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Here we provide a perspective concept of neurohybrid memristive chip based on the

combination of living neural networks cultivated in microfluidic/microelectrode system,

metal-oxide memristive devices or arrays integrated with mixed-signal CMOS layer to

control the analog memristive circuits, process the decoded information, and arrange

a feedback stimulation of biological culture as parts of a bidirectional neurointerface.

Our main focus is on the state-of-the-art approaches for cultivation and spatial ordering

of the network of dissociated hippocampal neuron cells, fabrication of a large-scale

cross-bar array of memristive devices tailored using device engineering, resistive state

programming, or non-linear dynamics, as well as hardware implementation of spiking

neural networks (SNNs) based on the arrays of memristive devices and integrated

CMOS electronics. The concept represents an example of a brain-on-chip system

belonging to a more general class of memristive neurohybrid systems for a new-

generation robotics, artificial intelligence, and personalized medicine, discussed in the

framework of the proposed roadmap for the next decade period.

Keywords: memristor, neuronal culture, spiking neural network, microfluidics, biosensor, neuroprosthetics

INTRODUCTION

The growing demand in miniature and energy-efficient electronic interface with bioelectrical
activity for personalized medicine and other related products essentially depends on development
of biohybrid electronic technologies (Vassanelli and Mahmud, 2016). The emergence of new
technologies for creating thin-film sensors and non-invasive signal processing systems ensures the
development of fundamentally new approaches to solve the problems of recording activity signals
of brain, heart, andmuscles, as well as skin condition in the form of wearable systems for processing
and diagnostic. Such bio-compatible microelectronic systems, along with new biotechnologies, may
provide a breakthrough in the field of neuroprosthetics with an important competitive advantage:
a miniature bioelectrical sensor based on micro- and nanostructures with an option to store and
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process signals in multiple manners, including feed-forward
approach and feedback loops, may serve as an active
neurointerface for intelligent control and management of
neuronal structures.

A wide variety of neuroprosthetic technologies have emerged
recently from prosthetic arms (Fukuma et al., 2016; Petrini et al.,
2019b) and legs (Petrini et al., 2019a) to prosthetic hearing
(Rouger et al., 2007) and vision (Fernandez, 2018). Some of limb
prostheses were non-invasively controlled by electrical signals
from the muscles electrical activity (myograms) or electrical
activity of selected areas of the motor cortex. The most promising
bionic technologies are aimed at creating prosthetic devices
controlled by the electrical activity of neurons via specialized
arrays of electrodes implanted into neural tissue. In order to
provide sensory feedback, additional arrays can also be implanted
in somatosensory areas of the cerebral cortex or afferent systems
of the spinal cord. The implantation of sensor chips into the visual
cortex or a retina of an eye is becoming a serial operation today
(Chuang et al., 2014). Cochlear implants are used by hundreds
of thousands of patients around the world (NIH, 2016). Another
promising direction is neurohybrid computing systems with
living neural cells cultured in a nutrient medium in vitro and,
after the maturation and formation of a large number of synaptic
connections between cells, implemented to control an external
robotic device or solve the complex sensory-cognitive task (e.g.,
pattern recognition). These devices also called neuroanimats in
the literature (Xydas et al., 2008).

Another modern technology, memristors, possess the unique
property of non-linear resistive memory and could serve as
analog information processing systems with a neuron-like
structure, as well as an electrophysiological activity sensor with
capacity of simultaneous accumulation and non-volatile storage.
Further development of memory-embedded sensors (Tzouvadaki
et al., 2015; Doucey and Carrara, 2019) and neurohybrid
systems, including neuroprostheses based on the integration of
memristive and microelectrode CMOS technologies, as well as
spiking neural network (SNN) architectures, will ensure the
processing and real-time classification of electrophysiological
and other analog signals, related to the activity of biological
neuronal networks. Potential applications of this technology may
target in vivo testing of pharmacological effects, biosensors and
detectors of electromyography (EMG) signals, as well as muscle
force extraction for various technical systems (smart tissue,
wearable electronics, smart wheelchairs, cyber-physical suits, and
vehicles). Most challenging problems are currently related to
the application of implantable and non-implantable machine-
to-nervous-system interfaces and neuroprostheses for correcting
and restoring cognitive abilities, complex motor patterns like
locomotion, and vision.

