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ABSTRACT | In this paper, we describe the design of Neurogrid,

a neuromorphic system for simulating large-scale neural

models in real time. Neuromorphic systems realize the function

of biological neural systems by emulating their structure.

Designers of such systems face three major design choices:

1) whether to emulate the four neural elementsVaxonal arbor,

synapse, dendritic tree, and somaVwith dedicated or shared

electronic circuits; 2) whether to implement these electronic

circuits in an analog or digital manner; and 3) whether to

interconnect arrays of these silicon neurons with a mesh or a

tree network. The choices we made were: 1) we emulated all

neural elements except the soma with shared electronic circuits;

this choice maximized the number of synaptic connections; 2) we

realized all electronic circuits except those for axonal arbors in an

analog manner; this choice maximized energy efficiency; and

3) we interconnected neural arrays in a tree network; this choice

maximized throughput. These three choices made it possible to

simulate amillion neuronswith billions of synaptic connections in

real timeVfor the first timeVusing 16Neurocores integrated on a

board that consumes three watts.
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circuits; asynchronous circuits; brain modeling; computational

neuroscience; interconnection networks; mixed analog-digital

integrated circuits; neural network hardware; neuromorphic

electronic systems

I . SIMULATING LARGE-SCALE
NEURAL MODELS

Large-scale neural models seek to integrate experimental

findings across multiple levels of investigation in order to

explain how intelligent behavior arises from bioelectrical

processes at spatial and temporal scales six orders of

magnitude smaller (from nanometers to millimeters and

from microseconds to seconds). Due to prohibitively

expensive computing costs, very few models bridge this

gap, failing to make behaviorally relevant predictions [1]. A

personal computer simulates a mouse-scale cortex model

(2.5 �106 neurons) 9000 times slower than a real mouse

brain operates [2], while using 40 000 times more power

(400W versus 10 mW [3]). Simulating a human-scale cortex

model (2�1010 neurons), the Human Brain Project’s goal, is
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projected to require an exascale supercomputer (1018 flops)

[4] and as much power as a quarter-million households

(0.5 GW) [5]. Hence, large-scale neural modeling’s potential

has hardly been tapped.

Several groups are developing custom computing

platforms with the stated aim of simulating large-scale

neural models affordably. The University of Manchester

SpiNNaker project aims to improve the performance of

software simulations by integrating 18 mobile processors

onto a single die [6], [7]. The IBM SyNAPSE project

(GoldenGate chip) aims to overcome the memory bottle-

neck such simulations face by replacing virtualization with

custom-designed digital electronic circuits that are each

dedicated to emulating a single neural element [8]. The

Heidelberg University BrainScales project (HICANN chip)

aims to reduce the number of transistors these electronic

circuits require by using an analog approach [9]. Our

Neurogrid project (Fig. 1), which also uses an analog

approach, aims to reduce transistor count further by

sharing synapse and dendritic tree circuits [10]. Thus, these

four projects have adopted radically different architectures.

They also use different interconnection networks to route

spikes between arrays of neural elements.

In this paper, we present an analysis of various

neuromorphic architectures’ and spike-routing networks’

scaling properties, which informed Neurogrid’s design

choices (Section II); describe the complete Neurogrid

system (Section III); provide detailed descriptions of

Neurogrid’s neuron circuit (Section IV) and chip design

(Section V); dissect Neurogrid’s energy consumption

(Section VI); compare its area, energy, and time per

synapse or synaptic activation with the other systems

under development (Section VII); and discuss insights

gleaned from these comparisons (Section VIII).

II . NEUROMORPHIC ARCHITECTURES

Neuromorphic hardware [11], usually realized with axonal

arbor, synapse, dendritic tree, and soma elements, may be

categorized by architecture (i.e., whether elements are

dedicated or shared) and implementation (i.e., whether

elements are analog or digital). These distinctions yield

many neuromorphic hardware realizations. In this section,

we briefly review four neural-element array architectures

and five hardware realizations, as well as two intercon-

nection network topologies for routing spikes. In addition

to bringing readers unfamiliar with the field up to speed,

this review motivates the architectural and implementa-

tion choices we made in designing Neurogrid. Before

proceeding, we describe simple analog and digital im-

plementations of the four neural elements.

Axonal arbors, synapses, dendritic trees, and somas

may be implemented in an analog or digital fashion: In the

simplest fully analog implementation, these elements are

emulated by a wire, a switched current-source, another

wire, and a comparator, respectively [12] [Fig. 2(a)]. The

switched current source’s bias voltageVwhich determines

the synaptic weightVis stored in an analog [13] or digital

[14] manner; the latter requires a digital-to-analog

converter. In the simplest fully digital implementation,

the switched current source is replaced with a bit cell, the

axon and dendrite function as word and bit lines,

respectively, and integration and comparison are imple-

mented digitally [8], [15] [Fig. 2(b)].

A. Four Architectures
We review four distinct architectures: fully dedicated

(FD), shared axon (SA), shared synapse (SS), and shared

dendrite (SD).1 In FD, first realized in very large scale

integration (VLSI) 29 years ago [17], [18], all elements are

dedicated [Fig. 3(a)]. A fully connected network of N
Fig. 1. Neurogrid. (a) GUI: Enables a user to change his or her model

parameters (left), view spike activity in the model’s various layers

(middle), plot spike rasters from a selected neural layer (right), and

enter commands (bottom). (b) Board: Eachneural layer is simulatedby

up to256����� 256 siliconneurons oneach of 16Neurocores integrated on

a 6.5����� 7.5 in
2
board.

Fig. 2. Analog and digital silicon neurons. (a) Analog implementation:

Incoming spikes on the vertical wire (axon) meter charge (synapse)

onto the horizontal wire (dendrite), whose capacitance integrates the

charge. The comparator (soma) compares the resulting voltage with a

threshold and triggers an outgoing spike when the threshold is

exceeded. The capacitor is then discharged (reset) and the cycle starts

over. (b) Digital implementation: A counter is incremented (dendrite)

each time a 1 is read out of a bit cell (synapse), triggered by the

incoming spike (axon). The counter’s output is compared (soma)with a

digitally stored threshold and a spike is triggered when it is

suprathreshold. The counter is then reset and the cycle starts over.

1Shared-soma architectures have been reviewed extensively else-
where [16].
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neurons requires N2 synapse elementsVa feature this

architecture shares with SA.

In SA, first realized 22 years ago using the address–

event representation (AER) [19], [20], each neuron is

assigned a unique address. Each time any neuron spikes, its

address is encoded by a transmitter, communicated on a

digital bus, and decoded by a receiver [Fig. 3(b)]. This time-

multiplexing leverages digital’s speed to reduce the number

of wires from N to log2ðNÞ without any noticeable penalty
as long as the bus does not become overly congested [21].

In SS, first realized 24 years ago [22], [23], only N
electronic circuits are required to fully connect N neurons,

rather than N2, a feature shared with SD [Fig. 3(c)]. SS

uses RAM to realize axonal branchingVinstead of

connecting a dedicated wire to multiple synapse circuits

as FD and SA do. In the original realization, which was all

digital, each shared-synapse circuit retrieved the weight to

be applied from a local RAM using the address on the AER

bus (unlike in the figure) [22], [23]. As it limits an

individual synapse’s effect to its allotted time slot, this

digital realization is said to be time-multiplexed. SS is

attractive when connectivity is sparseVa situation in

which FD and SA waste hardware implementing weights

that are zero.

More recent shared-synapse designs have used an

analog realization and consolidated all the RAM in a single

monolithic block [24]–[26], which may be embedded in

the chip [27]–[29]. The target neurons’ addresses and

weights are written to a location specified by the source

neuron’s address and retrieved sequentially. The analog

realization allows an individual synapse’s effect to extend

beyond its allotted time slot, decaying exponentially with

time. Because this behavior is realized via the principle

of linear superposition, such shared-synapse circuits are

said to be superposable [30]–[32], as opposed to time-

multiplexed. A resistor–capacitor circuit (which may be

implemented with transistors [33]) is used; it essentially

performs temporal low-pass filtering.

In SD, first realized 10 years ago [34], [35], each

shared-synapse circuit feeds its neuron’s neighbors as well.

This arrangement models a cluster of synapses formed by

an axon onto dendrtitic branches from nearby neurons

(i.e., overlapping dendritic trees). The shared-dendrite

circuit makes this possible by applying the superposition

principle in space instead of in time. In its analog

implementation, a resistive network (which may also be

implemented with transistors [36]) is used; it essentially

performs spatial low-pass filtering.

B. Realization Comparison
We compare a total of five realizations: fully dedicated

analog (FDA), shared axon hybrid (SAH), shared axon

digital (SAD), shared synapse hybrid (SSH), and shared

dendrite hybrid (SDH). The hybrid realizations are all

analog except for their axonal arbors. To compare these

five realizations, we calculated how the area ðAÞ a single

synapse occupies, the energy ðEÞ consumed when it is

activated, and the time ðTÞ it takes to do so scale with the

number of neurons ðNÞ in a fully connected network

(Table 1). We ignore other important metrics, in particular

precision. This is intentional because neuromorphic

systems seek to compute with low-precision elements;

their raison d’être is to achieve precision at the network

level by leveraging collective computation.2

A is equal to Aarray=N
2, where Aarray is the array’s area,

which is N2 units for FDA, SAH, and SAD, and N units for

SSH and SDH.

