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Abstract

Introduction: Neuroinflammation and synaptic degeneration are major neuropathological hallmarks in Alzheimer’s
disease (AD). Neurogranin and YKL-40 in cerebrospinal fluid (CSF) are newly discovered markers indicating synaptic
damage and microglial activation, respectively.

Methods: CSF samples from 95 individuals including 39 patients with AD dementia (AD-D), 13 with mild cognitive
impairment (MCI) due to AD (MCI-AD), 29 with MCI not due to AD (MCI-o) and 14 patients with non-AD dementias
(non-AD-D) were analyzed for neurogranin and YKL-40.

Results: Patients with dementia or MCI due to AD showed elevated levels of CSF neurogranin (p < 0.001 for AD-D
and p < 0.05 for MCI-AD) and YKL-40 (p < 0.05 for AD-D and p = 0.15 for MCI-AD) compared to mildly cognitively
impaired subjects not diagnosed with AD. CSF levels of neurogranin and YKL-40 did not differ between MCI not
due to AD and non-AD dementias. In AD subjects no correlation between YKL-40 and neurogranin was found. The
CSF neurogranin levels correlated moderately with tau and p-tau but not with Aβ42 or the MMSE in AD samples.
No relevant associations between YKL-40 and MMSE or the core AD biomarkers, Aβ42, t-tau and p-tau were found
in AD subjects.

Conclusions: Neurogranin and YKL-40 are promising AD biomarkers, independent of and complementary to the
established core AD biomarkers, reflecting additional pathological changes in the course of AD.

Introduction
Alzheimer’s disease (AD) is the most prevalent neurode-
generative disorder worldwide. The major pathological
hallmarks of AD include extracellular depositions of
β-amyloid (Aβ) peptides as well as intracellular neurofib-
rillary tangles consisting of hyperphosphorylated tau, loss
of synapses, and neuroinflammation [1, 2]. The earliest
pathophysiological events are expected to occur 10–20
years before the onset of dementia [3]. Changes in cere-
brospinal fluid (CSF) biomarkers reflecting amyloid path-
ology (Aβ42) and neurodegeneration [total tau (t-tau) and
phosphorylated tau (p-tau)] occur early in the course of
AD and are increasingly implicated in the early and

predictive diagnosis of AD [4, 5]. The accuracy of diagno-
sis based on these core AD biomarkers is high, as long as
markers of neurodegeneration and amyloidosis are altered
concordantly [6]. However, in a proportion of patients,
biomarker results may be contradictory, leading to lower
diagnostic accuracy [7]. Additionally, Aβ42, t-tau, and p-
tau allow no conclusions about cognitive performance and
only a limited prediction of cognitive decline to be made,
a feature that is especially important for clinical trials [8].
Therefore, additional biomarkers reflecting further aspects
of AD pathophysiology, such as synaptic degeneration and
neuroinflammation, are needed. Loss of synapses is an
early event in the course of AD, and the correlation
between synapse density and performance on neuro-
psychiatric tests such as the Mini Mental State Examin-
ation (MMSE) and verbal fluency tests is well established
[9–12]. Neurogranin is a postsynaptic protein expressed
in the neocortex, amygdala, caudate nucleus, putamen
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and hippocampus in the rodent brain [13]. In the human
brain, expression is highest in associative cortical areas [14],
suggesting a link with cognition. It is concentrated in
dendritic spines of principal excitatory synapses, and its
translocation to dendritic spines is impaired in AD [15–17].
Neurogranin levels are reduced in the hippocampus and
cortex in AD, indicating a loss of dendrites [2].
Synaptic proteins, including neurogranin, have been

shown to be present in the CSF [18]. A first pilot study
using immunoprecipitation (IP) and Western blot ana-
lysis showed a marked increase in CSF neurogranin
levels in AD [19]. In a later study, using both IP-mass
spectrometry and a newly developed immuno-based
assay, researchers verified elevated levels of CSF neuro-
granin in a larger cohort of patients with AD [20, 21].
Importantly, high CSF neurogranin levels were also
found in prodromal AD cases, and the degree of in-
crease correlated with the rate of future cognitive de-
cline [21].
Neuroinflammation is another common feature of AD