In this perspective, we discuss the main challenges associated
with development of compact multifunctional neurohybrid
systems for the bidirectional interface of living biological systems
and memristive electronics combined with microelectrode and
microfluidic systems. As compared to the previous works
(Vassanelli and Mahmud, 2016; Chiolerio et al., 2017) focused
on general trends and approaches for interfacing between
neuronal and extrinsic/intrinsic neuromorphic systems, here we

provide a comprehensive analysis of the implementation of a
CMOS-integrated hybrid system based on scalable memristive
devices and arrays back-end-of-line or monolithically integrated
with CMOS circuits, analog signal processing on CMOS
chips with memristive and microelectrode arrays. Specialized
memristive neural architectures are proposed to implement
functional abilities of some regions of the brain and nervous
system. A roadmap of research and development in the
field of memristive neuromorphic and neurohybrid systems
has been for the first time presented and discussed in this
manuscript in the context from state-of-the-art tasks to future
challenges (until 2030).

It is worth noting here that memristors provide only one of the
possible options for creating biomimetic electronic systems for
neural interfaces. In particular, the neuromorphic function has
also been demonstrated in colloidal nanomaterials or networks
of nanowires (O’Kelly et al., 2016; Manning et al., 2018) and
organic electrochemical transistors (Gkoupidenis et al., 2015,
2017; Tarabella et al., 2015; Battistoni et al., 2019b). Certain
advantages of such materials over CMOS architectures have
been discussed in recent reviews (Inal et al., 2018; Rivnay
et al., 2018; van De Burgt et al., 2018; Ling et al., 2020) and
mainly related to the flexibility and mechanical property match
with neural tissue, the lower impedance, and current densities.
Nevertheless, they are outside the scope of this perspective,
and we will limit ourselves only to the CMOS-compatible
approaches that are ready for the integration into existing
technological workflows dedicated to practical applications.
The focus on metal–oxide memristive electronics will allow
going beyond the traditional neuromorphic chips as parts of
neurohybrid systems (Hogri et al., 2015; Boi et al., 2016;
Buccelli et al., 2019).

MEMRISTIVE NEUROHYBRID CHIP:
CONCEPT AND CHALLENGES

According to the general definition (Vassanelli and Mahmud,
2016; Chiolerio et al., 2017), the neurohybrid system provides an
interaction between biological (neuronal) and artificial elements
in the open- or closed-loop manner. Despite the large number
of available examples, they usually reflect different sides of such
interaction and primary confirm some level of connectivity
between biological and artificial systems. A functional interface
between simple living being (slime mold) and memristor devices
has been reported (Adamatzky et al., 2012) and, recently, the
possibility of direct synaptic coupling of neuron cells from the
rat cortex through a memristive device has been demonstrated
(Juzekaeva et al., 2019). Future implementation of this approach
requires the development of interrelated solutions at all levels,
using both existing and emerging technologies in a single
conceptual map matching the requirements for compactness,
performance, energy efficiency, speed, reliability, and safety. In
this paper, we analyze such solutions within the framework of a
single concept of a neurohybrid CMOS chip that implements a
compact interface between the biological (neuronal) system and
the electronic subsystem.
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Figure 1A demonstrates a schematic representation of
the proposed neurohybrid system, which consists of several
functional layers combined in one CMOS-integrated chip. The
top layer is a part of the neuronal system represented here by a
culture of dissociated hippocampal cells grown on multielectrode
array (MEA) and functionally ordered by a special layout of
microfluidic channels indicated in Figure 1B. The MEA is
used for extracellular registration and stimulation of neurons
in vitro and is implemented on the top metallization layers of
the CMOS layer together with an array of memristive devices
(Figure 1D). The simplest task performed by memristive devices
is the direct processing of spiking activity of the biological
network (Figure 1C); however, self-learning neural network
architectures based on fully connected cross-bar memristive
arrays can be designed for adaptive decoding of spatiotemporal
characteristics of bioelectric activity. The output of this artificial
network (Figure 1F) can be used to control the cellular
network via gradual modulation of extracellular stimulation
(Figure 1G) according to the given protocol. This way, analog
and digital circuits should be implemented in the main CMOS
layer (Figure 1E) for accessing and controlling the MEA and
memristive devices, amplifying, generating, and transmitting
signals between layers. To create neurohybrid chip, joint design
and optimization are required for all mentioned elements at the
levels of materials, devices, architectures, and systems.Within the
framework of this concept, the following subjects of interrelated
research and developments should be considered at fundamental
and applied levels:

1) Neural networks cultured in vitrowith a given connectivity
to implement a certain information function;

2) Microfluidic cell manipulation techniques on a chip;
3) CMOS- and bio-compatible technology for the MEA

fabrication;
4) Scalable and CMOS-compatible memristive devices;
5) Microelectrode and memristive arrays integrated on-chip

with CMOS electronics;
6) Analog/digital peripheral and control circuits on CMOS

chip;
7) Specialized SNN based on memristive arrays and CMOS

electronics;
8) Interconnection/integration solutions for connecting

various functional modules.

The first two tasks are required only in the case of creating
a neurohybrid device like the neuroanimat, with information
processing by an ensemble of cultured living neuron cells. To
create both implantable and non-implantable devices such as
neuroprostheses, the implementation of this route apparently
should start with the task 3.

Two main groups of challenges must be addressed for the
successful development of this technology. From the biological
side of neural integration, the main problems are related to
biocompatibility and matching mechanical properties of MEA
materials in contact with neuronal culture, device geometries
and accessibility to neuronal culture, their scaling to brain
activity in vivo, as well as the reaction of living neurons to

electrical stimulation and power dissipation (including glial
scarring). From the electronic engineering side, we should note
the required high spatiotemporal resolution of MEA, transition
from 2D to 3D electrode system, minimum size and high
density of memristive devices needed for subsequent monolithic
integration, area- and energy-efficient solutions for analog
information processing by memristive circuits. Both groups of
challenges, possible solutions, and trade-offs are considered in the
corresponding sections below.

LIVING NEURAL NETWORK:
BIOLOGICAL SIDE OF NEURAL
INTEGRATION

The main problem of neuronal cultures in vitro is related to
homogeneous network structure, which is developed in randomly
patterned cells on the substrate. During the last decade, new
methods of neuroengineering have been developed to control the
position of cells and direction of axon and dendrite growth (le
Feber et al., 2015; Na et al., 2016; Renault et al., 2016). Recently,
it has been shown that the main feature of functional network
topology as unidirectional synaptic connectivity between cell
clusters can also be engineered using microfluidic technology
(Gladkov et al., 2017; Poli et al., 2017; Forró et al., 2018). Being
implanted in the damaged brain, such tools of network structure
manipulation allow one to mimic brain areas, which are involved
in reflex activity, pattern retrieval in multilayered unidirectional
network (Brewer et al., 2013; Poli et al., 2017) for neural tissue
recovery from brain injury (Shimba et al., 2019). Next, it could be
combined with an array of non-invasive planar microelectrodes,
which provide spiking activity registration and stimulation of
isolated or multiple neurons. Spiking activity could be monitored
and induced in several independent axonal pathways, which
grow between subnetworks through themicrochannels. Thus, the
precise input and output could be implemented in engineered
multilayered network with the designed connectivity, where the
full potential of the proposed task can be solved in closed-loop
conditions with memristive spiking network. First, such a system
could be used for the stabilization of spontaneous activity, which
slowly stochastically changes, and second, to classify patterns
according to various input signals and induce spike-timing-
dependent plasticity (STDP) in a living network, where pre- and
postsynaptic neurons could be accessed independently.

