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Neurogranin as a Cerebrospinal Fluid Biomarker
for Synaptic Loss in Symptomatic Alzheimer Disease
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IMPORTANCE Neurogranin (NGRN) seems to be a promising novel cerebrospinal fluid (CSF)
biomarker for synaptic loss; however, clinical, and especially longitudinal, data are sparse.

OBJECTIVE To examine the utility of NGRN, with repeated CSF sampling, for diagnosis,
prognosis, and monitoring of Alzheimer disease (AD).

DESIGN, SETTING, AND PARTICIPANTS Longitudinal study of consecutive patients who
underwent 2 lumbar punctures between the beginning of 1995 and the end of 2010 within
the memory clinic–based Amsterdam Dementia Cohort. The study included 163 patients: 37
cognitively normal participants (mean [SE] age, 64 [2] years; 38% female; and mean [SE]
Mini-Mental State Examination [MMSE] score, 28 [0.3]), 61 patients with mild cognitive
impairment (MCI) (mean [SE] age, 68 [1] years; 38% female; and mean [SE] MMSE score, 27
[0.3]), and 65 patients with AD (mean [SE] age, 65 [1] years; 45% female; and mean [SE]
MMSE score, 22 [0.7]). The mean (SE) interval between lumbar punctures was 2.0 (0.1) years,
and the mean (SE) duration of cognitive follow-up was 3.8 (0.2) years. Measurements of CSF
NGRN levels were obtained in January and February 2014.

MAIN OUTCOME AND MEASURE Levels of NGRN in CSF samples.

RESULTS Baseline CSF levels of NGRN in patients with AD (median level, 2381 pg/mL
[interquartile range, 1651-3416 pg/mL]) were higher than in cognitively normal participants
(median level, 1712 pg/mL [interquartile range, 1206-2724 pg/mL]) (P = .04). Baseline NGRN
levels were highly correlated with total tau and tau phosphorylated at threonine 181 in all
patient groups (all P < .001), but not with Aβ42. Baseline CSF levels of NGRN were also higher
in patients with MCI who progressed to AD (median level, 2842 pg/mL [interquartile range,
1882-3950 pg/mL]) compared with those with stable MCI (median level, 1752 pg/mL
[interquartile range, 1024-2438 pg/mL]) (P = .004), and they were predictive of progression
from MCI to AD (hazard ratio, 1.8 [95% CI, 1.1-2.9]; stratified by tertiles). Linear mixed-model
analyses demonstrated that within-person levels of NGRN increased over time in cognitively
normal participants (mean [SE] level, 90 [45] pg/mL per year; P < .05) but not in patients
with MCI or AD.

CONCLUSIONS AND RELEVANCE Neurogranin is a promising biomarker for AD because levels
were elevated in patients with AD compared with cognitively normal participants and
predicted progression from MCI to AD. Within-person levels of NGRN increased in cognitively
normal participants but not in patients with later stage MCI or AD, which suggests that NGRN
may reflect presymptomatic synaptic dysfunction or loss.
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T he core cerebrospinal fluid (CSF) biomarkers Aβ42, total
tau, and tau phosphorylated at threonine 181 (P-tau181)
reflect the neuropathological hallmarks of Alzheimer

disease (AD), amyloid plaques, and neurofibrillary tangles.1

Clinically, AD is characterized by cognitive decline, but once a
patient has AD pathology, these core CSF biomarkers appear not
to reflect further functional decline owing to their relative sta-
bility during clinical AD.2-4

The synapse plays a central and essential role in cognitive
function because it subserves neuronal transmission. Synaptic
loss is an early event in the pathogenesis of AD5 and has been
showntocorrelatewithcognitivedecline.6 Biomarkersthatreflect
synaptic integrity could therefore be useful for both an accurate,
earlydiagnosisanddiseaseprognosis.Apromisingbiomarkercan-
didate is the postsynaptic protein neurogranin (NGRN),7 which
is expressed exclusively in the brain, particularly in dendritic
spines.7 Neurogranin binds to calmodulin in the absence of
calcium and is involved in synaptic plasticity and long-term
potentiation, processes essential for learning.8 Decreased levels
ofNGRNhavebeenreportedinADbraintissuesamplescompared
with control samples,9,10 and recent studies have reported in-
creases in CSF NGRN levels in patients with AD compared with
controls.11,12 We aimed to evaluate the diagnostic and prognostic
utility of NGRN as a CSF biomarker in a cohort of patients with AD
or mild cognitive impairment (MCI) and cognitively normal par-
ticipants, and to assess its dynamics during disease progression
in longitudinal CSF samples obtained from participants over 2
years.