pathology, and several epidemiological studies suggest a
decrease in risk for AD after long-term administration
of nonsteroidal anti-inflammatory drugs [22]. YKL-40, a
39 kDa glycoprotein homologue to chitinase, is a marker
for macrophage and microglial differentiation and activa-
tion [23–25]. Elevated CSF levels were shown in several
infectious and noninfectious disorders of the central ner-
vous system (CNS) [26]. Also, in AD, YKL-40 seems to be
elevated in CSF [27–29]. The aim of this study was to
investigate whether neurogranin as a marker for synaptic
loss reflects cognitive disturbances and, together with
YKL-40, shows aspects of AD pathophysiology comple-
mentary to amyloid pathology and neurodegeneration.

Methods
Patients and sample collection
The study protocol was approved by the ethics commit-
tee of the university clinic Erlangen-Nürnberg (number
3987), and all participants provided written informed
consent. The patients were recruited in the memory
clinic of the Department of Psychiatry and Psychother-
apy in Erlangen, Germany. The participants underwent a
physical, neurological, psychiatric, and neuropsycho-
logical examinations according to the Consortium to
Establish a Registry for Alzheimer’s Disease test battery
[30]. Clinical diagnosis was supported by a brain
magnetic resonance imaging scan, hexamethylpropyle-
neamine oxime single-photon emission computed tom-
ography, and positive CSF biomarkers. Neurochemical
dementia diagnosis was made using certified enzyme-
linked immunosorbent assay (ELISA) kits for Aβ1-40 (IBL
International, Hamburg, Germany), Aβ1-42 (The Genetics
Company, Schlieren, Switzerland; and IBL International),
and t-tau and p-tau (Fujirebio, Gent, Belgium; and IBL

International). Diagnoses of AD and mild cognitive
impairment (MCI) were made according to the re-
vised National Institute on Aging–Alzheimer’s Associ-
ation (NIA-AA) criteria [4, 5]. None of the patients had a
history indicative of hereditary AD. Subjects with ma-
lignant diseases or signs of systemic inflammation were
excluded.
Experienced physicians collected the CSF samples by

lumbar puncture in the L3-L4 or L4-L5 intervertebral
space. With the exception that samples were centrifuged
at 1500 × g instead of 2000 × g, sampling and storage were
carried out according to international consensus guide-
lines within 90 minutes after sampling [31].

Neurogranin assay
Measurement of neurogranin on the Meso Scale Discov-
ery (MSD; Rockville, MD, USA) platform was performed
as described previously [21]. The in-house monoclonal
mouse antibody Ng7, which binds amino acids 52–65 of
neurogranin, was used on a QUICKPLEX 96-well plate
(MSD) as the capturing antibody. After blocking with 5 %
MSD Blocker for 1 h at room temperature (RT), the full-
length neurogranin calibrators in concentrations ranging
from 31.3 pg/ml to 4000 pg/ml, the blanks, and 50 μl of
CSF sample for each well were added in duplicates and
coincubated overnight with a polyclonal anti-neurogranin
antibody (ab 23570; EMD Millipore, Billerica, MA, USA).
The next day, the plates were washed and SULFO-TAG
goat anti-rabbit antibody (MSD) (25 μl/well) was added
for 2 h at RT. Before the plates were read on a QUICK-
PLEX SQ 120 reader (MSD), 150 μl of 2× MSD read
buffer with surfactant (MSD) was added to the wells.
The samples were analyzed without knowledge of the
clinical diagnosis. Intra-assay variation of the assay
was calculated as the median of range/average from
duplicate measurements, and the result was 10.4 %.
Measurements of samples with a coefficient of vari-
ation (CV) above 20 % were repeated. The interassay
CV was 14.2 %, as indicated by positive controls that
were run on every plate. The detection ranges were
57.5–4000 pg/ml on the first plate and 69.4–4000 pg/ml
on the second plate.