Biocompatibility and mechanical matching of materials are
the key problems that arise on the way to neural integration.
They have been already addressed in many commercial
MEA by using gold, platinum, indium tin oxide (ITO), and
titanium nitride (TiN) as electrode materials. The signal-to-
noise ratio (SNR) depends strongly on the biological part of
the system, but can be increased by the small impedance
of recording electrodes. In order to reduce the impedance
and increase the charge transfer efficiency, the surface area
of electrodes can be modified by covering with porous
conductive materials, such as Pt-black, Au nanoparticles,
carbon nanotubes (CNTs), and conductive polymers like
poly(3,4-ethylenedioxythiophene) (PEDOT) (Obien et al., 2015).
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FIGURE 1 | Memristive neurohybrid chip. (A) Schematic representation of the neurohybrid chip composed of a neuronal system (the brain cellular culture grown on

MEA) and an electronic subsystem represented by the mixed analog–digital circuits coupling microelectrode arrays, memristive devices, and intrinsic neuromorphic

systems. (B) The sketch of a spatially ordered neuronal culture with individual axons grown in microfluidic channels. (C) The response of metal–oxide memristive

device to spiking activity recorded in the culture. Black line—voltage drop on memristor, red line—voltage drop on load resistor as current sensor, and blue

line—resistance of memristive device responding in a volatile or non-volatile manner to noise and spikes with different parameters. (D) The example of CMOS

integration of metal–oxide memristive device based on thin ZrO2(Y) film sandwiched between top metal layers of CMOS circuit. (E) The typical diagram of

registration, amplification, and analysis of bioelectric activity by using multielectrode/memristive arrays and embedded CMOS circuits. (F) The typical spiking neural

architecture with competitive interneuron connections. (G) The scheme of extracellular electrical stimulation of living neurons modulated by the electronic subsystem

to control their activity.

Moreover, the enhanced biocompatibility has been demonstrated
for electrodes with a nanostructured porous surface in the
form of laser-micropatterned PEDOT:PSS (Santoro et al., 2017).
The next level of improved compatibility between electrodes
and cells or living tissue relies on the use of extracellular
matrix materials, which increase the adhesive properties of
the electrodes and reduce the risk of inflammatory processes
(Won et al., 2018).

An important problem of the registration of neuronal activity
is associated with the geometry/topology and spatial resolution
of microelectrode arrays. Conventional MEAs do not allow
recording the activity of individual cells, because the step between
electrodes (>30 µm) exceeds the neuron soma size (about 12–
18 µm). Owing to the advanced CMOS technology, a new type of
MEA has been commercialized, in which amplifiers and ADC are
located on one chip with electrodes. This approach reduces the
inter-electrode distance and consequently increases the spatial
resolution of electrodes. The search for optimal solutions to
combine high spatial resolution with a high SNR is currently
underway (Ghane-Motlagh and Sawan, 2013; Müller et al., 2015).
The proposed system concept presumes a 2D neuron interface
on top of the MEA electronics. However, planar electrodes
reach their limits when it comes to tissue slices or cell clusters.
Although, a 3D-MEA with micron-size electrodes penetrating

40–100 µm deep into the tissue is already on the market1, the
lattice-like 3D electrode interface should be developed to really
mimic or interface the brain.

All these problems are exacerbated when scaling the proposed
technology to registration and stimulation of brain activity
in vivo, especially taking into account high conductivity,
inertness, biocompatibility, and stretchability required for the
interaction with living tissue (Qi et al., 2017). Devices for
detecting neural activity in vivo can be fabricated in the form
of 2D or 3D arrays of electrodes combined on one substrate.
Two types of 3D probes are widely used: electrodes placed
on an array of silicon needles and neural probes, on which
arrays of electrodes are located. Recently, densely arranged
probes based on silicon-on-insulator (SOI) technology have been
actively developed (Scholvin et al., 2015; Angotzi et al., 2017;
Lopez, 2019). The dense arrangement of electrodes allows spatial
oversampling of neural activity and accurate sorting of spikes. In
the active neural probes, local amplification of the recorded signal
near the electrode with microfabricated CMOS circuit improves
the recording quality by reducing the electrode impedance and
crosstalk between neighboring shank wires (Raducanu et al.,

1https://www.multichannelsystems.com/news/3d-meas-recording-inner-cell-
layers

Frontiers in Neuroscience | www.frontiersin.org 4 April 2020 | Volume 14 | Article 358

https://www.multichannelsystems.com/news/3d-meas-recording-inner-cell-layers
https://www.multichannelsystems.com/news/3d-meas-recording-inner-cell-layers
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