E is equal to ðEaxon þ naxonEdendÞ=naxon, where Eaxon
and Edend are, respectively, the energy required to activate

an axon and a dendrite, obtained by multiplying the wire’s

capacitance (proportional to its length) by its voltage

swing; naxon is the number of synapses the axon contacts.

For the axon, the voltage swing is 1 unit (normalized by the

supply voltage VDD); hence, Eaxon isN units for FDA, SAH,

Table 1 Architecture Comparison

Fig. 3. Functionally equivalent architectures. (a) Fully dedicated:

Hardware elements (for axonal arbors, synapses, dendritic trees, and

somas) are dedicated to individual neural elements. Thus, there is a

one-to-one correspondence between the chip’s elements and the

neural network’s elements. (b) Shared axon: A common set of wires is

shared by all of a neuronal population’s axons. (c) Shared synapse:

A singleelectronic circuit is sharedbyall of aneuron’s synapses; aRAM

is programmed to route all of its presynaptic spikes to this circuit.

(d) Shared dendrite: A single resistive network is shared by a neuronal

population’s (overlapping) dendritic trees.

2The relationship among precision, power, and area is well under-
stood at the element level; it favors analog over digital at low precision
(G 8 b [37]).
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and SAD, and 2
p
N units for SSH and SDH. For the

dendrite, the voltage swing is 1 unit for digital (full swing)

and 1=N units for analog (1=Nth full swing).3 Hence, Edend
is N units for SAD, 1 unit for FDA and SAH, and 1=N units

for SSH and SDH. naxon is N for FDA, SAH, and SAD, 1 for

SSH, and
p
N for SDH.

T is equal to taxon=ðnparnaxonÞ, where taxon is the time it

takes to activate an axon (proportional to its capacitance)

and npar is the number of axons that can be activated in

parallel (1 in all cases but FDA, where it is N). Except for
SAD, where we must add the time it takes to activate a

dendrite (tdend ¼ N units) divided by the number of

dendrites activated in parallel ðnaxon ¼ NÞ. taxon is N units

for FDA, SAH, and SAD and
p
N units for SSH and SDH.

Note that full connectivity requires T ¼ 1=N2 (i.e., N2

bandwidth), which none of these realizations achieve.

We also have to account for the cost of SSH’s and

SDH’s RAM, whose size equals the number of addressable

locations times the number of words per location (Table 2).

SSH requires an N � N RAM, whose A, E, and T scale like

SAD’s synapse array’s. SDH only requires an N �p
N

RAM, as the shared dendrite provides an additional fanout

of
p
N. As a result, A and E are

p
N times smaller, and

hence SDH’s AET product scales like SAH’s. Partitioning

this RAM into
p
N banks (of size

p
N �p

N) reduces E
and T by an additional factor of

p
N, making SDH’s AET

product scale like FDA’s.

When the cost metric is the product of A, E, and T, FDA
and SDH tie for the lowest cost and SAD has the highest,

N2 times more costly. Giving A, E, and T the same

exponents favors achieving performance through parallel-

ism rather than by burning power.4 Interestingly, FDA

achieves its cost-effectiveness by minimizing T, while SDH
does it by minimizing A (see Table 1). That is, for an

N-neuron network, the former runs N times faster but the

latter uses N times less areaVand constrains connectivity

patterns. Thus, FDA is the best choice for applications that

run faster than real time and have arbitrary connectivity,

such as modeling neural development (HICANN’s goal

[9]), while SDH is the best choice for applications that

require lots of neurons but have mostly local connectivity,

such as modeling neocortex (Neurogrid’s goal [10]).

Our conclusions do not change when static power

dissipation (due to bias or leakage currents) is included in

the model. FDA and SDH use complementary strategies to

reduce static dissipation. FDA runs its N2 physical

synapses N times faster, reflected in its N-fold lower T,
decreasing static energy proportionally. SDH realizes its

N2 synapses with N times fewer transistors, reflected in its

N-fold lower A, decreasing static power proportionally.

Since both have AT ¼ 1, static energy makes similar

contributions to E in both. This result predicts that FDA

and SDH have similar static power (per synapse) and

suggests how to extend the model to include it.

C. Spike-Routing Networks
Meshes [6], [39] and trees [40]–[42] have been

explored for routing spikes between neural-element arrays

(called nodes), with a route appended to the neuron’s

address to create a packet. We compare how these

networks’ throughput and latency scale with the number

of nodes n.5 Because each neuron is connected to

thousands of others, high bandwidth is required. And

because spike times are used to encode information,

extremely short latency is required.

Meshes offer high bandwidth due to their large channel

bisection (
p
n for n nodes), but have long latency due to

their large diameter ðpnÞ.6 Trees offer short latency

(diameter is log n) but have low bandwidth (channel

bisection is 1). Unlike meshes, however, trees support

deadlock-free multicast communication (i.e., routing one

packet to many destinations), enabling them to utilize

their limited bandwidth efficiently, and thereby maximize

throughput.

Deadlock occurs when a packet is waiting for a packet

ahead of it to move, which in turn is waiting for a packet

ahead of it, and so on, and these dependencies form a

closed cycle. In this case, none of the packets make

progress toward their destinations. Hence, the routing

network is said to be deadlocked. For unicast communica-

tion (i.e., one-to-one routing), meshes are provably

deadlock-free when dimension-order routing or virtual

channels are used [43]. However, this solution does not

work for multicast routing, which introduces additional

3It makes the neuron’s spike rate similar to the N neurons synapsing
onto it.

4T can be halved by giving each neuron two shared-synapse circuits
that can be activated concurrently, which doubles A; or by doubling the
voltage, which quadruples E [38].

Table 2 RAM Costs

5We ignore all terms in the expressions except the one with the
largest exponent, and we drop this term’s coefficient (e.g.,
ð3=2Þn2 þ 8n ! n2).

6Channel bisection is defined as the minimum number of links
connecting two halves of the network across all possible bisections [43].
Diameter is defined as the longest minimal path, in number of links
transversed, between any pair of nodes [43].
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packet dependencies [44]. Trees are provably deadlock-free

in the unicast case when up-down routing is used [45]–

[47]. This solution works for the multicast case as well if

branching (copying a packet from a parent to its two

children) is restricted to the downward phase [42].

The number of packets each node in a mesh or a tree

relays can be obtained analytically for all-to-all traffic

(Table 3) [42], [47]. In this extreme benchmark, n nodes

exchange a total of n2 packets. For the mesh, which is

restricted to unicast to avoid deadlock, each node relays

n3=2 packets (traffic is uniformly distributed). For the tree,

the root relays n2 packets for unicast and n for multicast.

Thus, multicast cuts the root’s traffic by a factor of n (equal
to the fanout), relieving this bottleneck. As a result, the

tree’s peak node traffic is
p
n less than the mesh’s, and its

latency is
p
n= logðnÞ times shorter.

To summarize, in addition to its lower latency, the tree

offers higher throughput than the mesh if the application

can utilize the former’s multicast capability, and it

requires roughly a third less resources than the mesh

does.7 As the neocortical simulations Neurogrid targets

can use multicast to realize secondary axon-branching, we

chose the tree.

The routing network may be incorporated into the

scaling model developed in Section II-B by including its

area in calculating A, its energy in calculating E, and its

bandwidth in calculating T (Vainbrand and Ginosar [48]

analyze how these quantities scale for various topologies).

We illustrate this for Neurogrid in Sections VI and VII.

III . NEUROGRID

Neurogrid has two main components: software to perform

interactive visualization and hardware to perform real-

time simulation (Fig. 4). Neurogrid’s software stack is

composed of a user interface (UI), a hardware abstraction

layer (HAL), and driver components (Driver). UI allows a

user to specify models of neural networks to be simulated,

interact with the simulations, and visualize the results in

real time. HAL maps the parsed model description to

Neurogrid’s electronic circuits. Driver programs this

mapping on to Neurocores over USB using Neurogrid

packets.

7The hardware grows quadratically with the number of connections a
node has, which, including the connection to its array, is four for a binary
tree and five for a 2-D mesh.

Table 3 Mesh Versus Tree for All-to-All Traffic

Fig. 4.Neurogrid’s softwareandhardware.UI:NGPythonallowsauser

to specify neuronal models in the Python programming environment;

GUI provides an interface to control simulations as well as to

visualize the results in real time. HAL: Network and Filter

Manager provide the GUI with the simulated network’s

connectivity and activity, respectively; Platform Control converts

the user’s neural models’ parameters to bias currents for Neurogrid’s

electronic circuits; Experiment Control starts, stops, and resets both

simulation and stimulation; Network Mapping converts the

models’ connectivity to router configurations; Data Flow translates

data from model space to hardware space and vice versa. Driver:

Neurogrid Control handles global resets and bring-up; Neurocore

Configuration programs bias currents and router configurations; Data

Flow creates Neurogrid packets; Encoder converts Neurogrid packets

to USB format and Decoder converts USB data to Neurogrid

packets. Board: FX2 handles USB communication with the host; CPLD

converts USB data to Neurogrid packets and vice versa, as well as

intersperses time stamps with outgoing data (host bound);

Daughterboard realizes primary axonal branching. Neurocore: Router

communicates packets with the Neurocore’s parent (through Ti=To)

and two children (through Li=Lo and Ri=Ro); RAM supports

reconfigurable connectivity (a second RAM supports programmable

biases); Receiver delivers spikes to silicon neuron array; Transmitter

dispatches spikes from the array. Neuron: Consists of a soma, a

dendrite, four gating variable and four synapse-population circuits.

