF and serum NfPs in chronic neurodegenerative
diseases such as AD and PD without treatments that can cure
them. Because it is suggested that serum NfL fragments may be
cleared by the kidneys, renal function ought to be considered
when interpreting serum NfL levels (Korley et al., 2019; Van Der
Plas et al., 2021).

Neurofilament Proteins as Biomarkers in
Animal Models
Neurofilament Proteins as Biomarkers in Animal

Models of Neurological Diseases

Increased levels of plasma NfL have been observed in mouse
models of PD A53T- alpha-synuclein, tauopathy P301S-Tau
and AD APP/PS1 (amyloid precursor protein/presenilin 1)
(Bacioglu et al., 2016). Increases in NfL in CSF and blood
coincide with the onset and progression of the corresponding
proteopathic lesions in brain. Experimental induction of alpha-
synuclein lesions increase blood NfL levels, while blocking the
development of amyloid-beta lesions attenuates NfL increases
(Bacioglu et al., 2016). Prolonged expression in mice of p25
(the calpain-mediated truncated product of p35, the regulatory
subunit of Cdk5 – cyclin-dependent-like kinase 5) causes
severe synaptic and neuronal loss and brain atrophy which
are accompanied by cognitive deficits (Fischer et al., 2005). In
these inducible CamKII-TetOp25 transgenic mouse models of
neurodegeneration, serum NfL levels increase after induction of
neurodegeneration by switching on p25 transgene expression via
removal of doxycycline but do not increase further if induction
is stopped by switching off p25 expression. Increased levels
of serum NfL correlate with induced neuronal damage in the
cortex and hippocampus of CamKII-TetOp25 mice, indicating
that NfL levels mirror the ongoing neurodegeneration and
neuronal loss and may be used as a dynamic biomarker of
neurodegeneration (Brureau et al., 2017). In HD R6/2 mice,
increased levels of NfL in CSF and serum is associated with
neurodegeneration and disease severity (Soylu-Kucharz et al.,
2017). In 304Q knock-in spinocerebellar ataxia type 3 (SCA3)
mouse model, serum NfL and pNfH are elevated at the pre-
symptomatic stage of 6 months of age and correlate with
ataxin 3 aggregation and Purkinje cell loss in the brain (Wilke
et al., 2020). Increased CSF pNFH levels were also observed
in horses with equine neuroaxonal dystrophy/degenerative
myeloencephalopathy (Edwards et al., 2021). Plasma pNfH
levels also closely reflect later stages of disease progression
and therapeutic response in the SOD1 (superoxide dismutase
1) G93A mouse model of ALS (Lu et al., 2012). Recently,
serum NfL concentration in sheep with prion disease was
more than 15 times higher than that found in control samples
(Zetterberg et al., 2019). More recently, plasma NfL levels were
also reported to reflect disease severity in mice inoculated with
prions and fell significantly in antisense oligonucleotide-treated
mice compared to the immediate pre-dose timepoint, suggesting

a reversal of pathology driving the 53% increase in survival time
(Minikel et al., 2020).

Neurofilament Proteins as Biomarkers in Animal

Models of Neurological Injuries

Following experimental spinal cord injury (SCI) in adult rats,
serum pNfH showed an initial peak of expression at 16 h and
a second peak at 3 days while no serum pNfH is detectable in
sham control animals (Shaw et al., 2005). The maximum level
of pNfH in these SCI experiments was 250 ng/ml pNfH in the
3–5 day post-injury period following injury. Serum pNfH showed
a similar trajectory in TBI in adult rats but the average peak level
of expression of serum pNfH was only about 20 ng/ml, much
lower than that seen in the SCI model (Shaw et al., 2005). Recent
studies found serum NfL levels were substantially elevated at all
acute and subacute time-points after a single mild TBI (mTBI),
peaked at 1-day, and remained elevated 14-days post-injury
(O”Brien et al., 2021). Increased serumNfL levels were also mTBI
dose-dependent and correlated with the degree of sensorimotor
impairment (O”Brien et al., 2021). In more recent studies using
an experimental rat model of blast-induced TBI, pNfH levels
increased at 24 hr, returned to normal levels at 1 month, but
increased again at 6 months and 1 year post-blast exposure (Arun
et al., 2021). Moreover, the changes in CSF pNfH correlate with
pNfH levels in brain regions and with neurobehavioral function
in the rats (Arun et al., 2021).

Neurofilament Proteins as Biomarkers in
Neurological Diseases
Cerebrospinal fluid or serum NfL and pNfH have been widely
studied as biomarkers in a number of neurological diseases
(Table 2) or conditions directly or indirectly affecting central and
peripheral nervous systems (Table 3). NfPs are not only elevated
in neurological diseases but may also track disease progression.
Different subunits might reflect different neurodegenerative
processes. In addition to commonly used NfL and pNfH, some
studies also found potential values of other Nf subunits, i.e., NfM
(Hu et al., 2002; Haggmark et al., 2014; Martinez-Morillo et al.,
2014; Zucchi et al., 2018; Remnestal et al., 2020), INA (Martinez-
Morillo et al., 2014) and PRPH (Finderlater, 2010; Liang et al.,
2019; Sabbatini et al., 2021) as biomarkers in CSF or serum in
neurological diseases or injuries.

Multiple Sclerosis

Patients with MS have up to 60% axonal loss at all spinal levels
involving all fibers regardless of their diameter (Tallantyre et al.,
2009; Petrova et al., 2018). The concentrations of CSF and
serum NfPs represent the degree of axonal loss and therefore,
could be a biomarker of MS disease activity. Accordingly, CSF
NfL levels in relapsing MS were 3-fold higher than in healthy
controls (951.8 vs. 284.4 pg/ml) and associated with relapse
and cortical lesions (Damasceno et al., 2019). Serum NfL levels
was first reported to be increased in early relapsing MS and
correlated withMRImeasures of disease severity using an electro-
chemiluminescence assay (Kuhle et al., 2016). This finding of
serum NfL as a biomarker of MS disease activity was later
substantiated with higher sensitivity Simoa digital immunoassay
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TABLE 2 | NfPs and fragments as biomarkers in neurodegeneration and neuronal injuries.