Methods
Participants
From the Amsterdam Dementia Cohort, we included 65 pa-
tients with AD, 61 patients with MCI, and 37 cognitively nor-
mal participants, all of whom had CSF samples obtained at 2
time points.2 At baseline, all patients underwent standard de-
mentia screening, including physical and neurological exami-
nations, laboratory tests, electroencephalography, and mag-
netic resonance imaging. Cognitive screening included a
Mini-Mental State Examination but usually also involved com-
prehensive neuropsychological testing. The diagnosis of prob-
able AD was made according to the criteria of the National In-
stitute of Neurological and Communicative Disorders and
Stroke and the Alzheimer’s Disease and Related Disorders
Association.13 The diagnosis of MCI was made according to the
criteria of Petersen et al.14 All of the patients with probable AD
or MCI experienced subjective cognitive decline, and, in ad-
dition, they scored in a cognitive domain below expected (<1
SD), and yet they did not have dementia. When the results of
all examinations were normal, the patients were considered
to have subjective memory complaints. The cognitively nor-
mal group consisted of 31 participants with subjective memory
complaints, 2 participants with a psychiatric disorder (eg, de-
pression), 2 participants with temporal epilepsy (treated with
medication), and 2 healthy volunteers. Diagnoses were made
by consensus of a multidisciplinary team. Our study was ap-
proved by the ethical review board of the VU University Medi-

cal Center in Amsterdam, the Netherlands, and all partici-
pants provided written informed consent.

Follow-up
Patients were followed up clinically on an annual basis. Of the
61 patients with MCI (with a mean [SE] follow-up of 2.7 [0.3]
years), 17 remained stable, 36 progressed to AD,13 and 8 pro-
gressed to other types of dementia (2 patients progressed to
frontotemporal lobar degeneration,15 3 patients to vascular
dementia,16 1 patient to dementia with Lewy bodies, 1 patients
to progressive supranuclear palsy,17 and 1 patient to normal-
pressure hydrocephalus). Of the 37 cognitively normal partici-
pants (with a mean [SE] follow-up of 4.0 [0.5] years for 31 cog-
nitively normal participants), 6 with subjective memory com-
plaints progressed to MCI, 3 progressed to AD, 1 progressed to
vascular dementia, and 27 remained stable. During follow-up,
patients were asked to undergo a second lumbar puncture (mini-
muminterval,6months).Owingtotechnicalreasons(inadequate
amount of CSF aliquoted in selected vials), NGRN was unavail-
able for 1 patient at baseline and 3 patients at follow-up.

Analyses of CSF Samples
Samples of CSF were obtained by standard lumbar puncture,
using a 25-gauge Quincke needle, and collected in 10-mL poly-
propylene tubes. Within 2 hours, CSF samples were centrifuged
at 1800g for 10 minutes at 4°C, aliquoted in polypropylene tubes
of 0.5 or 1 mL, and stored at −80°C until further analysis of NRGN.
Baseline CSF Aβ42, total tau, and P-tau181 were measured with
an enzyme-linked immunosorbent assay (INNOTEST ELISA;
Fujirebio [formerly Innogenetics]) at the VU University Medical
Center.18 Because the manufacturer does not supply controls, the
consistency of the assay’s performance was monitored using
pools of surplus CSF samples. The mean (SD) intra-assay coef-
ficientofvariationwas2.0%(0.5%)forAβ42,3.2%(1.3%)fortotal
tau, and 2.9% (0.8%) for P-tau181 as calculated from averaging the
coefficientofvariationofduplicatesfrom5runs(with36samples
each) randomly selected over 2 years. The mean (SD) interassay
coefficient of variation was 10.9% (1.8%) for Aβ42, 9.9% (2.1%)
for total tau, and 9.1% (1.8%) for P-tau181, as analyzed in a high
and low pool from 13 consecutive pool preparations used in total
in 189 to 231 runs. Samples of CSF were analyzed for NGRN using
a sandwich immunoassay developed on a Singulex Erenna
system at Washington University in St Louis, Missouri.