Benjamin et al. : Neurogrid
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A Neurogrid packet, used in Neurocore-to-Neurocore

communication, is a sequence of 12-b words that specify a

route, an address, an arbitrarily long payload, and a

tailword, in that order. The route instructs a Neurocore to

forward the packet to the next hop or consume it. The

payload stipulates: Spike locations in a row of a silicon-

neuron array, in which case the address identifies a

Neurocore; data to be written to RAM, in which case the

address specifies a location; or a sampled analog signal, in

which case the address identifies an ADC (a Neurocore has

four). The tailword signifies the packet’s end.

The hardware consists of an Cypress EZ-USB FX2LP, a

Lattice ispMACH CPLD, a daughterboard, and 16

Neurocores connected in a binary tree. The FX2 handles

USB communications. The CPLD interfaces between the

FX2 and the Neurocores. The daughterboard realizes

primary axon-branching using a Xilinx Spartan-3E FPGA

and eight Cypress 4MB SRAMs. A Neurocore (Fig. 5) has a

256� 256 silicon-neuron array, a transmitter, a receiver, a

router, and two RAMs. A neuron has a soma, a dendrite,

four gating-variable and four synapse-population (i.e.,

shared synapse and dendrite) circuits. We describe these

electronic circuits and the models they implement in

Section IV. The transmitter, the receiver, and the router are

described in Section V.

IV. NEURON

Neurogrid neuron’s soma, dendrite, synapse-population

and ion-channel-population circuits realize the dimen-

sionless form of common biological neuronal models with

MOS devices. Dimensionless models have fewer free

parameters and can be realized on a wide variety of

hardware platforms. However, MOS devices offer the

highest integration density.

A. Dimensionless Models
Before describing the dimensionless models Neurogrid

realizes (Fig. 6), we illustrate how models composed of

conductors, capacitors, voltage, and current sources may

be converted to dimensionless form.

Consider a passive membrane model with a capacitor C,
a conductor Gleak with reversal potential Eleak, and a

current source Iin. This circuit is described by

C _V ¼ �GleakðV � EleakÞ þ Iin

where V is the voltage across C. This equation has four

parameters: C, Gleak, Eleak, and Iin, even though themodel has

only two degrees of freedom. To see this, change the

reference voltage to Eleak and normalize with GleakVn to give

� _v ¼ �vþ u (1)

Fig. 5. Neurocore. RAM0 provides 256 locations for target synapse

types (or no connection). RAM1 stores 18 configuration bits and

61 analog biases, common to all the Neurocore’s silicon neurons.

DACs produce the analog biases. RstMB provides five resets and

generates DACs’ reference current. ADCs digitize four analog signals

from a selected neuron. Ti0�2, To0�2, Li0�2, Lo0�2, Ri0�2, and

Ro0�2 communicate with parent or either child. The 12� 14 mm2 die,

with 23 M transistors and 180 pads, was fabricated in a 180-nm

complementary metal–oxide–semiconductor (CMOS) process.

Insert: Layout of silicon neuron; it has 337 transistors (see Fig. 4

for subcircuit placement).

Fig. 6. Neurogrid’s neuron model. Synapse Populations 0, 1, 2, and 3

generate a time-varying conductance ðgsyn0�3
Þ in response to an input

spike and drive neighboring neurons’ soma or dendrite through a

shared dendritic tree. Channel Populations 0 and 1 provide a pair of

conductances that are dynamically activated or inactivated ðc0�3Þ by
dendritic potential; their maximum conductance may be determined

by Synapse Population. These conductances may be connected in

series or in parallel to drive Dendrite. Dendrite also receives

backpropagating spikes ðibpÞ and drives Soma. Soma generates spikes,

using a regenerative sodium current ðiNaÞ, which triggers a reset

pulse ðpresÞ. A potassium conductance ðgKÞ activated at reset delays

generation of the next spike.
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where � ¼ C=Gleak, v ¼ ðV � EleakÞ=Vn, and u ¼ Iin=
ðGleakVnÞ. Thus, v is the voltage in units of Vn and u is

the current in units of GleakVn. This equation has two

parameters: � and u, to match the model’s two degrees of

freedom. This approach is general: Any electrical model

of a membrane can be made dimensionless by changing

the reference voltage to Eleak and normalizing voltages

with Vn, conductances with Gleak and currents with

GleakVn. Henceforth, we denote dimensionless equiva-

lents of voltages with v, conductances with g, and

currents with i.

Soma: The soma’s dimensionless model is given by

�s _vs ¼ �vs þ isin þ 1
2
v2s � gKvs � gresvspresðtÞ þ vd (2)

where �s is the membrane time constant, isin is the input

current, and vd is the dendritic input (see Fig. 6 Soma).

The quadratic positive feedback v2s=2 models the spike-

generating sodium current [49]; the reset conductance gres,
active for the duration tres of a unit-amplitude pulse pres,
models the refractory period; and the high-threshold

potassium conductance gK models spike-frequency adap-

tation. gK is given by

�K _gK ¼ �gK þ gK1presðtÞ (3)

where �K is the decay time constant and gK1 is the

saturation value. The soma may also receive synaptic

inputs [see (6)]. Hardware realization of the soma model

behaves as expected (Fig. 7).

Dendrite: The dendrite’s dimensionless model is

given by

�d _vd ¼ �vd þ idin þ ibppresðtÞ þ gchðech � vdÞ (4)

where �d is the membrane time constant, idin is the input

current, ibp is the backpropagating input, and gch is the

channel population’s conductance, with reversal potential

ech (see Fig. 6 Dendrite). The dendrite may also receive

synaptic inputs [see (6)]. Hardware realization of the

dendrite model behaves as expected (Fig. 8).

Synapse Population: The synapse population’s dimen-

sionless model is given by

�syn _gsyn ¼ �gsyn þ gsatpriseðtÞ (5)

where �syn is the synaptic time constant and gsat is the

saturation conductance for the population (see Fig. 6

Synapse Population). The unit-amplitude pulse priseðtÞ is

triggered by an input spike; its width trise models the

duration for which neurotransmitter is available in the

cleft [50]. Hardware realization of the synapse-population

model behaves as expected [Fig. 9(a)–(d)].

The conductance gsyn decays spatially in the shared

dendritic tree and provides an input current

�ðnÞgsynðesyn � vsÞ or �ðnÞgsynðesyn � vdÞ (6)

to the soma or dendrite, respectively (in addition to isin or
idin). Here

�ðnÞ ¼ 1

4
p
�

1þ 1

1� �2

� �1
4

 !2
�np
n

(7)

Fig. 7. Soma circuit’s membrane traces. (a) Increasing �s: It increases

the interspike interval by slowing integration. (b) Increasing tres:

It increases the interspike interval by resetting the membrane longer.

(c) Increasing gK1: It increases the interspike interval by producing

larger increments in the potassium conductance.

Fig. 8. Dendrite circuit’s membrane traces. (a) Increasing �d: It

increases decay time by slowing integration (traces were normalized

with their peak values). (b) Increasing ibp: It increases the current

injected by each backpropagating spike.

Fig. 9. Synapse population circuit’s conductance traces. (a) Increasing

trise: It prolongs the rising phase. To keep the area constant, gsat was

dividedby trise. (b) Increasinggsat: It increases the synaptic conductance

proportionately. (c) Increasing �syn: It slows integration, resulting in

smaller peak conductances and longer decay times. (d) Increasing esyn:

It changes the effect on the membrane potential from inhibitory (red)

to excitatory (black). (e) Increasing � (left to right, top to bottom):

It increases the spread of synaptic conductances evoked at six

locations, arranged in a hexagon, by a spike delivered to their center.
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where � is the silicon dendritic tree’s decay factor and n is
the distance traveled in a number of neurons [51].

Hardware realization of the dendritic tree behaves as

expected [Fig. 9(e)].

Ion-Channel Population: The ion-channel population’s

conductance gch is obtained by scaling a maximum

conductance gmax with a gating variable c (i.e.,

gch ¼ cgmax; see Fig. 6 Channel Population). c is modeled

as

�gv _c ¼ �cþ css (8)

where css is its steady-state activation or inactivation and

�ch is its time constant. css is given by

css ¼
�

�þ �
or

�

�þ �
(9)

where � and � model a channel’s opening and closing

rates, whose voltage dependence is modeled as

�; � ¼ � 1

2
ðvd � vthÞ þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðvd � vthÞ2 þ
1

4s2

r

: (10)

Here, vth is the membrane potential at which css ¼ 1=2
and s is the slope at this point. � and � satisfy a difference

relation �� � ¼ vd � vth and a reciprocal relation �� ¼
1=ð16s2Þ, resulting in a sigmoidal dependence of css on vd.
The gating variable’s time constant is given by

�gv ¼
�max � �min

2sð�þ �Þ þ �min: (11)

�gv is bell shaped with a maximum value of �max when

vd ¼ vth and a minimum value of �min when jvd � vthj �
1=ð2sÞ, to avoid unphysiologically short time constants.

Hardware realization of the ion-channel population model

behaves as expected (Fig. 10).

B. Circuit Realization of Dimensionless Models
Before describing the dimensionless models’ circuit

implementations, we illustrate how such models may be

realized in the log domain [33] by using MOS devices

operating in the subthreshold regime to realize a passive

membrane [see (1)].