YKL-40 assay
YKL-40 levels were measured with a commercially avail-
able ELISA kit (R&D Systems, Minneapolis, MN, USA)
according to the manufacturer’s instructions. This assay
has been validated previously for CSF [28, 29, 32, 33].
For the YKL-40 analyses, the CSF was diluted 1:100. The
samples were analyzed without knowledge of the clinical
diagnosis. Intraassay CVs were all below 10 %. The inter-
assay CV, as indicated by positive controls run on every
plate, was 5.6 %.
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Statistical analysis
The statistical analyses were performed with GraphPad
Prism 6 software (GraphPad Software, La Jolla, CA,
USA). Because data were skewed, group comparisons
were made using the nonparametric Kruskal–Wallis test
followed by Dunn’s posttest. Correlations were deter-
mined using Spearman’s rank correlation coefficient. Re-
ceiver operating characteristic (ROC) curves were drawn
by plotting the false-positive fraction (100 % − specificity)
versus the true-positive fraction (sensitivity). A p value
below 0.05 was considered significant.

Results
Patient characteristics
In total, 95 CSF samples collected at the Department of
Psychiatry and Psychotherapy of the Universitätsklinikum
Erlangen were included in the study and categorized
according to the NIA-AA criteria. The cohort con-
sisted of 39 patients with Alzheimer’s disease demen-
tia (AD-D) comprising patients with probable AD
dementia with high evidence of AD pathophysiological
process, patients with possible AD dementia with high
evidence of AD pathophysiological process, and patients
with probable AD dementia with intermediate evidence
of AD pathophysiological process; 13 patients with MCI
with a high likelihood that the mild cognitive impair-
ment was due to Alzheimer’s disease (MCI-AD); 29 pa-
tients with mild cognitive impairment unlikely due to
Alzheimer’s disease (MCI-o); and 14 patients with de-
mentia unlikely due to AD (non-AD-D) (Table 1). The
group of patients with other dementias included seven
patients with frontotemporal dementia, three with vascu-
lar dementia, one with Lewy body dementia, and three
with dementia of unknown origin. As AD biomarkers are
applied mostly in the differential diagnosis of cognitive

disturbances, MCI-o was chosen as the reference group.
This group consisted especially of patients with depres-
sion, vascular disease, and early frontotemporal dementia
(Table 1). The study population was well balanced overall
according to age and sex. A significant difference in age
was evident only between the non-AD-D and AD-D
cohorts (p < 0.05). The core biomarkers Aβ42, t-tau,
and p-tau differed highly significantly in patients with
MCI-AD and patients with AD compared with those
in the MCI-o and non-AD-D groups (p < 0.001). As ex-
pected, MMSE scores in the non-AD-D and AD-D co-
horts were significantly lower than in the MCI samples.

Elevated levels of neurogranin in Alzheimer’s disease
Compared with patients with MCI-o, neurogranin was
significantly increased in patients diagnosed with MCI-
AD (p < 0.05) and those with AD dementia (p < 0.001). No
difference was found between MCI-o and the non-
AD-D patients (Fig. 1). The neurogranin levels in
MCI-AD patients did not differ from those with sus-
pected AD dementia. No difference in neurogranin
levels was found within the different AD dementia popu-
lations separated by the certainty of the diagnosis (data
not shown).
For the analysis of correlations, MCI-AD and AD-D

were merged into an AD group and MCI-o and non-
AD-D were merged into a non-AD group. Neurogranin
correlated with t-tau and p-tau in the non-AD group
and in the AD group (Fig. 2). However, correlations were
stronger within the non-AD group (Fig. 2). A correlation
between neurogranin and Aβ1-42 was found only in the
non-AD group (Fig. 2). Interestingly, a strong correlation
of neurogranin with Aβ1-40 was also found (Fig. 2). The
MMSE score did not correlate with neurogranin levels
in any of the groups (Fig. 3).