NGRN Assay
Recombinant glutathione S-transferase (GST)–NGRN fusion pro-
tein was produced in pGEX-4T-1 (GE Healthcare Biosciences),
expressed in Escherichia coli, and then purified according to the
manufacturer. Rabbits were immunized with the GST-NGRN fu-
sion protein at Harlan Bioproducts for Science (Madison, Wis-
consin). Antiserum samples were first passed over a glutathione-
GST column to remove anti-GST antibodies and then a
glutathione-GST-NGRN column to obtain affinity-purified anti-
NGRN antibodies. This material was epitope-mapped using
spot-peptide membrane arrays, where spot 1 comprised resi-
dues 1 to 10, spot 2 residues 2 to 11, spot 3 residues 3 to 12, and
so on, until the entire sequence of 78 residues was covered. Two
peptides were synthesized as a result of this mapping experi-
ment. Epitope affinity columns were prepared with N-terminal
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peptide S10-D23 and C-terminal peptide G49-G60, each with a
nonnative N-terminal cysteine for conjugation to the column.
Synthetic 78-mer human NGRN was prepared and character-
ized by AAPPTec using C18-reversed phase-high performance
liquid chromatography and electrospray ionization-mass
spectrometry, and this material was used as the immunoassay
standard. The stock mean (SD) concentration, prepared in phos-
phate-buffered saline with azide, was determined by amino acid
analysis in triplicate (at AAA Service Laboratory, Inc, in Damas-
cus, Oregon) and found to be 1.12 (0.03) mg/mL.

A sandwich immunoassay was developed for CSF on a Sin-
gulex Erenna system using the 2 epitope-specific rabbit antibod-
ies (recognizing N-terminal epitope S11-D23 and C-terminal epi-
tope G49-G60 antibodies). The C-terminal–specific antibody (P-
4793) was coupled to magnetic beads and used as the capture
antibody, and the N-terminal–specific antibody (P-4794) was la-
beled with a fluorescent dye and used as the capping/detection
antibody. Three control CSF pools were prepared at concentra-
tions corresponding to low (approximately 400 pg/mL), medium
(approximately 1500 pg/mL), and high (approximately 2900 pg/
mL) levels of NGRN. These were aliquoted and stored at −80°C
for one-time use and included in every assay. For these 3 control

CSF pools, the intra-assay precision (coefficient of variation) for
15 replicates was 6.6%, 7.1%, and 5.8%, respectively, and the in-
terassay coefficient of variation for 23 assays was 5.7%, 6.2%, and
5.4%, respectively. The mean (SD) dilutional linearity recovery
for 5 samples was 98.2% (9.45%), the mean (SD) spike recovery
for 5 different samples was 104.8% (2.5%), and the lower limit
of quantitation was approximately 2 pg/mL. To circumvent in-
terassay variability, baseline and follow-up samples were ana-
lyzed on the same assay plate.19,20 The teams involved in the CSF
analysis were not aware of the clinical diagnoses.