Mikhaylov et al. Neurohybrid Memristive Chip Concept

2017). Simultaneous recording of signals from a large number
of electrodes (up to 1400) can be possible due to the time
division multiplexing method. In addition, when developing
neural probes, it is necessary to consider heating of tissue due
to power dissipation, which is limited to a threshold of 1◦C for
chronic experiments (Kim et al., 2007). To reduce tissue damage
and inflammatory response, the size of the shanks should be
miniaturized and can reach 25 µm for the SOI technology. For
the passive probes, one of the approaches to thin the shank can be
based on materials with low stiffness like nanoelectrode filaments
or poly(etherimide) fibers. On the other hand, such materials
require additional support during implantation, particularly,
control of localization and speed modes of insertion (Dryg
et al., 2015), as well as special guides from soluble materials
(Won et al., 2018).

Another important problem is the reaction of living cultures
and tissues at the interface with the artificial electronic subsystem.
Needless to say that purely electrical contact can serve non-
invasively not affecting the cell in contrast to different methods of
optical recordings or chemical manipulations. More complicated
task is to provide correct stimulation of the target area in
the brain or in the neuronal culture. Problems may appear
in long-term implantations, when the neuronal system under
stimulation (including electrical one) starts to adapt itself
maintaining the network homeostasis and trying to escape the
external perturbation (Middleton et al., 2010; Graczyk et al.,
2018). Adaptation is based on the mechanism of homeostatic
plasticity, which ensures the functional stability of neuronal
system by equipoising intrinsic excitability and synaptic strength.
It balances the network excitation and inhibition, and coordinates
the changes in circuit connectivity (Tien and Kerschensteiner,
2018). In addition, any mechanical impact on the brain tissue,
such as implantation of electrodes, may cause the appearance
of a glial scar that restricts the area damaged by the electrodes.
For instance, sharp electrodes implanted into a brain after some
time are insulated by glial cells produced around the electrode
hence decreasing the effect of stimulation (Sillay et al., 2013; Wu
et al., 2013). The gliotic encapsulation problem can be mitigated
by chemical functionalization of materials at the electrode–tissue
interface. Coating of electrodes with extracellularmatrix proteins,
collagen and Matrigel films can reduce the astrogliotic scarring
(He et al., 2006; De Faveri et al., 2014; Shen et al., 2015). Another
efficient approach to mitigate the rejection is to reduce the
electrode size, for example, by using the PEDOT-coated carbon
fiber as a material of electrodes (Patel et al., 2016).

The limiting factor to resolution and functionality of the
proposed neurohybrid concept may be the power consumption
needed for a given SNR when basing the concept on CMOS
(or any other semiconductor) technology. This problem depends
on the type of interface with the neuronal system (in vitro
or in vivo) and the energy efficiency of electronic subsystem.
In the case of in vitro interface, the existing commercially
available CMOS MEA has the overall power consumption of
about 30 W2, which is mainly determined by the off-chip

2http://www.multichannelsystems.com/sites/multichannelsystems.com/files/
documents/manuals/CMOS-MEA5000-System_Manual.pdf

interface electronics and does not include the data processing
and analysis equipment. The in vivo interface systems have
been studied previously in relation to neural prostheses for
restoring and enhancing memory (Berger et al., 2011; Hampson
et al., 2018; Song et al., 2018) also by using PC-controlled
multichannel recording/stimulation closed-loop systems and
special mathematical models. To the best of our knowledge,
none of the mentioned systems has been implemented yet on a
single chip. Although miniaturization is a general requirement to
create such bioelectronic platforms (Birmingham et al., 2014), we
believe that it can only be achieved using the area- and energy-
efficient memristive electronics based on CMOS technology and
shown below. Of course, this task should be reached hand in hand
with the development of miniaturized wireless systems for energy
harvesting and bi-directional communication that will definitely
improve safety, access to anatomical sites, and enable ultra-
minimally invasive delivery methods, reducing tissue trauma
during implantation and immune response (Masius and Wong,
2020; Piech et al., 2020).