Table 1 Patient characteristics

MCI-o Non-AD-D MCI-AD AD-D

Number of patients 29 14 13 39

Age, yr 69.4 [61–75] 65.1 [59–71] 73.3 [69–77] 72.5 [68–76]a

Sex, M/F 15/14 6/8 5/8 18/21

MMSE 27 [26–28] 20 [20–23]b 26 [25–28]c 21 [19–24]b

Aβ1-42, pg/ml 1262 [1014–1626] 1255 [997–1585] 638 [590–852] 796 [618–928]

Aβ1-40, pg/ml 15,393 [12,208–21,112] 13,332 [9303–22,989] 21612 [17,875–26,191] 20,803 [15,168–24,448]

t-tau, pg/ml 226 [158–246] 242 [189–320] 580 [487–789] 522 [403–708]

p-tau, pg/ml 44 [29–59] 46 [41–53] 92 [80–113] 99 [74–111]

Aβ β-amyloid, p-tau phosphorylated tau, t-tau total tau, MMSE Mini Mental State Examination, MCI-o mild cognitive impairment not due to Alzheimer’s disease,
young control subjects without dementia, non-AD-D dementia not due to Alzheimer’s disease, MCI-AD mild cognitive impairment due to Alzheimer’s disease, AD-D
Alzheimer’s disease dementia
The values represent the median [interquartile range]
Differences between the groups were calculated using a nonparametric Kruskal-Wallis test followed by Dunn’s posttest. No p values were calculated for Aβ, t-tau,
and p-tau, as the patients were selected according to these markers
ap < 0.05 vs. non-AD-D
bp < 0.001 vs. MCI-o
cp < 0.01 vs. non-AD-D
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Elevated levels of YKL-40 in Alzheimer’s disease
CSF YKL-40 levels were significantly elevated in patients
with AD dementia as compared with those with MCI-o or
non-AD dementia (p < 0.05). YKL-40 was also elevated in
MCI-AD patients, but without reaching statistical signifi-
cance (p = 0.15). The YKL-40 levels of MCI-AD and AD
dementia patients did not differ (Fig. 1). The patients with
other forms of dementia did not show an elevation in
YKL-40 levels compared with MCI-o patients (Fig. 1).
YKL-40 was age-correlated in our sample (Additional

file 1: Figure S1). However, as the populations with
cognitive disturbances were age-matched, no statistical
correction for age was made. A significant correlation of
YKL-40 with t-tau and p-tau was found only in the non-
AD group (Additional file 2: Figure S2). In addition, no
correlation of YKL-40 with Aβ1-42, Aβ1-40, or MMSE score
was observed (Fig. 3 and Additional file 2: Figure S2).

No correlation between neurogranin and YKL-40
No significant correlation could be shown between
neurogranin and YKL-40, as indicators for postsynaptic
integrity and microglial activation in AD (Fig. 2).

Fig. 1 Increased levels of cerebrospinal fluid (CSF) neurogranin and
YKL-40 in Alzheimer’s disease. Scatterplots of CSF neurogranin (a)
and YKL-40 (b) in patients with mild cognitive impairment not due
to Alzheimer’s disease (MCI-o, black squares), mild cognitive
impairment due to AD (MCI-AD, circles with a cross), Alzheimer’s
disease dementia (AD-D, black circles), and non-Alzheimer’s disease
dementia (non-AD-D), consisting of frontotemporal lobar
degeneration (withe circles), vascular dementia (semi-filled squares),
dementia with Lewy bodies (white squares), and dementia of
unknown origin (semi-filled circles). Data are presented as median
and interquartile range. Differences between the groups were
calculated with the Kruskal–Wallis test followed by Dunn’s posttest.
*p < 0.05, **p < 0.01, ***p < 0.001