Statistical Analysis
Cross-sectional differences among groups were assessed using
analysis of variance, with post hoc Bonferroni corrections, or the
Fisher exact test when applicable. The CSF biomarkers were log-
transformedtofittheassumptionsneededforanalysisofvariance
and were adjusted for sex and age. Pearson correlations were as-
sessed per diagnostic group using baseline log-transformed CSF
biomarker levels. Cox proportional hazards models, adjusted for
sex and age, were performed to analyze the predictive value of
the CSF biomarkers for progression of MCI to AD and for progres-
sion of cognitively normal to either MCI or AD. For the Cox
analyses, NGRN was evaluated as tertiles (<1666 pg/mL at tertile
1, 1666-2734 pg/mL at tertile 2, and >2734 pg/mL at tertile 3). Haz-
ard ratios are presented with 95% CIs. Kaplan-Meier curves were
created for illustrative purposes. Finally, age- and sex-adjusted
linearmixedmodelswereappliedtoassesswithin-personannual
changes over time in CSF biomarker levels by diagnosis. The CSF
NGRN level was the dependent variable, while diagnosis (treated
as a categorical variable), time (ie, the interval between lumbar
punctures in years; treated as a continuous variable), and the in-
teractionbetweendiagnosisandtimeweretheindependentvari-
ables. Diagnostic categories were recoded as dummy variables
in order to estimate the mean (SE) values for each category. All
linear mixed models were specified with a random intercept and/
or slope based on −2LL (minus twice the log likelihood) criteria.21

Forstatisticalanalyses,weusedSPSSStatistics21.0(forWindows;
IBM). Statistical significance was set at P < .05.

Results
Baseline Characteristics
The baseline characteristics of the patients are shown in Table 1.
The baseline levels of NGRN in the patients with AD were higher
than those in the cognitively normal participants (P = .04).

Table 1. Baseline Characteristics of Patients in the Separate Clinical
Diagnostic Categories

Characteristic

Cognitively
Normal
Participants
(n = 37)

Patients
With MCI
(n = 61)

Patients
With AD
(n = 65)

Age, mean (SE), y 64 (2) 68 (1)a 65 (1)

Female sex, No. (%) 14 (38) 23 (38) 29 (45)

Mean (SE) baseline
MMSE scoreb

28 (0.3) 27 (0.3)a 22 (0.7)c,d

APOE genotype,
No./Total No. (%)
of ε4 carrierse

15/36 (42) 33/58 (57) 45/64 (70)a

Follow-up time,
mean (SE), y

2.4 (0.2) 2.0 (0.1) 1.9 (0.1)

Core CSF
biomarkers,
median (IQR),
pg/mL

Aβ42 704 (518-1010) 481 (369-651)c 407 (327-489)c,d

Total tau 304 (188-387) 527 (278-846)c 613 (422-878)c

P-tau181 48 (36-72) 70 (45-102)c 80 (61-105)c

NGRN,
median (IQR),
pg/mL

Baseline 1712
(1206-2724)

2391
(1418-3326)

2381
(1651-3416)a

Follow-up 2015
(1522-2997)

2909
(1686-3489)

2451
(1669-3124)

Abbreviations: AD, Alzheimer disease; CSF, cerebrospinal fluid;
IQR, interquartile range; MCI, mild cognitive impairment; MMSE, Mini-Mental
State Examination; NGRN, neurogranin; P-tau181, tau phosphorylated at
threonine 181.
a P < .05 vs cognitively normal participants.
b Baseline scores (range, 0-30 [with 30 indicative of perfect performance])

were available for 160 patients, and follow-up scores were available for 148
patients; the mean (SE) cognitive follow-up period was 3.8 (0.2) years.

c P < .01 vs cognitively normal participants.
d P < .01 vs patients with MCI.
e The Fisher exact test or analysis of variance with post hoc Bonferroni

corrections was used when applicable. The CSF biomarkers were
log-transformed for analyses of variance, which were adjusted for sex and age.

Table 2. Correlations of CSF Neurogranin With Core CSF Biomarkers

Biomarker

Pearson Correlation Coefficienta

Cognitively Normal
Participants
(n = 37)

Patients
With MCI
(n = 61)

Patients
With AD
(n = 65)

Aβ42 −0.07 −0.18 0.23

Total tau 0.79b 0.89b 0.87b

P-tau181 0.80b 0.88b 0.89b

Abbreviations: AD, Alzheimer disease; CSF, cerebrospinal fluid; MCI, mild
cognitive impairment; P-tau181, tau phosphorylated at threonine 181.
a Assessed with log-transformed baseline measures of the CSF biomarkers.
b P < .001.
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There were no differences in NGRN levels between the pa-
tients with MCI and the patients with AD or between the pa-
tients with MCI and the cognitively normal participants (P = .25
and P = .31). Baseline NGRN levels were strongly positively cor-
related with total tau and P-tau181 levels in all clinical groups
but were not correlated with Aβ42 level, as shown in Table 2.