Neurological diseases and

injuries

Association of NF subunit level with Association of NF subunit level with References

NfL pNfH (smi35) NfH (smi34) NfH (smi31 and others)

B C B C B C B C Disease

activity

Prognosis Treatment

response

Multiple sclerosis and clinically

isolated syndrome

+ + + + + + + + yes yes yes Linker et al., 2009; Disanto et al.,

2016, 2017; Herrera et al., 2019;

Calabresi et al., 2020; Saraste

et al., 2021

Alzheimer’s disease + + + + + yes yes yes Rosengren et al., 1996; Hu et al.,

2002; Kuhle et al., 2010; Hoglund

et al., 2012; Zetterberg et al., 2016;

Mattsson et al., 2017; Gaetani

et al., 2018; Benedet et al., 2020

Adult Down syndrome + yes yes Fortea et al., 2018; Strydom et al.,

2018; Shinomoto et al., 2019;

Delaby et al., 2020; Carmona-Iragui

et al., 2021; Petersen et al., 2021

Mild cognitive impairment + + yes yes Zhou et al., 2017; Mayeli et al.,

2019; Osborn et al., 2019

Vascular dementia + + + yes yes Hu et al., 2002; Skillback et al.,

2014

Mixed dementia + yes yes Skillback et al., 2014

Frontal temporal dementia + yes yes Skillback et al., 2014; Remnestal

et al., 2020

Dementia with Lewy body + De Jong et al., 2007

HIV-associated dementia + yes yes yes Gisslen et al., 2016

Stroke + + + yes yes Norgren et al., 2003; Petzold et al.,

2003; Kuhle et al., 2010;

Martinez-Morillo et al., 2014; Tiedt

et al., 2018; Garland et al., 2021;

Peng et al., 2021; Wang Z. et al.,

2021

Traumatic brain injury + yes yes Shahim et al., 2016; Liang et al.,

2019; Yang et al., 2019

Sport-related concussion + Shahim et al., 2017; McDonald

et al., 2021

(Continued)
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TABLE 2 | (Continued)

Neurological diseases and injuries Association of NF subunit level with Association of NF subunit level with References

NfL pNfH (smi35) NfH (smi34) NfH (smi31 and others)

B C B C B C B C Disease

activity

Prognosis Treatment

response

Spinal cord injury + + yes yes Shaw et al., 2005; Kuhle et al.,

2015

Amyotrophic lateral sclerosis + + + + + + yes yes Rosengren et al., 1996; Kuhle et al.,

2010; Haggmark et al., 2014; Rossi

et al., 2018; Benatar et al., 2019

Parkinson’s disease + + yes yes Lin et al., 2018, 2019; Backstrom

et al., 2020; Ye et al., 2021

Huntington disease + yes yes Byrne et al., 2017; Rodrigues et al.,

2020

Bipolar disorder + Jakobsson et al., 2014

Autism spectrum disorder + He et al., 2020

Neuronal ceroid lipofuscinosis type 2 and 3 + yes Ru et al., 2019; Dang Do et al.,

2020

Spinal muscular atrophy + yes yes yes Olsson et al., 2019

Cortico-basal degeneration + Hansson et al., 2017

Multiple system atrophy + Hansson et al., 2017

Progressive supranuclear palsy + Hansson et al., 2017

Spinocerebellar ataxia + yes yes Li et al., 2019; Coarelli et al., 2021

Friedreich ataxia + Yes Clay et al., 2020

Epilepsy + Rejdak et al., 2012

Charcot-Marie-Tooth disease + yes Sandelius et al., 2018; Millere et al.,

2021

Hereditary transthyretin amyloidosis + yes yes yes Kapoor et al., 2019; Ticau et al.,

2019

Guillain-Barre syndrome + + Kuhle et al., 2010; Mariotto et al.,

2018

Chronic inflammatory demyelinating polyneuropathy + Yes Hayashi et al., 2021

Neuromyelitis optica + Miyazawa et al., 2007; Liu et al.,

2021

Creutzfeldt-Jacob disease (prion disease) + yes yes yes Steinacker et al., 2016; Minikel

et al., 2020; Thompson et al., 2021

Canine cognitive dysfunction syndrome + yes Vikartovska et al., 2020

B, blood; C, CSF.
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(Hansson et al., 2017; Novakova et al., 2017; Kuhle et al., 2019;
Szilasiova et al., 2021). Increased levels of serum NfL are also
associated with MS brain T2 lesion load (Disanto et al., 2017).
A recent study showed that serumNfL levels were associated with
T1, T2 and gadolinium-enhancing lesion volumes at baseline
and higher serum levels of NfL at baseline were associated with
greater atrophy of the whole brain, gray matter and deep gray
matter nuclei in the long term (Jakimovski et al., 2019a). Serum
NfL may also detect MS disease activity that escapes detection
in routine MRI (Akgun et al., 2019). The levels of serum NfL
increased 6 years before clinical MS onset, indicating MS may
have a prodromal phase lasting several years and that neuronal
damage occurs already during this phase (Bjornevik et al., 2019).
After clinical onset, a 1-point Expanded Disability Status Scale
(EDSS) increase corresponds to an serum NfL increase of about
14% (Disanto et al., 2017).