In the subthreshold regime, a PMOS transistor’s drain

current Id is related to its gate-bulk voltage Vgb by

Id ¼ LI0e
��Vgb�Vsb

UT 1� e
Vds
UT

� �

(12)

where L ¼ W=L is the transistor’s width-to-length ratio, I0
is the leakage current when L ¼ 1, � is the ratio between

effective and applied gate voltage, and UT is the thermal

voltage8; and Vsb and Vds are the source-bulk and drain-

source voltages, respectively [38]. For VdsG�4UT and

Vsb ¼ 0, (12) is approximately

Id ¼ LI0e
��Vgb

UT :

Taking natural logarithm on both sides

ln Id � ln I0 � lnL ¼ ��Vgb
UT

: (13)

Differentiating (13) with respect to time, we obtain

_Id
Id

¼ � �

UT

_Vgb: (14)

These equations are the basis for realizing models in the

log domain with MOS transistors.

The passive membrane’s circuit realization (Fig. 11)

consists of a capacitor ðCÞ, with the voltage across it ðVmÞ
driving a transistor ðM5Þ to produce an output current ðImÞ
that represents the membrane’s potential. A current

sourced into the capacitor ðIlkÞ represents the membrane’s

leak and a current sunk from the capacitor ðIbackÞ represents
the membrane’s input. Kirchoff’s current law gives

C _Vm ¼ Ilk � Iback: (15)

Fig. 10. Gating-variable curves from ion-channel population circuit.

(a) Steady-state value increases (for activation) with increasing

membrane potential, exhibiting a sigmoidal dependence. Increasing

s increases the slope. (b) Time constant has a bell-curved dependence

on membrane potential. �max scales the peak. (c) Threshold increases

with increasing vth.

8UT ¼ kT=q, where k is the Boltzmann constant, T is the absolute
temperature, and q is an electron’s charge.

Fig. 11. Passive membrane circuit. It models the membrane’s time

constant � (through Ileak), input current u (through Iin), and

potential v (through Im). Bulk terminals are connected to thepower rail

unless otherwise indicated.
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As M1’s and M3’s gate-bulk voltages are equal, we have

Vleak ¼ Vlk )
Ileak
L1

¼ Ilk
L3

: (16)

As the sum of M1’s and M2’s gate-bulk voltages is equal to

the sum of M4’s and M5’s, we have

Vleak þ Vin ¼ Vback þ Vm ) Ileak
L1

Iin
L2

¼ Iback
L4

Im
L5

: (17)

Using (14), (16), and (17) in (15) yields

CUT

�

_Im
Im

¼ � L3

L1

Ileak þ
L4L5

L1L2

IleakIin
Im

) p�
Ileak
|{z}

�

_Im
Ileak
|{z}

_v

¼ � Im
Ileak
|{z}

v

þ pin
Iin
Ileak

|fflfflffl{zfflfflffl}

u

(18)

where p� ¼ CUTL1=�L3 and pin ¼ L4L5=L2L3 are the

mapping constants required to program Ileak and Iin to

realize the desired values of � and u.9

Soma: The soma model’s circuit realization (Fig. 12)

operates according to

p�s
Ilks

z}|{
�s

_Is
Ins

z}|{
_vs

¼ � Is
Ins

z}|{
vs

þ pqua
I2bks
I2lks

zfflfflfflffl}|fflfflfflffl{
isin

þ 1

2

I2s
I2ns

z}|{

v2s
2

�	K

IK
Ilks

zfflffl}|fflffl{
gK

Is
Ins

z}|{
vs

� 	res

IVDD

Ilks
|fflfflfflfflffl{zfflfflfflfflffl}

gres

Is
Ins
|{z}

vs

presðtÞ þ
Id
Ind
|{z}

vd

which is equivalent to (2). Here

Ins ¼
Ilks
ks

; Ind ¼
I2lks
kdI0

; and tres ¼
pref
Ilkref

and IVDD is the drain current of a PMOS with gate

grounded and source at the supply rail. All mapping

constants are defined in Table 4 (in this table, Ln is the

W=L of transistor Mn). The high-threshold potassium

conductance’s circuit realization operates according to

p�K
Ilkk

z}|{
�K

_IK
InK

z}|{
_gK

¼ � IK
InK

z}|{
gK

þ pgK
IK1
InK

zfflfflfflffl}|fflfflfflffl{
gK1

presðtÞ

which is equivalent to (3). Here, InK ¼ Ilks=	K. Detailed

soma-circuit descriptions may be found elsewhere [54], [55].

Dendrite: The dendrite model’s circuit realization

(Fig. 13) operates according to

p�d
Ilkd

z}|{
�d

_Id
Ind

z}|{
_vd

¼ � Id
Ind

z}|{
vd

þ pbkd
I2bkd
IndIlkd

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
idin

þ pbp
I2bp

IndIlkd

zfflfflfflfflfflffl}|fflfflfflfflfflffl{
ibp

presðtÞ

which is equivalent to (4).

9To make � independent of temperature, we used a proportional-to-
absolute-temperature (PTAT) current source to generate Ileak [52], [53],
which keeps UT=Ileak constant.

Fig. 12. Soma circuit. MEM models membrane time constant �s

(through Ilks), input current isin (through Ibks), and dendritic

input vd (through Id; see dendrite circuit). QF models quadratic

feedback v2
s =2 (through Ian). K

þ models high-threshold potassium

conductance (through Ilkk and Ik1). Ref models reset conductance gres

and refractory pulse pres (through Ilkref).

Fig. 13. Dendrite circuit. MEM models membrane time constant �d

(through Ilkd) and input current idin (through Ibkd). BP models

backpropagating input ibp (through Ibp).

Table 4 Mapping Constants
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Synapse Population: The synapse population model’s

circuit realization (Fig. 14) operates according to

p�syn
Ilklpf

zffl}|ffl{
�syn

_Igsyn
Ingsyns

zfflffl}|fflffl{
_ggsyn

¼ � Igsyn
Ingsyns

zfflffl}|fflffl{
gsyn

þ pgsat
Igsat
Ingsyns

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
gsat

priseðtÞ

where trise ¼ pc=Ilkpe and Ingsyns ¼ Ilks=	gsyns.

When fed to the soma or dendrite circuit through the

dendritic-tree and reversal-potential subcircuits, Igsyn yields
the (normalized) synaptic input to soma or dendrite as

Igsyn
Ingsyns;d

zfflfflffl}|fflfflffl{
gsyni

�

pesyn
Iesyn
Ins;d

zfflfflfflfflffl}|fflfflfflfflffl{
esyni

� Is;d
Ins;d

z}|{
vs;d
�

which is equivalent to (6). Here, Ingsynd ¼ Ilkd=	gsynd. A

detailed synapse-circuit description may be found else-

where [32].

The dendritic-tree circuit spreads the current Igsyn
through a hexagonal resistive network implemented with

transistors [36]. Its decay factor � is related to the voltages

Vr and Vg as

� ¼ 1� 2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8e
�ðVr�VgÞ

UT

q :

Ion-Channel Population: The ion-channel population

model’s circuit realization (Fig. 15) computes the chan-

nel’s conductance ðgchÞ directly instead of computing the

gating variable first (8) and then scaling the saturation

conductance ðgmaxÞ by this. That is, the circuit operates as
follows:

p�gv Imax

ðI� þ I�ÞIshift

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{
�gv

_Igv
Ingv

z}|{
_gch

¼ � Igv
Ingv

z}|{
gch

þ I�
I� þ I�

zfflfflffl}|fflfflffl{
css

pgvmax

Imax

Ingv

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
gmax

for activating behavior (i.e., I�1 ! 1 and I�1 ! 0) and

�min ¼ 0 (i.e., Isat ! 1). Here, Ingv ¼ IlkdIech=ð	gchI0Þ.
Ishift realizes �max as p�gvmax

Imax=IqIshift. I� and I� realize �
and � as

I�;�
LO5Ind

zfflfflffl}|fflfflffl{
�;�

�� 1

2

�
Id
Ind

z}|{
vd

� pth
Ith
Ind

zfflffl}|fflffl{
vth

�

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffis
�

Id
Ind
|{z}

vd

� pth
Ith
Ind

|fflffl{zfflffl}

vth

�2

þ 4 pslope
Iq
Ind

� �2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

1=4s2

for I� � I� or vice versa, which is equivalent to (10).

Unlike a previous implementation [56], this one supports

adjustable slopes for activation and inactivation through an

on–off circuit [57].

Another circuit combines Igv from a pair of circuits

ðIgv0;2 and Igv1;3) to obtain their conductances’ series or

parallel combinations (gch0 and gch1 ; see Fig. 6), modeled as

Ich0;1 ¼
Igv0;2 Igv1;3

Igv0;2 þ Igv1;3
; series

Igv0;2 þ Igv1;3 ; parallel

8

><

>:

which drives the dendrite with a current

Ich0;1
Ingv

z}|{

gch0;1
�

pech
Iech
Ind

zfflfflfflffl}|fflfflfflffl{

ech0;1

� Id
Ind

z}|{
vd
�

:

Fig. 14. Synapse-population circuit. PE models the rise time trise

(through Ilkpe). MEM models time constant �syn (through Ilklpf)

and saturation conductance gsat (through Igsat). Cable models spatial

decay factor � (through Vr). Rev models reversal potential esyn

(through Iesyn).