Predictive Value of Baseline Levels of Novel Biomarkers
for Progression
Further analyses with analysis of variance showed that base-
line levels of NGRN were higher in patients with MCI who pro-
gressed to AD than in patients with MCI who remained stable.
Cox regression analyses revealed that baseline NGRN levels
were predictive of progression from MCI to AD in the same or-
der of magnitude as the core biomarkers Aβ42, total tau, and
P-tau181, as shown in Table 3 and illustrated by Figure 1. In the

cognitively normal group, there was a trend, albeit nonsignifi-
cant, of NGRN levels predicting progression within the AD
continuum (hazard ratio, 1.6 [95% CI, 0.64-4.0]).

Longitudinal Changes in Novel Biomarkers
Linear mixed-model analyses showed that levels of NGRN in-
creased within cognitively normal participants (mean [SE]
level, 90 [45] pg/mL per year; P < .05) but not in patients with
MCI (mean [SE] level, 53 [42] pg/mL per year; P = .22) or AD
(mean [SE] level, 14 [45] pg/mL per year; P = .75), as shown in
Figure 2. This indicates that NGRN levels increase in a very early
(asymptomatic) stage but not in later stages of the AD
continuum.

Figure 1. Kaplan-Meier Curve for Progression From Mild Cognitive
Impairment (MCI) to Alzheimer Disease (AD), Stratified by Tertiles
of Neurogranin Levels
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Figure 2. Annual Change in Neurogranin (NGRN) Levels
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The annual change in NGRN levels obtained from samples of cerebrospinal fluid
were assessed using age- and sex-adjusted linear mixed models. The NGRN
level was the dependent variable, and clinical diagnosis (treated as a categorical
variable), time (ie, the interval between lumbar punctures in years; treated as a
continuous variable), and the interaction between diagnosis and time were the
independent variables. The reported β represents the estimated change in
NGRN levels per year, and the error bars represent the 95% CIs of the reported
effects.

Table 3. Progression From MCI to AD

Variable
Patients With Stable MCI
(n = 17)

Patients With MCI Progressing to AD
(n = 36)

Risk of Progression to AD,
HR (95% CI)

Age, mean (SE), y 64 (2) 70 (1)a

Female sex, No. (%) 6 (35) 13 (36)

Mean (SE) baseline MMSE scoreb 28 (0.6) 26 (0.4)a

CSF biomarkers,c median (IQR), pg/mL

Aβ42 579 (493-814) 410 (322-507)d 1.6 (1.0-2.6)

Total tau 274 (212-418) 739 (463-950)d 2.3 (1.4-3.7)

P-tau181 47 (40-79) 90 (65-124)d 2.1 (1.3-3.5)

Neurogranin 1752 (1024-2438) 2842 (1882-3950)d 1.8 (1.1-2.9)

Abbreviations: AD, Alzheimer disease; CSF, cerebrospinal fluid; HR, hazard ratio;
IQR, interquartile range; MCI, mild cognitive impairment; MMSE, Mini-Mental
State Examination.
a P < .05 vs patients with stable MCI.
b Baseline scores (range, 0-30 [with 30 indicative of perfect performance])

were available for 52 patients.

c Cox analyses were used with CSF biomarkers in tertiles (binning was
performed for all included patients). The Fisher exact test or analysis of
variance was used when applicable. The CSF biomarkers were log-transformed
for analyses of variance, which were adjusted for sex and age. For Aβ42, the
tertiles were inverted.

d P < .01 vs patients with stable MCI.
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Discussion

In our longitudinal study with repeated CSF sampling, we
showed that NGRN has potential as a novel biomarker for syn-
aptic dysfunction in AD. Baseline NGRN levels are higher in pa-
tients with MCI who progressed to AD than in patients with
MCI who were clinically stable, and these higher levels pre-
dicted progression to AD. In addition, levels of NGRN were
higher in patients with AD than in cognitively normal partici-
pants. Longitudinally, we showed that levels of NGRN in-
creased over time in participants who were cognitively nor-
mal but not in patients with MCI or AD who were already
cognitively impaired.