Serum NfL concentrations have been used to assess disease
progression in MS. Clinically isolated syndrome (CIS) is one
of the MS disease courses and refers to a first episode of
neurological symptoms that last at least 24 h and is caused by
inflammation or demyelination of in the CNS. Elevated NfL
levels in both pediatric and adult patients with CIS have been
reported to be associated with a shorter time to clinically definite
MS diagnosis independent of other prognostic factors (Van Der
Vuurst De Vries et al., 2019). In patients with confirmed relapsing
or progressive MS, baseline serum NfL can predict short-term
outcomes including clinical and cognitive performance (Disanto
et al., 2017; Jakimovski et al., 2019b; Filippi et al., 2020). Serum
NfL levels sampled within the first 5 years of MS symptom onset
was shown to independently predict long-term worsening EDSS
score and risk of developing progressive MS in patients followed
longitudinally for 15–26 years (Thebault et al., 2020a). Notably,
patients with serumNfL levels less than 7.62 pg/ml were 7.1 times
less likely to develop progressive MS (Thebault et al., 2020a).

Serum/plasma or CSF NfPs have potential utility for assessing
treatment efficacy in single patients and beginning at an
earlier stage in the disease course. Treatment with any disease-
modifying therapy in MS has been reported to be associated
with significantly lower serum NfL levels compared to untreated
individuals (Disanto et al., 2017; Harris et al., 2021), proving that
CSF or serum/plasma NfL is a therapeutic response biomarker
in MS that may be related to consequent prevention of ongoing
neuronal damage.

Fingolimod significantly reduced plasma NfL levels after
6 months and until the end of the studies (24 months) (Kuhle
et al., 2019). Similarly, CSF NfL and NfHSMI35 levels were
significantly lowered after 12 months of natalizumab treatment.
A 4 fold greater reduction of NfL than of NfHSMI35 suggests
differential sensitivity to therapeutic changes using different
subunits as the biomarker (Kuhle et al., 2013) although NfHSMI35

antibodies detect NfH phosphorylation rather than the protein
itself and may reflect different aspects of a given disease. Caution
should be taken when MS patient are at risk for other treatment-
induced neurological complications that can cause serum NfL
levels to rise, such as natalizumab-induced progressive multifocal
leukoencephalopathy (Dalla Costa et al., 2019) and ablative
hemopoietic stem cell transplantation (Thebault et al., 2020b).

Amyotrophic Lateral Sclerosis

Mutation carriers with ALS symptoms have higher NfPs than
those without ALS symptoms (CSF NfL 37-fold, 7388 vs.
195.7 pg/ml) (Weydt et al., 2016), suggesting that elevated NfP
levels are linked to disease progression and the symptomatic
disease phase (Benatar et al., 2019; Gille et al., 2019). Moreover,
elevated serum NfL levels were observed as far back as 1
to 3.5 years before symptom onset depending on different
gene mutations (SOD1, 12 months; FUS, 2 years and C9orf72,
3.5 years) (Benatar et al., 2018, 2019). CSF NfL levels also
correlate with the extent of upper motor neuron and lower motor
neuron involvement in ALS (Poesen et al., 2017). The time to
generalization in ALS is an early clinical parameter of disease
progression and CSF NfL concentrations have been shown to
predict the conversion from bulbar/spinal to generalized ALS
(Tortelli et al., 2015). Levels of NfL and pNfH also correlate with
survival length in ALS (Brettschneider et al., 2006; Zetterberg
et al., 2007; Lu et al., 2015). Higher serum NfL at diagnosis
is also one of several factors that predict time of death in
ALS (Thouvenot et al., 2020). In a recent clinical trial, levels
of pNfH and NfL in plasma and CSF were largely unchanged
in placebo-treated patients due to superoxide dismutase 1
(SOD1) mutations and decreased in patients treated with
tofersen administered intrathecally over a period of 12 weeks, an
antisense oligonucleotide that mediates the degradation of SOD1
messenger RNA to reduce SOD1 protein synthesis (Miller et al.,
2020). Moreover, CSF SOD1 concentration decreased in these
tofersen-treated patients with evidence of a slowing in the disease
in the total scores on the ALS functional rating scale and the
handheld dynamometry megascore.

Alzheimer’s Disease

Plasma NfL is significantly higher in patients with MCI (mild
cognitive impairment) (42.8 pg/ml) and patients with AD
(51.0 pg/ml) compared with healthy controls (34.7 pg/ml)
(Mattsson et al., 2017). This finding was further confirmed by
other studies (Zhou et al., 2017; Lewczuk et al., 2018). Moreover,
higher NfL levels were associated with cognitive decline in non-
dementia older adults (He et al., 2021). Interestingly, elevated
plasma NfL is associated with the presence of amyloid-beta
plaques in pre-symptomatic individuals whereas NfL levels is
associated with the load of tau in symptomatic patients (Benedet
et al., 2020). Plasma NfL is also associated with AD progression
independent of amyloid-beta (Moscoso et al., 2021a). Plasma NfL
levels also correlate with Braak staging and longitudinal increases
in plasma NfL are observed in all Braak groupings (Ashton et al.,
2019). In addition, normal plasma NfL level (20.24 pg/ml) is
also linked with resistance to PS1 familial AD in apolipoprotein
E3 (APOE3) Christchurch mutation (Arboleda-Velasquez et al.,
2019). The role of NfL as a potential biomarker for AD has
been extensively reviewed and recent meta-analysis regarding its
association with AD can be found elsewhere (Olsson et al., 2016;
Khalil et al., 2018; Bridel et al., 2019; Jin et al., 2019). Recent
studies further demonstrated plasma NfL levels or together with
cognitive testing as predictors of fast progression (Santangelo
et al., 2021) and future declines in cognition and function in AD
(Li et al., 2021).
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TABLE 3 | NfPs and fragments as biomarkers in conditions affecting nervous system.