Fig. 15. Ion-channel population circuit. ON–OFF models opening and

closing rates � and � (through I� and I� , respectively). Kinetics models

peak time constant �max (through Ishift), activating/inactivating beha-

vior of css (through I�1 and I�1), and maximum conductance gmax

(through Imax). Add/multiply combines the output of two kinetics

subcircuits to model their equivalent series or parallel conductance

(when ½S0; S1� ¼ ½0; 1� or ½1;0�, respectively) and models reversal

potential ech (through Iech).
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The series combination is used to model channels that

activate and inactivate (second order), while the parallel

combination models independent channels (first order)

with a common reversal potential.

To correct errors in the mapping constants’

analytical expressions (see Table 4) due to deviations

from the transistor model (12) [58], we calibrated them

by measuring four types of circuit responses (Table 5):

1) dynamic current (e.g., the dendrite’s exponentially

decaying response to a step input, which we used to

calibrate p�d); 2) steady-state current (e.g., the ion-channel
population’s conductance for a given dendritic potential,

which we used to calibrate pth); 3) steady-state spike rate
(e.g., the linear scaling of a neuron’s spike rate with its

time constant, which we used to calibrate p�s [54]); and
4) spike-rate discontinuity (e.g., the onset of spiking when

the dimensionless input exceeds 0.5, which we used to

calibrate pqua [54]). These procedures yielded mapping

constants for individual circuits. We only used the median of

these distributions, which arise from transistor mismatch, as

all of a Neuorocore’s neurons share the same biases.

V. TRANSMITTER, RECEIVER,
AND ROUTER

A neuron’s spike is dispatched from its array by a

transmitter, communicated to its Neurocore’s parent and

two children by a router, and delivered to the recipient by

a receiver. All this digital circuitry is event drivenVonly

active when a spike occursVwith its logic synthesized

following Martin’s procedure for asynchronous circuits

[60], [61].

A. Transmitter and Receiver
We provide brief descriptions of the transmitter’s and

receiver’s architecture and operation; detailed descriptions

may be found in [59] and [62]–[64]. The transmitter

dispatches multiple spikes from a row and the receiver

delivers multiple spikes to a row, enhancing throughput

compared to designs that dispatch or deliver spikes one by

one [19]–[21]. These spikes’ common row address and

unique column addresses are communicated sequentially.

In the transmitter [Fig. 16(a)], two M-way arbiters,

built with M� 1 two-way arbiters connected in a binary

tree, receive requests from an array of spiking neurons

with M rows and M columns. Only log2ðMÞ logic levels are

traversed to select a row or column, compared to M=2, on
average, for a scanner [65], [66]. Two encoders generate a

log2ðMÞ-bit address for each row or column selected.

Latches enable pipelining: The next row’s spikes are

dispatched from the array while the current row’s column

addresses are being encoded and sent out. In the receiver

[Fig. 16(b)], these log2ðMÞ-bit addresses are decoded to

select one of M rows or columns. Again, latches allow the

next packet’s addresses to be decoded while the current

one’s spikes are being delivered to the array.

Neurocore uses a 256 � 256 version of the transmitter

and a 2048 � 256 version of the receiverVits eight lines

per row select one of four shared-synapses to activate, one

of three sets of analog signals to sample, or a neuron to

disable (all in conjunction with a column line). The

transmitter takes 86 ns to transfer a row’s spikes to the

array’s periphery. Then, it takes 23 ns to encode each

spike’s column address. Therefore, if there are three or

more spikes, no time is wasted waiting for the next row’s

spikes to be transferred. Thus, pipelining and parallelism

enable the transmitter to sustain a maximum transmission

rate of 43.4 Mspike/s, or 663 spike/s per neuron [42]. The

receiver decodes an additional column address every 16 ns,

sustaining a maximum rate of 62.5 Mspike/s, or 956 spike/s

per neuron [59].10

Table 5 Responses Used to Calibrate Mapping Constants

10This paper reports measurements from a 960 � 320 version of the
receiver fabricated in the same technology (180-nm CMOS).

Fig. 16. Transmitter and receiver architecture. (a) Transmitter: An

interface (I) relays requests from spiking neurons (S) to a row arbiter

(J) and dispatches the selected row’s spikes (S) in parallel while

encoding its address (Y). Another interface (I) relays the spikes from

a latch to a column arbiter (J) and encodes the selected column’s

address (X). A sequencer (SEQ) directs latches (A) to deliver the row

address, columnaddress(es), anda tailword (T, generatedbyTB) to the

output port. (b) Receiver: A sequencer (SEQ) directs two different

latches (A) to load incoming row (Y) and column (X) addresses, which

are decoded to select a row and one or more columns. These select

lines are activated simultaneously, when the tailword (T) is received,

delivering spikes to the row in parallel (S). The remaining latches

operate autonomously (B), automatically overwriting old data

after it has been read. Small discs symbolize combinational logic.

Modified from [59].
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B. Router
We provide brief descriptions of the router’s logical and

physical design; detailed descriptions may be found in

[42]. The router’s multicast capability and the Neurocores’

embedded memory realize secondary axon-branching

(limited to corresponding locations in multiple Neuro-

cores); primary axon-branching (to arbitrary locations in

multiple Neurocores) is realized by the daughterboard’s

FPGA and SRAM.

The router routes a packet from a source to multiple

recipients in two distinct phases: a point-to-point phase

and a branching phase (Fig. 17). During the point-to-point

phase, the router steers the packet up/down or left/right,

based on a bit in the packet’s first word. During the

branching phase, the router copies the packet to both left

and right ports. These flooding packets are delivered to the

local neural array or filtered using information retrieved

from a location in the Neurocore’s 256 � 16-b SRAM,

specified by the packet’s second word. This approach

achieves high throughput by distributing the packet to all

its potential recipients without performing any memory

lookups [27]. These lookups, which are the slowest

operation, proceed in parallel, in contrast to a network

where lookups decide the packet’s route [6]. If the packet

is delivered, two bits retrieved from the SRAM are

appended to its row address. These bits specify which one

of the recipient’s four shared synapses to activate [27], [42].

The router’s datapath consists of four merges and three

splits (Fig. 18). For energy efficiency, the 12-b datapath

was sliced into six bit-pairs, each communicated by two

transitionsVthe second returns to zeroVon one of four

lines. This 1-in-4 code requires half as many transitions as

independent bits require (1-in-2 code). Furthermore, a

single acknowledge (or enable) line is used, instead of two

[61]. The datapath’s blocks were compact enough to be

distributed throughout the IO-pad ring (see Fig. 5). Each

port’s pads were mostly placed on its corresponding side of

the chip, which facilitated building a multichip printed

circuit board with straight connections between adjacent

chips. Two-to-one multiplexing cut the number of pads per

port from 42 to 21, organized in three groups of seven pads

(two power, four signal, and one enable). Each pad group

transmits two bits with a single transition, without

returning to zero, on one of four lines (1-change-in-4

code) [67], [68], achieving a data-rate of 364 Mb/s.

Thus, each port can handle 91 Mword/s [42].

When interconnected in a binary tree, the router

delivered 1.17 Gword/s to Neurogrid’s 16 Neurocores

with no more than 1-
s jitter along the longest path [42].

Jitter is defined as the standard deviation of intervals

between packets injected at equal intervals. These

injected packets (generated by a computer) were routed

all the way up and down the tree, ejected at a leaf, and

captured by a logic analyzer. Meanwhile, the eight

Neurocores at the tree’s leaves each generated spike

packets at a rate of 9.14 Mword/s. This traffic aggregated

at the root, which received 73.12 Mword/s in total, and

flowed to all 16 Neurocores, which received 1.17 Gword/s

in total. This delivery rate corresponds to 234 Mspike/s in

normal mode (five words per spike packet) and up to

1.17 Gspike/s in burst mode (additional column addresses

are appended to the packet).

Fig. 17.Multicast routing’s point-to-point andbranchingphases. In the

point-to-point phase (black), node 4’s packet is routed up to node 1,

the lowest common ancestor node 4 shares with the recipients

(nodes 3 and 6). The packet is then routed down to node 3, the

recipients’ lowest common ancestor. At each node, the route field’s

most significant bit [encodes the turn (UorD, R or L)] is shifted out and

0 is shifted in. The stop code [encodes the terminus (node 3)] is all

zeroes except the MSB (S). In the branching phase (purple), the packet

visits node 3 and all its descendantsVnode 7’s SRAM is programmed

to filter the packet. A mode bit (F) determines whether the packet

floods or targets the terminus. Reproduced from [42].

Fig. 18. Router datapath. Merge and Merge3 feed packets to splits:

Up steers packet to its U or D port and Down steers packets to its L or

R port. When it encounters a stop code, Up deletes the packet and

Down interrogates the mode bit. If it is clear (targeted mode), it

delivers the packet to either itsM1 orM2 port (a bit in the headword

decides). If it is set (flood mode), it delivers the packet to its Lo and

Ro ports as well. Reproduced from [42].
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VI. ENERGY EFFICIENCY

We measured and dissected Neurogrid’s energy consump-

tion for a million-neuron, eight-billion-synapse real-time

simulation and found that it uses energy more efficiently

than expected from its shared-dendrite architecture.