Our study confirms that CSF levels of NGRN are in-
creased in patients with AD compared with cognitively nor-
mal participants.11,12 This is consistent with postmortem stud-
ies in both mouse models22 and human tissue.10 The
measurement of CSF NGRN level could possibly aid in the early
diagnosis of AD. In addition, we show that NGRN levels are
higher in patients with MCI who progress to AD than in pa-
tients with MCI who remain stable and that levels are predic-
tive of progression from MCI to AD, as has recently also been
reported by another group in a similar cohort using a differ-
ent assay.12 Thus, the CSF NGRN level appears to have a prog-
nostic as well as a diagnostic value.

Levels of NGRN in CSF were much higher in the present
study than in the study by Kvartsberg et al,12 which also used
an enzyme-linked immunosorbent assay. Differences in abso-
lute values may be a result of the different antibodies used in
the 2 assays. Further studies comparing both enzyme-linked im-
munosorbent assays are needed to clarify this matter. How-
ever, the direction and order of magnitude of the variance be-
tween patient groups were the same. It is possible that
differences in the calibration and/or antibodies used contrib-
uted to the absolute differences. Among the limitations, the cog-
nitively normal group was a mixed group of participants that
also included patients with psychiatric disorders and temporal
lobe epilepsy, which may hamper generalizability. In addition,
our cognitively normal group was biased toward participants
who showed decline (6 progressed to MCI, and 4 to dementia),
which could have even diluted the baseline effect. This bias
could be due to the fact that progressors are more likely to re-
turn to our clinic for a second lumbar puncture.2 However,

thanks to this follow-up, we were able to evaluate change over
time in NGRN levels for all stages of the AD continuum. An-
other limitation was that the size of the group of cognitively nor-
mal participants was too small to reliably analyze for risk of pro-
gression with Cox proportional hazards models. However, the
trend was in the same order of magnitude as shown for the group
of patients with MCI. This supports the notion that synapse loss
is a very early process during AD pathogenesis.

With our longitudinal analyses, we found that NGRN lev-
els increased in time in cognitively normal participants but not
in patients with MCI or AD. This pattern is also consistent with
the view that synaptic changes mainly occur in the earliest
phase of the AD continuum, even before the stage of MCI.23

Within the AD continuum (as proposed by Jack et al24), it could
be hypothesized that CSF NGRN levels increase very early. Fur-
ther studies are needed to confirm our findings. Additional
cross-sectional studies are needed to clarify whether NGRN is
specific for AD, or whether it also reflects synaptic changes in
other neurodegenerative diseases.25

We observed high positive correlations between CSF NGRN
levels and both total tau and P-tau181 levels, but not with Aβ42
levels. The lack of correlation between NGRN level and Aβ42
level is in line with studies showing that both synapse loss
and clinical stage are unrelated to the amount of amyloid
plaques.26-28 The CSF total tau level, on the other hand, is re-
lated to cognitive deterioration, likely reflecting neuronal cell
death.29-31 The NGRN level could be a more specific marker for
pathological changes that lead to cognitive deterioration be-
cause it represents the more specific, and potentially earlier,
process of synapse loss. Importantly, it reflects a mechanism
that could be useful in treatment trials to monitor the effects
of drugs on synaptic integrity.

Conclusions
In summary, NGRN levels are lower in the cognitively normal
participants than in patients with AD, and then they increase
over time. Furthermore, increased levels of NGRN are associ-
ated with progression to AD in patients with MCI. In addition
to the “core CSF biomarkers” Aβ42, total tau, and P-tau181, the
NGRN level could have added value because it is a reflection
of a pathophysiological process that is directly related to
cognitive changes (ie, synapse function).
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