Conditions Association of NF subunit level with Association of NF subunit level with References

NfL pNfH (smi35) NfH (smi31 and others)

B C B C B C Disease activity Prognosis Treatment response

Acute bacterial meningitis + Gronhoj et al., 2021

Anesthesia and surgery + Evered et al., 2018

Anorexia nervosa + Nilsson et al., 2019

Autoimmune encephalitis + + yes Kortvelyessy et al., 2018; Fominykh

et al., 2019; Piepgras et al., 2021

Brain metastasis and glioma + yes yes Hepner et al., 2019

Cardiac arrest + yes yes Moseby-Knappe et al., 2019

Cerebral small vessel disease + yes yes Egle et al., 2021; Qu et al., 2021

Chemotherapy-induced cognitive

impairment

+ yes Natori et al., 2015

Chorea-acanthocytosis + yes Peikert et al., 2020

Diabetic neuropathy + Qiao et al., 2015

Hypoxic-ischemic encephalopathy + yes Douglas-Escobar et al., 2010

Idiopathic normal pressure hydrocephalus + Jeppsson et al., 2013

Intrapartum asphyxia + yes Toorell et al., 2018

Mcleod syndrome + Peikert et al., 2020

Mitochondrial encephalomyopathy, lactic

acidosis, and stroke-like episodes

+ yes Zheng et al., 2021

Mitochondrial encephalopathy + yes yes Sofou et al., 2019

MOG-Abs-associated disorders + Sara et al., 2021

Neurosarcoidosis + + Byg et al., 2021

Peri/intraventricular hemorrhage + + yes yes Goeral et al., 2021

Postoperative delirium + Casey et al., 2019

Preeclampsia + yes yes Evers et al., 2018

Preterm infants + Depoorter et al., 2018

Sepsis-associated encephalopathy + yes yes Ehler et al., 2019

Severe COVID-19 + Sutter et al., 2021

Thoracolumbar intervertebral disk herniation + yes yes Nishida et al., 2014

Wilson’s disease + yes Shribman et al., 2021

X-linked adrenoleukodystrophy + yes yes Weinhofer et al., 2021

B, blood; C, CSF.
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Hyperphosphorylation of tau neurofibrillary tangles is one
of the hallmarks in AD. CSF ptau181 levels were first found
to be increased significantly in patients with AD compared to
healthy controls over two decades ago (Vanmechelen et al., 2000).
This finding was subsequently verified by others (Lewczuk et al.,
2004; Fagan et al., 2011; Tang et al., 2014) and later also was
confirmed with the measurement of serum ptau181 (Shekhar
et al., 2016). Recent studies demonstrated that blood ptau181 can
predict cortical brain atrophy (Llibre-Guerra et al., 2019; Tissot
et al., 2021), tau and amyloid-beta pathology (Lantero Rodriguez
et al., 2020; Clark et al., 2021; Moscoso et al., 2021b), differentiate
AD from other neurodegenerative diseases (Mielke et al., 2018;
Thijssen et al., 2020; Grothe et al., 2021) and identify AD across
the clinical continuum (Janelidze et al., 2020a; Karikari et al.,
2020b, 2021). In familial AD, plasma ptau181 levels may rise as
early as 16 years before clinical onset (O’connor et al., 2020).
In addition to ptau181, some studies demonstrated ptau217
(Janelidze et al., 2020b; Karikari et al., 2020a; Palmqvist et al.,
2020) and ptau231 are also useful biomarkers for AD (Kohnken
et al., 2000; Suarez-Calvet et al., 2020; Ashton et al., 2021b). The
combined use of these AD-specific biomarkers ptau181, ptau217,
ptau231withNfL as a disease-non-specific biomarker of neuronal
integrity could improve prediction and monitoring of disease
progression in AD (Moscoso et al., 2021a).

Frontotemporal Dementia

Serum NfL levels in patients with FTD were about 4-fold higher
than in healthy controls (77.9 vs. 19.6 pg/ml) and the elevations
correlate with disease severity (Rohrer et al., 2016). Moreover,
increased serum NfL levels were observed 1 to 2 years before the
clinical onset of symptoms (Van Der Ende et al., 2019), indicating
pathophysiology of the disease in the preclinical phase.

Dementia With Lewy Bodies

Plasma NfL levels in patients with DLB were about 2-fold higher
than in healthy controls (55.3 vs. 25.7 pg/ml) and the elevations
correlate with disease severity and plasma NfL is the best
predictor of cognitive decline compared to age, sex and baseline
severity variables over a follow-up of 2 years (Pilotto et al., 2021).

Peripheral Neuropathy

Neurofilament proteins are most abundant in peripheral large-
caliber myelinated axons such as sciatic nerves (Hoffman et al.,
1987). Plasma NfL levels were about 2-fold higher in patients
with inherited peripheral neuropathy CMT than in healthy
controls (13.2 vs. 5.2 pg/ml) and correlated with disease severity
(Sandelius et al., 2018; Millere et al., 2021). Serum NfL was
also significantly elevated in acquired peripheral neuropathy
and their levels correlated not only with disease severity and
outcome (Mariotto et al., 2018) but also declined with remission
(Bischof et al., 2018). These studies suggest that NfL might
be a promising biomarker for disease activity monitoring of
peripheral neuropathy.

Parkinson’s Disease

Plasma NfL levels were about 1.6-fold higher in patients with
advanced Hoehn-Yahr stage and patients with PD dementia than
in healthy controls (17.6 vs. 10.6 pg/ml) and correlated with

disease severity (Lin et al., 2019). Higher baseline plasma levels
of NfL were also associated with greater motor and cognitive
decline after a follow-up period of 3 years in patients with PD,
suggesting value of NfL as a predictive biomarker of disease
severity and progression in this disease (Lin et al., 2019; Ma et al.,
2021; Zhu et al., 2021). A recent study also suggests that higher
serum NfL levels were also associated with dopamine transporter
concentration (Ye et al., 2021).

Huntington Disease

Plasma NfL levels were about 3-fold higher in patients with
HD than in healthy controls (3.63 vs. 2.68 log pg/ml) and also
significantly higher in manifest HD than premanifest HD (Byrne
et al., 2017, 2018). Increased CSF and plasma NfL appeared
in young adult carriers of HD gene mutation approximately
24 years before the clinical onset of symptoms (Scahill et al.,
2020). Each CAG (cytosine, adenine and guanine trinucleotide
repeat) increase is associated with higher, more steeply rising NfL
levels (Byrne et al., 2017).