Fig. 2 Neurogranin is correlated with total tau (t-tau),
phosphorylated tau (p-tau), and β-amyloid (Aβ40), especially in
subjects without Alzheimer’s disease (non-AD). Cerebrospinal fluid
levels of neurogranin in the non-AD group (a, c, e, g, and i) and
patients in the AD group (b, d, f, h, and j) are plotted against YKL-40
(a, b) and core AD biomarkers (c–j). Correlations were calculated
using Spearman’s rank correlation coefficient
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Neurogranin supports the early and differential diagnosis
of AD
To test the suitability of neurogranin and YKL-40 as bio-
markers for AD, ROC curves were calculated. Samples
of patients with AD pathology (AD group) could be sep-
arated from those without signs of AD pathology, in-
cluding other dementias (non-AD group), with an area
under the curve (AUC) of 0.85 for neurogranin and 0.66
for YKL-40 (Fig. 4). Combining the two markers by
multiplication resulted in an AUC of 0.85 (Fig. 4).

Discussion
We have shown that the synaptic protein neurogranin
and YKL-40 are elevated in the CSF of patients with AD.
Even though both markers were significantly increased,
they did not correlate with each other in AD.
In the diagnosis of cognitive disturbances, biochemical

markers as indicators of the disease are increasingly im-
plicated. Unfortunately, biochemical markers reflecting
cognitive decline are still sparse [8]. It has long been
known that the number of synapses is well correlated
with the degree of cognitive disturbances [10, 34, 35].
Therefore, it is expected that biomarkers indicating syn-
aptic integrity would be well suited to reflect cognitive
decline. In our study, CSF neurogranin levels were ele-
vated in AD. However, we found no difference in the

Fig. 3 Neurogranin and YKL-40 are not correlated with Mini Mental State Examination (MMSE) scores. Cerebrospinal fluid levels of neurogranin
(a, b) and YKL-40 (c, d) are plotted against MMSE scores in the non-AD group (a, c) and the AD group (b, d). Correlations were calculated using
Spearman’s rank correlation coefficient

Fig. 4 Neurogranin distinguishes Alzheimer’s disease (AD) from
non-AD subjects well. Receiver operating characteristic curves of
neurogranin (black circles), YKL-40 (black triangles), and the product
of neurogranin × YKL-40 (white circles) for the discrimination
between samples within the non-AD group and the AD group.
AUC area under the curve
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levels of neurogranin in the dementia stage versus MCI.
In addition, there was no correlation between neurogra-
nin levels and MMSE scores. Thus, our results are in
line with previous reports of elevated levels of neurogra-
nin in AD [19, 20, 36, 37]. In contrast to our present
study, Thorsell et al. did not distinguish between MCI
due to AD and MCI due to other diseases, and they
measured neurogranin levels in the MCI group between
that of controls and that of patients with AD [19]. In
their study, Kvartsberg et al. included a neuropsycho-
logical follow-up investigation which showed that high
CSF levels of neurogranin at baseline predicted a more
rapid decline in cognition [20]. This might indicate that
neurogranin reflects not the synaptic density but rather
the intensity of current synaptic destruction.
In line with previous studies, we have shown that

neurogranin differentiated well between AD and other
neurodegenerative diseases. Established core biomarkers
(i.e., Aβ1–42, t-tau, and p-tau) have high diagnostic accur-
acy in discriminating individuals with AD from subjects
without cognitive disturbances, but their diagnostic per-
formance in differentiating AD from other dementias is
far from optimal [38]. Interestingly, CSF neurogranin
was not elevated in our cohort of patients with other
neurodegenerative diseases. However, the cohort of non-
AD-D patients was small and comprised especially pa-
tients with frontotemporal lobar degeneration. Further
research is necessary to clarify whether the elevation of
neurogranin is specific for AD.
The stronger correlation of neurogranin and tau/p-tau

in non-AD patients as compared with patients with AD
and the missing elevation of neurogranin in non-AD-D
patients also points to a mechanism of neurodegeneration
in AD distinct from the physiological dying of neurons
and distinct from other neurodegenerative diseases. Most
likely, it shows a degeneration of synapses that is weakly
related to the axonal damage indicated by tau [39]. The
exact mechanism by which neurogranin is released is
unclear.
Elevated levels of CSF YKL-40 in early stages of AD

have been demonstrated in two independent studies, but
there are also contradictory data [28, 32, 40]. In our
study, we confirmed that YKL-40 is elevated early in the
course of AD and that the levels do not change during
disease progression. In addition, YKL-40 levels in other
dementias did not differ from those with MCI not due
to AD. This suggests that neuroinflammation in AD
pathology differs from that in other dementias. In ac-
cordance with the concept of inflammaging, introduced
by Franceschi et al., we found a correlation of YKL-40
with age. Inflammaging describes a low-grade, chronic
upregulation of inflammatory responses during aging as
a risk factor for several age-dependent diseases [41, 42].
Accumulating evidence shows a similar alteration in the