Neurogrid was programmed to simulate a recurrent

inhibitory network with 15 layers (Fig. 19), each mapped

onto a different Neurocore. The recurrent synaptic

connections were realized by multicasting spikes from

each Neurocore to all others (including itself). That

Neurocore and its three neighbors on either side where

programmed to accept its spikes, which inhibited nearby

neurons through the shared dendrite [with � ¼ 0:94; see
Fig. 9(e)]. As a result, each of the model’s 983 040

neurons received 50% of its inhibition from 7980 neurons

residing in a seven-layer-thick, 19-neuron-radius cylinder

centered around it. Such recurrent inhibitory connectivity

patterns are expected to give rise to globally synchronous

spike activity, which is what we observed. The synchro-

nized activity was rhythmic, with a frequency of 3.7 Hz;

the neurons fired 0.42 spike/s on average.

Neurogrid consumed 2.7 W during the simulation.

Since interlayer connections were between corresponding

locations (i.e., columnar), the daughterboard was not

needed. Measurements of its power consumption from a

separate study, where we demonstrate the ability to

implement arbitrary connectivity patterns [69], revealed

that it would consume 0.4 W to route the 413 000 spike/s

that the 983 040 neurons produced, yielding a total of

3.1 W, or 941 pJ per synaptic activation (for 7980 synaptic

connections per neuron).

The energy expended to activate a silicon axon’s

synapses ðEaxonÞ may be expressed as the sum of the

energy used (per spike) by the soma ðEsomaÞ, transmitter

ðExmtÞ, up route ðEuÞ, daughterboard ðERAMÞ, down route

ðEdÞ, and receiver ðErcvÞ; the last term includes the shared-

dendrite and synapse circuits. That is

Eaxon ¼ Esoma þ Exmt þ Eu þ ncolðERAM þ Ed þ npErcvÞ:

Here the axon connects to np pools of neurons (secondary
branches) in each of ncol locations (primary branches).

Therefore, the total number of synapses ðnaxonÞ it activates
is ncol � np � nsyn, where nsyn is the average number of

synaptic connections per pool. Hence, the energy per

synaptic activation ðE ¼ Eaxon=naxonÞ is

E ¼ Esoma þ Exmt þ Eu
ncolnpnsyn

þ ERAM þ Ed
npnsyn

þ Ercv
nsyn

: (19)

Terms associated with the axon’s trunk ðEsoma; Exmt; EuÞ
and primary ðERAM; EdÞ and secondary ðErcvÞ branches

contribute small, medium, and large amounts, respectively.

These energy terms (Table 6) were determined as follows.

Esoma equals VjackIstaticTsoma=Ntotal, where Vjack ¼ 3 V

is the power jack’s voltage, Istatic is its current when the

neurons are quiescent,11 Tsoma is the average interspike

interval (for which E is calculated), and Ntotal ¼ 220 is the

neuron count. Istatic only approximately captured the

analog circuitry’s current draw, which has a weak

dependence on Tsoma.

Exmt;rcv equals VjackDIxmt;rcv=ftotal, where DIxmt is the

additional current drawn when Neurocores generate ftotal
spike/s (each one routes its spikes back to itself but its

synaptic connectivity RAM filters them) and DIrcv is the

additional current drawn when one Neurocore, to which

all the other’s spikes are routed, is reprogrammed to stop

filtering them.

Eu;d equals nu;dElink, where nu;d is the number of links

between a Neurocore and the daughterboard and Elink is

the energy a link uses to transmit a five-word spike packet

[67].12 We set nu ¼ 3:4, the average number of links from

a Neurocore to the daughterboard, and nd ¼ 2:3, one-

seventh the number of links a packet traverses when it

floods from the root (i.e., np ¼ 7).

Fig. 19. Simulatingamillionneurons. Theneuronswereorganized into

fifteen 256 � 256 cell layers, arranged in a ring, so the first and last

layers are nearest neighbors. Each cell layer’s neurons inhibit

neighboring neurons in its layer as well as in three neighboring layers

to either side (the central layer’s connectivity is shown). Spike rasters

(from a tenth of each layer’s neurons) reveal global synchrony, as

expected from the network’s recurrent inhibition.

Table 6 Energy Per Spike

11The daughterboard drew 87 mA, the FX2 and CPLD drew 116 mA,
the voltage regulators (three per Neurocore) drew 74 mA, and the 16
Neurocores’ IO, digital and analog circuitry drew 25, 64, and 572 mA,
respectively. These measurements were made with an HP E3631A DC
power supply.

12We scaled this measurement, which was made on a 3-cm-long link,
to match the average length of the interneurcore links (1.1 cm), assuming
that energy is proportional to length.
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ERAM equals VjackDIlkup=flkup, where DIjack is the

additional current the daughterboard’s power jack draws

when it performs flkup memory lookups per second.

Substituting these measured values into (19) yields

(in nJ)

E ¼ 22:2þ 2612Tsoma

ncolnpnsyn
þ 9:8

npnsyn
þ 9:8

nsyn
: (20)

This model predicts E ¼ 813 pJ for the synchrony

simulation, where ncol ¼ 1, np ¼ 7, nsyn ¼ 1140, and

Tsoma ¼ 1/(0.42 spike/s). This prediction is within 14%

of the measured value of E ¼ 941 pJ. This discrepancy is

probably due to ignoring the analog circuitry’s slight

increase in power dissipation with spike rate.

VII. AET COST COMPARISON

Neurogrid’s overall cost ðAETÞ is lower than HICANN’s [9]

and GoldenGate’s [8] (Table 7).13 We included the router’s

costs and the entire system’s power dissipation in our A and E
calculations, unlike in Section II-B. Nonetheless, our

architecture-scaling model’s predictions held up: A was

smallest for Neurogrid (SDH), E was highest for GoldenGate
(SAD), and T was smallest for HICANN (FDA). However,

Neurogrid’s A and E were smaller than predicted because it

amortized these costs over a larger number of synaptic

connections by using multilevel axon branching. And

HICANN’s T was larger than predicted because it did not

realize FDA fullyVit multiplexes 64 neurons’ spikes onto

each shared axon. As a result, Neurogrid’s AET was 50 times

lower than HICANN’s. Before discussing these results in

detail, we describe how A, E, and T were calculated.

A was calculated as Achip=ðSNchipÞ, where Achip is the

chip’s area, Nchip is its neuron count, and S is the number

of synapses (HICANN and GoldenGate) or the number of

synaptic connections (Neurogrid) per neuron (see Table 7).

In Neurogrid’ case, we used ncol ¼ 4, np ¼ 4, and

nsyn ¼ 256 (midrange values).

E was calculated as Psys=ðfavgNsysSÞ, where Psys is the
system’s total power at an average firing rate of favg and

Nsys is its total neuron count. To account for static

dissipation, we set favg ¼ 10 spike/s for all three systems;

actually 105 spike/s for HICANN (104� speedup). Psys was

800W for HICANN’s 352-chip, 48-FPGA, 180 000-neuron

wafer-scale system [71] and 5 mW for GoldenGate’s

256-neuron chip [8]. For Neurogrid, we obtained E
using (20).14

T was calculated as taxon=ðnparnaxonÞ, identical to

Section II-B. taxon was 5.21 ns for HICANN (i.e.,

192 Mspike/s), 7.56 ns for GoldenGate (scaled from a 1-ns

cycle-time estimate for a 45-nm SRAM), and 16.0 ns for

Neurogrid. We used the receiver’s word rate, since it is

slower than the router’s (13.7 ns at 1-
S jitter). npar was
224 for HICANN and 1 for GoldenGate and Neurogrid.

naxon was 8 for HICANN and 256 for GoldenGate and

Neurogrid (using shared dendrite).

To understand why Neurogrid’s AET was lower than

expected, consider the case where neither primary nor

secondary axon branching is used (i.e., np ¼ ncol ¼ 1),

which makes Neurogrid’s S similar to HICANN’s. The

resulting 16-fold drop increases A 16-fold, increases E
tenfold [using (20)] and leaves T unchanged. As a result,

Neurogrid’s AET becomes three times larger than

HICANN’s. Therefore, Neurogrid achieved lower than

expected AET by utilizing multilevel axon branching to

amortize its fixed area and static energy costs over more

synaptic connections. With S matched, Neurogrid’s E is

six times larger than HICANN’s, probably because

Neurogrid’s neuron has four shared-synapse and four

shared-dendrite circuitsVnot one eachVas well as four

ion-channel circuits. Indeed, it is six times larger in area

(2560 
m2) than HICANN’s synapse (see Table 7).

VIII . DISCUSSION

We found that Neurogrid’s shared-dendrite (SD) architec-

ture achieved the lowest AET cost by using multilevel axon

branching to increase synaptic connectivity. Its band-

width-efficient interarray communication mechanismV

multicast tree router (TR)Vmade this possible. We

conclude by discussing how large-scale neural models

can fully exploit Neurogrid’s simulation capacity, the

limitations its architecture has, and how its configurability

and scale may be increased.

Neurogrid’s cost-effective SD architecture and TR

topology can be fully exploited by neural models that

satisfy two requirements. First, they are organized into

layers such that neighboring neurons within the same layer

have mostly the same inputs (as in cortical feature maps).

Second, they are organized into columns such that neurons

at corresponding locations in different layers have

translation-invariant connectivity (as in cortical columns).