Stroke

Cerebrospinal fluid NfL was first reported to correlate with
outcome after aneurysmal subarachnoid hemorrhage (Nylen
et al., 2006) followed by the observations of increased CSF pNfH
levels in acute ischemic stroke (8-fold at week 3 after stoke, 2.96
vs. 0.35 ng/ml in controls) (Singh et al., 2011). The findings
were replicated with the measurements of serum NfL levels that
patients with recent subcortical infarcts had higher NfL baseline
levels compared to healthy controls (Gattringer et al., 2017; Pujol-
Calderon et al., 2019; Peters et al., 2020). Elevated plasma NfL
was also associated with poor functional outcome and mortality
rate after spontaneous subarachnoid hemorrhage (Hviid et al.,
2020a). The elevated NfL levels continued at the 3-month follow-
up and seemed to return to normal at 15-month after stroke,
indicating that levels of NfL could be a tool for monitoring infarct
extent (Tiedt et al., 2018), predicting cognitive function (Peng
et al., 2021; Wang J.H. et al., 2021) and mortality in patients with
stroke (Gendron et al., 2020). Serum NfL levels also correlate
with disease severity, disease progression and 17-year survival
in patients with cerebral autosomal dominant arteriopathy with
subcortical infarcts and leukoencephalopathy (CADASIL) caused
by mutations in the NOTCH3 gene (Gravesteijn et al., 2019). In
addition to NfL and pNfH, CSF and serum NfM levels were also
elevated in patients with stroke (Martinez-Morillo et al., 2015).

Traumatic Brain Injury and Spinal Cord Injury

One month after neurosurgical trauma, there was a distinct
peak in CSF (6-fold increase, 2460 vs. 409 ng/ml at baseline)
and plasma NfL concentration, which peaked at 1-month post-
surgery, returning to baseline after 6 to 9 months (Bergman et al.,
2016). Boxers who received severe head impact (>15 hits to
the head or experienced grogginess during or after bout) had
elevated plasma NfL at 7–10 days after a bout compared to
boxers who received mild head impact (<15 head hits) (Shahim
et al., 2017). In TBI, both CSF and serum NfL levels were
elevated over the first 1–2 weeks compared to healthy controls
(Al Nimer et al., 2015; Shahim et al., 2017; Hossain et al., 2019),
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decreased over 5 years and correlated withmeasures of functional
outcome (Shahim et al., 2020). Similar to TBI, CSF and serum
NfL concentrations are also increased in SCI patients compared
to healthy controls (Guez et al., 2003), correlated with motor
outcome 3–12 months after trauma and minocycline treatment
showed decreased NfL levels in a subgroup of injured patients
(Kuhle et al., 2015). Care must be taken when TBI patients are
over 60 years old or having pre-existing neurological conditions
(Iverson et al., 2019). In addition to NfL, serum pNfH was
also increased in TBI (Shibahashi et al., 2016) and SCI patients
(Hayakawa et al., 2012; Singh et al., 2017) and appears to be a
predictive biomarker for outcome.

Spinal Muscular Atrophy

Spinal Muscular Atrophy (MSA) is a rare neuromuscular
disorder due to a mutation of survival of motor neuron 1
gene that results in the loss of motor neurons and progressive
muscle wasting. Baseline levels of CSF NfL (31-fold, 4598 vs.
148 pg/ml) and tau (2.3-fold, 939 vs. 404 pg/ml) were significantly
higher in children with SMA than in controls (Olsson et al.,
2019). Treatment with nusinersen, a drug that increases the
level of SMN protein in the CNS normalized NfL and tau levels
which correlated with degree of motor improvement in children
with SMA (Olsson et al., 2019). Plasma pNFH levels were also
observed to correlate with disease activity and treatment response
in infants with MSA treated with nusinersen (Darras et al., 2019).

Spinocerebellar Ataxia Type 3

Spinocerebellar ataxia type 3 is a condition characterized by
progressive problems with movement due to mutations in the
ataxin 3 gene. Plasma NfL levels were about 4-fold higher in
patients with SCA3 than in healthy controls (34.8 vs. 8.6 pg/ml)
and correlate with disease severity, disease progression and CAG
repeat length of ataxin 3 gene mutation (Li et al., 2019; Peng
et al., 2020; Wilke et al., 2020). Increased serum NfL appeared in
mutation carriers 7.5 years before the clinical onset of symptoms
(Wilke et al., 2020).

Human Immunodeficiency Virus Infection

Human immunodeficiency virus (HIV) invades brain and leads
to the CNS injury, most severely manifesting as HIV-associated
dementia with high morbidity and mortality (Price and Brew,
1988). CSF and plasma NfL levels were elevated in HIV infection,
especially in HIV-associated dementia (44-fold increase for CSF
NfL, 16185 vs. 363 nmol/L in HIV-negative controls), and is
markedly reduced after antiretroviral treatment-induced viral
suppression (Abdulle et al., 2007; Jessen Krut et al., 2014; Gisslen
et al., 2016). Plasma NfL is also negatively associated with
neuropsychological performance in HIV-infected individuals
and their levels decline with initiation of antiretroviral therapy
(Anderson et al., 2018).

Prion Diseases

Prion diseases are a family of rare progressive neurodegenerative
disorders that affect both humans and animals. CSF and blood
NfL levels are significantly higher (about 4-fold increase) in both
sporadic and genetic prion disease compared to healthy controls
(Steinacker et al., 2016; Thompson et al., 2018; Kanata et al., 2019;

Zerr et al., 2021). Increased plasma NfL appeared in adult carriers
of prion gene mutation as early as 2 years before the clinical onset
of symptoms (Thompson et al., 2021).