CNS of the elderly as a prodrome of AD [43]. In part,
this increased immune reactivity in the aged brain might
be derived from primed microglia. Primed microglia are
in a preactivated state and tend to react in a prolonged
manner and by secretion of higher amounts of proinflam-
matory signals [44]. Excessive inflammatory responses by
primed microglia aggravate neurodegeneration, impair
synaptic plasticity, and lead to cognitive decline [45].
However, we did not find a correlation between YKL-40
and MMSE. Yet, as a marker for microglial activation,
YKL-40 seems well suited to reflect these aspects of AD
pathophysiology.
Even though a link between microglial activation and

synaptic degeneration can be postulated, we found no
correlation between neurogranin and YKL-40 in our
study. As detailed above, YKL-40 is a rather unspecific
marker that is highly influenced by patients’ comorbidi-
ties. This might also explain why data on YKL-40 corre-
lations are somewhat contradictory. Two studies showed
a correlation with p-tau and t-tau, whereas a third did
not find any correlation with CSF tau levels [27, 29, 40].
Data on correlations with MMSE are likewise conflicting
[29, 40]. The missing correlation between neurogranin
and YKL-40 suggests that these two markers reflect two
different aspects of neurodegeneration in AD. Whereas
YKL-40 might represent Aβ-mediated activation of micro-
glia and neuroinflammation, elevated levels of neurogra-
nin might indicate synaptic damage of another origin,
such as direct Aβ-mediated neurotoxicity via soluble olig-
omers, disturbances in calcium homeostasis, or mitochon-
drial damage [46–52].
To evaluate neurogranin and YKL-40 as potential bio-

markers for AD, we determined ROC curves for both
markers alone and a combination of both markers by
multiplication. With an AUC of 0.85, the diagnostic per-
formance of neurogranin is in the reported range of the
isolated core biomarkers. The combination of Aβ, tau,
and neurogranin might therefore improve diagnostic
performance considerably. A comparison with core bio-
markers was not possible in our study, as patients were
selected according to these markers. To further evaluate
the potential of neurogranin as a diagnostic biomarker,
further studies including patients not stratified by estab-
lished biomarkers are needed. The additional benefit of
YKL-40 as biomarker for AD is limited, with an AUC of
0.66, and is a rather unspecific marker. However, YKL-
40 might be useful for patient stratification and monitor-
ing of drugs targeting microglial activation.

Conclusions
Taken together, elevated levels of neurogranin and YKL-
40 could be found in CSF samples of patients with AD
compared with those with other dementias and control
subjects. The expected relationship between postsynaptic
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damage and microglial activation in AD could not be
shown using these markers. Therefore, neurogranin and
YKL-40 might support the biochemical dementia diagno-
sis by reflecting aspects of AD pathophysiology comple-
mentary to Aβ and tau.

Additional files

Additional file 1: Figure S1. YKL-40 is strongly, and neurogranin
weakly, correlated with age. CSF levels of neurogranin and YKL-40 are
plotted against age in the whole sample. Correlations were calculated
with Spearman’s rank correlation coefficient. (TIF 106 kb)

Additional file 2: Figure S2. YKL-40 is correlated with t-tau and p-tau
in non-AD subjects. CSF levels of YKL-40 in the non-AD group (A, C, E, G)
and the AD group (B, D, F, H) are plotted against core AD biomarkers.
Correlations were calculated with Spearman’s rank correlation coefficient.
(TIF 343 kb)
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