The first requirement allows SD to be used. Otherwise, the

receiver has to cycle nsyn times to deliver the spike to nsyn
targets, instead of just once. The second requirement

Table 7 Cost Comparison

13For comparisonwithHICANN andNeurogrid, we scaledGoldenGate’s
A ¼ 16 
m2, E ¼ 1.9 nJ, and T ¼ 3.9 pS from a 0.85 V–45 nm process to a
1.8 V–180 nm process using general scaling laws [70].

14We could not measure the power directly because USB throughput
was limited to about a million spike/s (constrained by our current CPLD
firmware).
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allows multicast routing to be used. Otherwise, the

daughterboard has to cycle ncol � np times to route the

spike to arbitrary locations, instead of just ncol times.

A limitation of Neurogrid’s SD architecture is it

precludes synaptic plasticity, which HICANN and other

realizations of the fully dedicated architecture (FD)

support [72], [73]. This limitation arises because neigh-

boring neurons share the same (spatially decayed) input.

Nonetheless, Neurogrid also supports the shared-synapse

(SS) architecture, which does allow individual connection

weights (stored in the daughterboard’s RAM [69], [74]).

SS can realize spike-timing-dependent plasticity (STDP),

which HICANN realizes, by tracking a synapse’s recent

spike history (i.e., queuing address–events) and updating

the stored weight accordingly [75]. However, SS is N times

less AET-efficient than FD (see Table 1). In practice,

however, FD’s N2 area scaling makes it prohibitively

expensive to furnish each neuron with thousands of

synapsesVHICANN has only 224 synapses per neuronV

until emerging nanoscale devices become viable [76].

Neurogrid’s configurability and scale may be increased

by migrating from its decade-and-a-half-old process to a

state-of-the-art one, which will allow the memory embed-

ded in each Neurocore to increase by two orders of

magnitude. This additional memory will make it possible

to replace shared dendrites with local shared axons (i.e.,

tertiary branches), which offer greater configurability

while being area-efficient. And it will make it possible to

route spikes to arbitrary locations without sending the

packet all the way to the root, relieving traffic there and

enabling the design to scale further.

In addition to increasing neurogrid’s configurability

and scale, the higher level of integration a state-of-the-art

process offers will result in greater energy efficiency. While

Neurogrid’s energy efficiency is five orders of magnitude

better than a personal computer’s, it is four to five orders of

magnitude worse than the human brain’s. Neurogrid uses a

few watts to simulate a million neurons in real time

whereas a personal computer uses a few hundred watts to

simulate 2.5 million neurons 9000 times slower than real

time. The human brain, with 80 000 times more neurons

than Neurogrid, consumes only three times as much power.

Achieving this level of energy efficiency while offering

greater configurability and scale is the ultimate challenge

neuromorphic engineers face. h
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R. Schüffny, ‘‘VLSI implementation of a
2.8 Gevent/s packet based AER interface with
routing and event sorting functionality,’’
Front. Neurosci., vol. 5, no. 117, 2011,
DOI: 10.3389/fnins.2011.00117.

[42] P. Merolla, J. V. Arthur, R. Alvarez-Icaza,
J.-M. Bussat, and K. Boahen, ‘‘A multicast tree
router for multichip neuromorphic systems,’’
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61,
no. 3, pp. 820–833, Mar. 2014.

[43] W. Dally and B. Towles, Principles and
Practices of Interconnection Networks.
San Francisco, CA, USA: Morgan Kaufmann,
2004.

[44] R. Boppana, S. Chalasani, and C. Raghavendra,
‘‘On multicast wormhole routing in
multicomputer networks,’’ in Proc. IEEE Symp.
Parallel Distrib. Process., 1994, pp. 722–729.

[45] A. Despain and D. Patterson, ‘‘X-tree:
A structured multiprocessor computer
architecture,’’ in Proc. IEEE Symp. Comput.
Architecture, 1978, pp. 144–151.

[46] S. Browning, ‘‘The tree machine: A highly
concurrent computing environment,’’
California Inst. Technol., Pasadena, CA, USA,
Tech. Rep. Caltech-CS-TR-80-3760, 1980.

[47] E. Horowitz and A. Zorat, ‘‘The binary tree as
an interconnection network: Applications to
multiprocessor systems and VLSI,’’ IEEE
Trans. Comput., vol. C-30, no. 4, pp. 247–253,
Apr. 1981.

[48] D. Vainbrand and R. Ginosar, ‘‘Scalable
network-on-chip architecture for configurable
neural networks,’’ Microprocess. Microsyst.,
vol. 35, no. 2, pp. 152–166, 2011.

[49] G. B. Ermentrout and N. Kopell, ‘‘Parabolic
bursting in an excitable system coupled
with a slow oscillation,’’ SIAM J. Appl. Math.,
vol. 46, no. 2, pp. 233–253, Apr. 1986.

[50] A. Destexhe, Z. F. Mainen, and T. J. Sejnowski,
‘‘An efficient method for computing synaptic
conductances based on a kinetic model of
receptor binding,’’ Neural Comput., vol. 6,
no. 1, pp. 14–18, Jan. 1994.

[51] D. I. Feinstein, ‘‘The hexagonal resistive
network and the circular approximation,’’
California Inst. Technol., Pasadena, CA, USA,
Tech. Rep. CaltechCSTR:1988.cs-tr-88-07,
1988.

[52] E. Vittoz and J. Fellrath, ‘‘CMOS analog
integrated circuits based on weak inversion
operation,’’ IEEE J. Solid-State Circuits, vol. 12,
no. 3, pp. 224–231, Jun. 1977.

[53] T. Delbrück and A. V. Schaik, ‘‘Bias current
generators with wide dynamic range,’’
Analog Integr. Circuits Signal Process., vol. 43,
no. 3, pp. 247–268, Jun. 2005.

[54] P. Gao, B. V. Benjamin, and K. Boahen,
‘‘Dynamical system guided mapping of
quantitative neuronal models onto
neuromorphic hardware,’’ IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 59, no. 10,
pp. 2383–2394, Oct. 2012.

[55] J. V. Arthur and K. Boahen, ‘‘Silicon-neuron
design: A dynamical systems approach,’’

IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58,
no. 5, pp. 1034–1043, May 2011.

[56] K. M. Hynna and K. Boahen,
‘‘Thermodynamically equivalent silicon
models of voltage-dependent ion channels,’’
Neural Comput., vol. 19, no. 2, pp. 327–350,
2007.

[57] K. A. Zaghloul and K. A. Boahen, ‘‘An on-off
log domain circuit that recreates adaptive
filtering in the retina,’’ IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 52, no. 1, pp. 99–107,
Jan. 2005.

[58] A. J. Annema, B. Nauta, R. van Langevelde,
and H. Tuinhout, ‘‘Analog circuits in
ultra-deep-submicron CMOS,’’ IEEE J.
Solid-State Circuits, vol. 40, no. 1, pp. 132–143,
Jan. 2005.

[59] J. Lin and K. Boahen, ‘‘A delay-insensitive
address-event link,’’ in Proc. IEEE Int. Symp.
Asynchron. Circuits Syst. (ASYNC), 2009,
pp. 55–62.

[60] A. Martin, ‘‘Programming in VLSI: From
communicating processes to delay-insensitive
circuits,’’ in Developments in Concurrency
and Communication. Reading, MA, USA:
Addison-Wesley, 1991, pp. 1–64.

[61] A. Martin and M. Nystrom, ‘‘Asynchronous
techniques for system-on-chip design,’’
Proc. IEEE, vol. 94, no. 6, pp. 1089–1120,
Jun. 2006.

[62] K. A. Boahen, ‘‘A burst-mode word-serial
address-event link I: Transmitter design,’’
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51,
no. 7, pp. 1269–1280, Jul. 2004.

[63] K. A. Boahen, ‘‘A burst-mode word-serial
address-event link II: Receiver design,’’ IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 51,
no. 7, pp. 1281–1291, Jul. 2004.

[64] K. A. Boahen, ‘‘A burst-mode word-serial
address-event link III: Analysis and test
results,’’ IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 51, no. 7, pp. 1292–1300,
Jul. 2004.

[65] C. Mead and T. Delbruck, ‘‘Scanners for
visualizing activity of analog VLSI circuitry,’’
Analog Integr. Circuits Signal Process., vol. 1,
no. 2, pp. 93–106, 1991.

[66] N. Imam and R. Manohar, ‘‘Address-event
communication using token-ring mutual
exclusion,’’ in Proc. IEEE Int. Symp. Asynchron.
Circuits Syst., 2011, pp. 99–108.

[67] A. Chandrasekaran and K. Boahen,
‘‘A 1-change-in-4 delay-insensitive interchip
link,’’ in Proc. IEEE Int. Symp. Circuits Syst.,
May 2010, pp. 3216–3219.

[68] P. B. McGee, M. Y. Agyekum,
M. A. Mohamed, and S. M. Nowick,
‘‘A level-encoded transition signaling protocol
for high-throughput asynchronous global
communication,’’ in Proc. IEEE Int. Symp.
Asynchron. Circuits Syst., 2008, pp. 116–127.

[69] S. Choudhary, S. Sloan, S. Fok, A. Neckar,
E. Trautmann, P. Gao, T. Stewart,
C. Eliasmith, and K. Boahen, ‘‘Silicon neurons
that compute,’’ in Proc. Int. Conf. Artif. Neural
Netw., 2012, pp. 121–128.

[70] J. M. Rabaey, A. P. Chandrakasan, and
B. Nikolic, Digital Integrated Circuits,
2nd ed. Englewood Cliffs, NJ, USA:
Prentice-Hall, 2002.