Hereditary Transthyretin-Mediated Amyloidosis

Hereditary transthyretin-mediated amyloidosis is a condition
with adult onset caused by mutation of transthyretin and
characterized by extracellular deposition of amyloid and
destruction of the somatic and autonomic PNS. PlasmaNfL levels
in patients with hereditary transthyretin-mediated (hATTR)
amyloidosis with polyneuropathy were 4-fold higher than in
healthy controls (69.4 vs. 16.3 pg/ml) (Ticau et al., 2019).
Levels of NfL at 18 months increased in placebo-treated patients
(99.5 pg/ml) and decreased in patients treated with patisiran
(48.8 pg/ml), a gene-silencing drug that interferes with the
production of an abnormal form of transthyretin (Ticau et al.,
2019). The levels of 66 proteins in blood were significant changed
following patisiran treatment relative to placebo, with change in
NfL being the most significant (Ticau et al., 2019). Moreover, at
18 months, improvement in mNIS + 7 (a robust and clinically
meaningful measure of neuropathy progression) compared to
baseline in patisiran-treated patients significantly correlated with
a reduction of plasma NfL levels.

Late Infantile Neuronal Ceroid Lipofuscinosis Type 2

Ceroid lipofuscinosis type 2 (CLN2) disease is an inherited
disorder that primarily affects the nervous system. Before
treatment in CLN2 patients, plasma NfL levels were 48-fold
higher than in healthy controls (153.2 vs. 3.21 pg/ml) and
in CLN2 disease, subjects receiving replacement therapy with
cerliponase alfa, plasma NfL levels decreased by 50% each year
over 3 years of treatment (Ru et al., 2019). Cerliponase alfa-
treated patients demonstrated fewer declines in motor and
language function than that in historical controls (Schulz et al.,
2018). The fold change of CSF NfL compared with healthy
controls has been shown varied extensively between individual
conditions, with the smallest effect sizes observed in subjective
cognitive decline and PD, and the largest effect sizes observed
in cardiac arrest, HIV-associated dementia, FTD/ALS, ALS and
HD (Rosen et al., 2004; Bridel et al., 2019). The pre-treatment
plasmaNfL levels observed in CLN2 disease patients is at the high
end of neurological disease levels – similar to that seen in ALS,
FTD/ALS, HIV-associated dementia and higher than many other
neurodegenerative diseases. Even within ALS group, the CSF NfL
levels in patients with lower motor neuron signs (346 pg/ml) only
had 2.6-fold increase compared with healthy controls (138 pg/ml)
while 17.6-fold increase was observed in those with signs of upper
motor neuron disease (2435 pg/ml) (Rosengren et al., 1996).
Therefore, the fold change in CSF and serum NfL levels could be
due to damage to different neuronal compartments in different
nervous system regions.

Brain Cancer

Neurofilament light chain levels in serum are sensitive to any
neuronal damage. As CNS tumors grow bigger and bigger, they
could affect function and integrity of neighboring neurons and/or
may cause increased intracranial pressure that compromises
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neuronal function. Accordingly, levels of serum NfL in patients
with CNS tumors with progressive disease were 33-fold higher
than in healthy controls (239.3 vs. 7.2 pg/ml) and vary closely
with tumor activity (Hepner et al., 2019). Similarly, neurons could
be damaged by the infiltration of the brain metastasis in the brain
parenchyma, brain compression caused by metastasis, vascular
disturbance and toxic products diffusing from tumor cells (Zhang
and Olsson, 1997). In fact, serum NfL levels in patients with
metastatic solid tumors with known brain metastasis were 19-
fold higher than in healthy controls (142.3 vs. 7.2 pg/ml) (Hepner
et al., 2019). This finding was later confirmed and expanded that
an increase in serum NfL could be detected 3 months before
brain metastasis diagnosis and a high level of NfL at time of brain
metastasis correlated with an inferior survival (Winther-Larsen
et al., 2020; Lin et al., 2021). These studies imply serum NFL is a
potential clinical biomarker for both CNS tumors and metastatic
solid tumors with brain metastasis.

Cardiac Arrest

Neurons in the brain can be damaged due to prolonged oxygen
and sugar deprivation within 3 min of the heart stopping. CSF
NfL levels were first reported to be increased in adult patients
with cardiac arrest (52-fold, 11,381 vs. 217 pg/ml in healthy
controls) and highly predictive of poor outcome (Rosen et al.,
2004). This finding was later confirmed (Rosen et al., 2014) and
also with plasma (Wihersaari et al., 2021) or serum NfL levels
(Rana et al., 2013; Disanto et al., 2019). Recently, similar findings
were also reported in pediatric patients with cardiac arrest
(Kirschen et al., 2020). Cardiac arrest over 3 min can lead to not
only hypoxic-ischemic brain damage but also reperfusion injury,
the restoration of blood flow after resuscitation placing oxidative
stress on the brain as pooled toxins flood already-damaged tissues
(Sekhon et al., 2017). Future studies in large dedicated cardiac
arrest cohorts with serial longitudinal measurements of serum
NfL and parallel analyses to assess changes caused by hypoxia,
ischemia and reperfusion in brain are warranted.

Delirium

Serum NfL levels in delirium in hip fracture patients were 1.7-
fold higher than in controls (94 vs. 54 pg/ml) (Halaas et al., 2018)
and plasmaNfL was associated with delirium severity (Fong et al.,
2020) independent of changes in inflammation (Casey et al.,
2019). In addition to elevated NfL, higher serum pNfH levels also
correlated with more severe postoperative delirium (Inoue et al.,
2017; Mietani et al., 2019). These results suggests NfPs can be
sensitive markers of neuronal injury associated with delirium.

The Value of Neurofilament Proteins in Differential

Diagnosis Is Limited

Although NfPs are not disease-specific, they may have
limited utility in differential diagnosis in some cases. Some
neurodegenerative diseases share part of their symptomatology
and neuropathology, making it difficult to differentiate between
them. The differentiation between multiple system atrophy
(MSA) and PD is difficult, particularly in early disease stages.
Increased CSF NfL may offer clinically relevant, high accuracy
discrimination between MSA and PD (Herbert et al., 2015)

and also between PD and other atypical parkinsonian disorders
including progressive supranuclear palsy and corticobasal
degeneration (Constantinescu et al., 2010; Ashton et al., 2021a).
The overlap of FTD and ALS has been well documented in FTD
patients with co-morbid motor neuron degeneration and in
ALS patients with frontotemporal dysfunction (Lomen-Hoerth,
2011). CSF NfL levels are higher in ALS than in FTD (Skillback
et al., 2017) and also significantly higher in patients with FTD-
ALS than in patients with FTD without ALS (Pijnenburg et al.,
2015). CSF pNfH has also been shown to be a better biomarker
than CSF NfL in differentiating ALS from other diseases
mimicking ALS symptomatology (Poesen et al., 2017). Early
symptoms of patients with FTD typically do not include memory
impairment but instead often manifest changes in their behavior,
personality and social interaction, which are often confused
with symptoms occurring in psychiatric disorders. About 50%
behavioral variant FTD patients received a prior diagnosis of a
psychiatric disorder in a large retrospective study (Woolley et al.,
2011). Patients with FTD have significantly higher serum NfL
levels than patients with psychiatric disorders (Al Shweiki et al.,
2019; Katisko et al., 2020), suggesting NfL as a promising tool to
help differentially diagnose FTD and psychiatric disorders.

CURRENT RESEARCH GAPS AND
POTENTIAL DEVELOPMENT OF
NEUROFILAMENTS AS BIOMARKERS

Blood-Brain and Blood-Cerebrospinal
Fluid Barriers
The effects of blood-brain barrier (BBB) and blood-CSF barrier
(BCB) on serum NfP levels are not fully understood. Aging and
neurodegenerative disease can cause increased disruption of the
BBB (Sweeney et al., 2018) which could contribute to the elevated
levels of serum NfP signals observed in these conditions. Recent
evidence suggests that serum NfL level does not correlate with
opening of the blood brain barrier after cranial irradiation (Kalm
et al., 2017). Consistent with this finding, higher CSF/serum-
albumin ratios were observed in FTD-3 patients, but this
did not affect the significant associations among serum NfL
levels and pre-symptomatic, symptomatic CHMP2B (charged
multivesicular body protein 2B) mutation carriers and healthy
family controls (Toft et al., 2021).

The Exact Form of Extracellular
Neurofilament Proteins and Degradation
Fragments
Because full length NfL proteins have never been detected in CSF
and blood, it seems likely that most or all of the NfL detected in
the CSF or serum are peptides generated from partial degradation
of NfL in neurons or after their release. The identity and form(s)
of NfPs detected by the commonly used NfL antibodies is not
fully clarified. Recent studies suggest that a 22 kDa degradation
fragment could be the detected plasma signal of NfL since it is also
increased in ALS patients (Lombardi et al., 2020). The peptide
species of INA and PRPH in CSF and plasma are not known. If a

Frontiers in Neuroscience | www.frontiersin.org 15 September 2021 | Volume 15 | Article 689938

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


Yuan and Nixon Neurofilament Biomarkers for Disease Monitoring

Nf subunit such as INA is fully and rapidly degraded into amino
acids upon release from neuronal compartments into blood, then
no signals of Simoa assay can be measured and no value of
utility as a biomarker. Determination of the form of detected NfP
immunosignals (full length or degradation fragments) in blood
will not only impact their utility as blood biomarkers but also help
to better understanding the pathophysiological process in a given
neurological diseases.

The Relationship Among Different
Neurofilament Subunits
Neurofilament proteins are not identical and each has a distinct
structure and could potentially have differential diagnostic value
as biomarkers. The relationships among NfPs are complex and
interrelated.WhenNfL is absent inmice, NfH levels declinemost,
followed by the decreased levels of NfM and PRPH (Yuan et al.,
2012) and the levels of INA is only marginally declined (Yuan
et al., 2003). When NfM is absent in mice, NfL levels decline
most, followed by the lowered levels of NfH and INA (Yuan
et al., 2006). NfL and NfM are co-regulated in mammalian brain
and only marginally affected by the deletion of NfH, INA or
both (Yuan et al., 2006). The first ELISA for NfPs was developed
(Rosengren et al., 1996) prior to the recognition of INA and
PRPH as additional Nf subunits (Yuan et al., 2006, Yuan et al.,
2012). NfL is the most intensively studied subunit as a biomarker
followed by phosphorylated NfH, especially after introduction of
a highly sensitive digital assay (Gisslen et al., 2016).

Despite less attention being paid to NfM, INA and PRPH
as biomarkers in neurological diseases, their potential utility is
considerable. In addition to the well-established increase of NfL
during aging, a highly significant increase in the levels in CSF of
both phosphorylated and non-phosphorylated NfM and NfH are
also seen in aged individuals as compared with young controls
(Hu et al., 2002). NfPs are an integral part of neurofibrillary
tangles in AD brain (Rudrabhatla et al., 2011) and C-terminal
phosphorylation sites of both NfM and NfH are 4- to 8-fold more
abundant in AD compared with control brain (Rudrabhatla et al.,
2010). Levels of specific phosphorylation sites on NfM and NfH
in blood could potentially be used as a biomarker to discriminate
AD from normal brain aging and other neurological conditions.

Alpha-internexin is enriched in CNS and its prominent
aggregation in Nf inclusion disease (Cairns et al., 2004) could
qualify INA as a CNS-selective biomarker. However, the intact
form of INA is difficult to detect in laboratory practice due to
its instability. A possible solution could be to test for blood
levels of its more stable degradation products. INA was identified
by proteomics as a novel biomarker in the CSF of patients
with hemorrhagic stroke (Martinez-Morillo et al., 2014). In
contrast to INA, PRPH is enriched in PNS (Yuan et al., 2012)
and therefore could potentially be developed as a PNS-specific
biomarker. Moreover, PRPH is also sensitive to diffuse axonal
injury (Liang et al., 2019) and its aggregate-inducing isoform Per
28 is upregulated in ALS and is associated with disease pathology
(Xiao et al., 2008). A recent report suggests high serum levels of
PRPH might be a general biomarker of axon disorders of lower
motor neurons (Sabbatini et al., 2021). Future studies should

therefore aim to develop assays of appropriate specificity for
each of the NfP subunits or degradation fragments to explore
the complementary information they may contribute to NfP
pathobiology and use as biomarkers.