[71] J. Schemmel, private communication, 2013.

[72] J. V. Arthur and K. Boahen, ‘‘Learning in
silicon: Timing is everything,’’ in Advances in
Neural Information Processing Systems
(NIPS). Cambridge, MA, USA: MIT Press,
2006, pp. 75–82.

[73] S. Brink, S. Nease, P. Hasler, S. Ramakrishnan,
R. Wunderlich, A. Basu, and B. Degnan,
‘‘A learning-enabled neuron array IC based

Benjamin et al. : Neurogrid

714 Proceedings of the IEEE | Vol. 102, No. 5, May 2014



upon transistor channel models of biological
phenomena,’’ IEEE Trans. Biomed. Circuits Syst.,
vol. 7, no. 1, pp. 71–81, Feb. 2013.

[74] D. H. Goldberg, G. Cauwenberghs, and
A. G. Andreou, ‘‘Probabilistic synaptic
weighting in a reconfigurable network of VLSI
integrate-and-fire neurons,’’ Neural Netw.,
vol. 14, no. 6, pp. 781–793, 2001.

[75] R. J. Vogelstein, F. Tenore, R. Philipp,
M. S. Adlerstein, D. H. Goldberg, and
G. Cauwenberghs, ‘‘Spike timing-dependent
plasticity in the address domain,’’ in Advances
in Neural Information Processing Systems
(NIPS). Cambridge, MA, USA: MIT Press,
2002, pp. 1147–1154.

[76] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya,
P. Mazumder, and W. Lu, ‘‘Nanoscale
memristor device as synapse in
neuromorphic systems,’’ Nano Lett., vol. 10,
no. 4, pp. 1297–1301, 2010.

ABOUT THE AUTHORS

Ben Varkey Benjamin received the B.Tech.

degree in electronics and communication engi-

neering from Mahatma Gandhi University, Kerala,

India, in 2005 and the M.S. degree in electrical

engineering from Stanford University, Stanford,

CA, USA, in 2010, where he is currently working

toward the Ph.D. degree in electrical engineering.

He worked for three years as a Design Engineer

in the VSBU group at Wipro Technologies, India,

where he earned the Prodigy award for the best

incoming employee of the year. While there, he also received two U.S.

patents for his work on standard cell characterization. He led the testing

and characterization of Neurogrid, as well as the design and implemen-

tation of the software driver used to program and communicate with

Neurogrid. His research focuses on challenges in designing neuro-

morphic hardware for deep submicrometer technologies.

Peiran Gao received the B.A. degree in neurobi-

ology and physics with minor in electrical engi-

neering and computer science from the University

of California Berkeley, Berkeley, CA, USA, in 2009

and the M.S. degree in bioengineering from

Stanford University, Stanford, CA, USA, in 2011,

where he is currently working toward the Ph.D.

degree in bioengineering.

As a Teaching Assistant at Stanford University

for the BIOE 332 Large-Scale Neural Modeling

course in Spring 2011 Quarter, he developed the dynamical system

guided mapping procedure that Neurogrid uses. His research focuses on

the theoretical development of a spike-based computational framework.

Emmett McQuinn received the B.S. degree in

computer science from Clemson University,

Clemson, SC, USA, in 2008, and the M.S. degree in

computer science from the University of California

San Diego, La Jolla, CA, USA, in 2010.

He was a Research Staff Programmer at

Stanford University, Stanford, CA, USA, where he

led the development of real-time visualization

software for Neurogrid. He then joined the

Almaden Research Center, IBM, San Jose, CA,

USA, to work on the SyNAPSE project. He is currently working for a

startup. His research interests include interactive real-time visualization,

hardware-accelerated scientific computing, and scalable neuromorphic

systems.

Swadesh Choudhary received the B.Tech. and

M.Tech. degrees in electrical engineering from the

Indian Institute of Technology, Bombay, India, in

2010 and the M.S. degree in electrical engineer-

ing from Stanford University, Stanford, CA, USA,

in 2012.

He also worked as a Research Assistant at

Stanford University to develop a daughterboard

for Neurogrid. He is currently a Design Engineer at

Intel Corporation, Santa Clara, CA, USA, working in

the server development group.

Anand R. Chandrasekaran received the B.Tech.

degree in electrical engineering from the Indian

Institute of Technology, Madras, India, in 2001 and

the Ph.D. degree in neuroscience from Baylor

College of Medicine, Houston, TX, USA, in 2007.

He was a Postdoctoral Scholar in bioengineer-

ing at Stanford University, Stanford, CA, USA,

working on the Neurogrid project. He is currently

the CEO of Mad Street Den, an artificial intelli-

gence company in Bangalore, India.

Jean-Marie Bussat (Member, IEEE) was born in

Annecy, France. He received the M.Sc. degree in

electrical engineering from ESIGLEC, Rouen,

France, in 1995 and the Ph.D. degree in electrical

engineering from the University of Paris XI, Orsay,

France, in 1998.

He joined the technical staff of the Department

of Physics, Princeton University, Princeton, NJ,

USA, in 1998, to work on the readout of the

electromagnetic calorimeter of the Compact Muon

Solenoid (CMS) experiment at CERN, Geneva, Switzerland. He joined the

Engineering Division of the Lawrence Berkeley National Laboratory,

Berkeley, CA, USA, in 2001 to design instrumentation for physics and

material science experiments. In 2007, he joined the Brains in Silicon

Laboratory, Stanford University, Stanford, CA, USA, to work on

Neurogrid.

Rodrigo Alvarez-Icaza received the B.S. degree

in mechanical and electrical engineering from the

Universidad Iberoamericana, Mexico City, Mexico,

in 1999, the M.S. degree in bioengineering from

the University of Pennsylvania, Philadelphia, PA,

USA, in 2005, and the Ph.D. degree in bioengi-

neering from Stanford University, Stanford, CA,

USA, in 2010.

He is currently a research staff member at the

Almaden Research Center, IBM, San Jose, CA, USA,

where his research focuses on brain-inspired computers.

John V. Arthur received the B.S.E. degree (summa

cum laude) in electrical engineering from Arizona

State University, Tempe, AZ, USA, in 2000 and the

Ph.D. degree in bioengineering from the Univer-

sity of Pennsylvania, Philadelphia, PA, USA, in 2006.

He was a Postdoctoral Scholar in bioengineer-

ing at Stanford University, Stanford, CA, USA, as a

lead on the Neurogrid project. He is currently a

research staff member at the Almaden Research

Center, IBM, San Jose, CA, USA, working on the

SyNAPSE project. His research interests include dynamical systems,

neuromorphic and neurosynaptic architecture, and hardware-aware

algorithm design.

Benjamin et al. : Neurogrid

Vol. 102, No. 5, May 2014 | Proceedings of the IEEE 715



Paul A. Merolla received the B.S. degree in

electrical engineering (with high distinction) from

the University of Virginia, Charlottesville, VA, USA,

in 2000 and the Ph.D. degree in bioengineering

from the University of Pennsylvania, Philadelphia,

PA, USA, in 2006.

His research is to build more intelligent

computers, drawing inspiration from neurosci-

ence, neural networks, and machine learning. He

was a Postdoctoral Scholar in the Brains in Silicon

Laboratory, Stanford University, Stanford, CA, USA (2006–2009), work-

ing as a lead chip designer on Neurogrid, an affordable supercomputer

for neuroscientists. Starting in 2010, he has been a research staff

member at the Almaden Research Center, IBM, San Jose, CA, USA, where

he was a lead chip designer for the first fully digital neurosynaptic core as

part of the DARPA-funded SyNAPSE project. His research includes low-

power neuromorphic systems, asynchronous circuit design, large-scale

modeling of cortical networks, statistical mechanics, machine learning,

and probabilistic computing.

Kwabena Boahen (Senior Member, IEEE) re-

ceived the B.S. and M.S.E. degrees in electrical

and computer engineering from The Johns

Hopkins University, Baltimore, MD, USA, both in

1989 and the Ph.D. degree in computation and

neural systems from the California Institute of

Technology, Pasadena, CA, USA, in 1997.

He was on the bioengineering faculty of the

University of Pennsylvania, Philadelphia, PA, USA,

from 1997 to 2005, where he held the first

Skirkanich Term Junior Chair. He is currently an Associate Professor in

the Bioengineering Department, Stanford University, Stanford, CA, USA.

He directs the Brains in Silicon Laboratory, Stanford University, which

develops silicon-integrated circuits that emulate the way neurons

compute, linking the seemingly disparate fields of electronics and

computer science with neurobiology and medicine. His contributions to

the field of neuromorphic engineering include a silicon retina that could

be used to give the blind sight, a self-organizing chip that emulates the

way the developing brain wires itself up, and a specialized hardware

platform (Neurogrid) that simulates a million cortical neurons in real time

rivaling a supercomputer while consuming only a few watts.

Dr. Boahen received several distinguished honors, including a

Fellowship from the Packard Foundation (1999), a CAREER award from

the National Science Foundation (2001), a Young Investigator Award

from the U.S. Office of Naval Research (2002), and the National Institutes

of Health Director’s Pioneer Award (2006) and Transformative Research

Award (2011). His scholarship is widely recognized, with over 80

publications to his name, including a cover story in the May 2005 issue

of Scientific American.

Benjamin et al. : Neurogrid

716 Proceedings of the IEEE | Vol. 102, No. 5, May 2014