Stable Isotope Labeling Kinetics
Coupled With Mass Spectrometry
The levels of NfP and peptide in CSF and blood depend on the
rates of synthesis of NfPs or mechanism and rates of NfP peptide
release. A recently developed stable isotope labeling method
coupled with mass spectrometry may be useful to define the
kinetics of NfP turnover in healthy individuals, with aging and
in patients with neurological conditions associated with elevated
NfP signals in CSF and blood. Special attention should be paid
to the extremely slow turnover of NfPs incorporated into the
filamentous lattice in axons (Nixon and Logvinenko, 1986; Yuan
et al., 2015a). This method uses hours-long infusions of 13C
and 15N stable isotopes before measuring the labeled proteins
in CSF, blood or brain tissue samples (Bateman et al., 2006;
Paterson et al., 2019). The incorporation of newly synthesized
labeled proteins gradually increases until a steady state is
reached. Following stop of infusions, the proportion of the
labeled amino acid in the target protein gradually declines as
a result of protein clearance or degradation. Alterations in the
isotopic enrichment of the target proteins allow the calculation
of protein synthesis and clearance rates from the ratio of labeled
to non-labeled protein. This method was used to measure the
kinetics of tau isoforms and fragments in human CNS (Sato
et al., 2018). The elevated CNS tau levels in AD patients was
initially interpreted as resulting from passive release of this
protein by degenerative neurons. However, results from stable
isotope labeling kinetics (SILK) studies suggest that the bulk
of tau in human CSF is released by an active process that is
stimulated by neuronal exposure to aggregated amyloid-beta.
On the one hand, the concentration of NfPs in CSF or serum
measured at a given time represents a static biomarker whose
equilibrium could be affected by various factors. On the other
hand, NfP-SILK can provide dynamic measure of production
and clearance of newly synthesized NfPs that might provide a
more detailed understanding of themechanisms underlying these
alterations in NfP levels.

Confounding Factors
Since there are significant variations of measured blood NfL
levels among different methods and labs, standardization of
blood NfL measurement globally is needed. Care must be
taken when interpreting results obtained in different studies.
Community-based large populations of healthy individuals are
required to generate normative data for reference intervals.
As discussed earlier, there are numerous demographic, life
style, and comorbidity factors that potentially influence NfP
levels in biological samples. With the increasing use of
blood assays, variables such as exercise (Joisten et al., 2021),
blood volume, body mass index need to be considered
(Manouchehrinia et al., 2020; Perino et al., 2021). Trace amounts
of NfPs relative to those in neurons have been reported

Frontiers in Neuroscience | www.frontiersin.org 16 September 2021 | Volume 15 | Article 689938

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


Yuan and Nixon Neurofilament Biomarkers for Disease Monitoring

in erythrocytes (Granger and Lazarides, 1983; Terasawa et al.,
2006), T lymphocytes (Murphy et al., 1993), podocytes (Wang
et al., 2018), and oocytes (Takahashi and Ishizuka, 2012), which
could be confounds in certain disease conditions. Because blood
NfL alteration is associated with aging, future studies are also
needed to establish the age-adjusted normal values of serum
NfL levels across all age groups. The recent establishment of
reference intervals of serum NfL in 342 Scandinavian reference
subjects from 18 to 87 years of age is a step in the right
direction (Hviid et al., 2020b). Comparative studies of two
or more neurological disorders will be valuable to clarify the
relative magnitude of change and its disease significance using
the same methodologies. Sporadic AD patients are often older
individuals associated with higher prevalence of cardiovascular
conditions that is also associated with CNS ischemic damage
and subsequent release of NfPs into blood (Gattringer et al.,
2017). Co-existing peripheral neuropathy with CNS diseases
may also weaken the correlation between CSF and serum NfP
signals. Longitudinal measurements should also be encouraged
to minimize intra- and inter-individual variation due to transient
confounding variables and emerging co-morbidities (Khalil et al.,
2020; Liu S. et al., 2020).

CONCLUSION

The development of minimally invasive ultrasensitive assays of
NfPs released from neurons into in blood has increased the
potential use of NfPs as biomarkers especially for repeated
measurements during longitudinal studies such as in MS. The
degree of elevation of NfPs in serum could easily differentiate
behavioral FTD from primary psychiatric disorders where
significant clinical overlaps of these two conditions exist and
the sensitivity and specificity of structural and functional
imaging methods remain imperfect. Monitoring the kinetics

of NfPs in blood can increase our ability to assess disease
activity, neuronal injury, and neurodegeneration in real time
and to measure treatment effectiveness. Much interest has been
focused on the detection of blood NfPs by high-sensitivity
assays as a surrogate marker of neuronal structural damage and
degeneration. However, the majority of these reports are cross-
sectional, more longitudinal data are required to better elucidate
the place of NfPs in the clinical settings. Due to their lack
of specificity for a given disease, NfPs will most likely be of
limited value as a diagnostic tool except when levels drastically
differ between two conditions with similar clinical presentations.
No single test or value of NfPs can currently be used to rule
in or exclude the diagnosis of a specific disease. Nevertheless,
NfPs can potentially be used to monitor disease progression
and the effects of therapeutic intervention in combination with
clinical judgment in almost any neuronal injury and neurological
diseases. Serum NfPs are relatively easily measured. Treatment-
induced decrease in blood NfPs levels as a complement to the
more lengthy process of measuring clinical outcomes may, in
the future, be more important in the validation and regulatory
approval of new drugs for neurological conditions.
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