MEMRISTIVE DEVICES: TOWARD CMOS
INTEGRATION

A memristor (memory resistor) was predicted by Chua (1971)
as the fourth passive element of electrical circuits. For a long
time, it was considered as a theoretical object. Only in 2008,
the memristive effect was first correlated (Strukov et al., 2008)
with the phenomenon of reversible resistive switching, which
can occur in a simple thin-filmmetal–oxide–metal nanostructure
and is associated with local rearrangement of the oxide atomic
structure and composition under the action of inhomogeneous
electric field, temperature, and concentration gradients (Ielmini
andWaser, 2016). Currently, memristors andmemristive systems
are the basis of a new paradigm in electronics related to
creation of brain-like network architectures by using the ability
of memristive devices to emulate the most important functions
of biological synapses and neurons. Since 2015, there has been
an increase in the number of publications regarding a hardware
implementation of the simplest artificial neural networks (ANNs)
(most often in the form of a single-layer perceptron) based on a
limited number of memristive connections (Prezioso et al., 2015;
Serb et al., 2016; Yao et al., 2017). Larger integrated memristive
1T-1R or passive cross-bar arrays have been fabricated and
shown to date (Cai et al., 2019; Kataeva et al., 2019; Zhou
et al., 2019) to implement various multiplication operations
and neuromorphic functionality on the basis of precise analog
tuning the conductance of memristive devices. Although some
higher functionalities of board-integrated systems like multilayer
perceptron (Bayat et al., 2018; Li et al., 2018a; Mikhaylov
et al., 2018) and the first fully memristive neural network with
unsupervised learning (Wang et al., 2018) were demonstrated
and revolutionized, the higher functionalities are still restricted
with a practical size up to 64 × 128 of memristive arrays.

Thus, the necessary condition for the development of
advanced functional electronic circuits based on memristors is
their integration with mixed analog-digital CMOS transistor
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circuits. At the same time, the capabilities and functionality
of traditional ANN architectures based on programmable
memristive weights are limited by the size of the memristive
array, the increase of which is constrained not by low
scalability (the minimum size of the memristive element
may be of the order of nanometer; Pi et al., 2019), but
by insufficient reproducibility of device parameters due to
the stochastic nature of resistive switching. For example, the
widely used back propagation updating rule, which has been
proved to be efficient for traditional supervised neural networks,
often requires additional write-verification techniques (Yao
et al., 2017) to modulate memristive devices into the desired
states, incurring software/hardware overheads on memristive
neurohybrid architectures.

The non-linear behavior of memristive devices in response
to electrical pulses together with their unique scalability are the
most important advantages that determine a unique possibility of
hardware implementation of SNN (Demin and Nekhaev, 2018;
Guo et al., 2019) based on the processes of self-organization
in neural network architectures and qualitatively different from
traditional neural networks (perceptrons). We believe that
implementation of brain-like networks of future generations
will be based on the stochastic dynamics of memristors and
synchronization of neural oscillators. Such works are carried
out at the most basic level (Ignatov et al., 2016; Gerasimova
et al., 2017), demonstrate the possibility of implementing higher
(cognitive) brain functions, but require the development of
adequate models of neural synchrony based on stochastic
memristive plasticity.

Nevertheless, such a rapid progress in the implementation of
memristive neuromorphic systems makes it possible not only to
expect in the nearest future the creation of brain-like networks
with memristive plasticity for novel computing paradigms, but
also to take the next step and develop memristive neurohybrid
systems on the basis of intrinsic analogy in the properties of
memristive and natural systems. It is important to note that
compact memristor-based devices for real-time processing of
bioelectric activity (threshold detection of spikes) can be created
owing to the integrative change in their resistive state (Gupta
et al., 2016). In this case, the metastable (volatile) behavior is
an important property of memristive devices for continuous and
energy-efficient encoding of large volumes of spiking activity
of living biological cultures (Gupta et al., 2018). It should
be mentioned that effective use of memristors in neurohybrid
systems is dependent on the predictable behavior of memristive
nanomaterials and devices, as well as on the ability to control
the parameters of their non-linear response to complex electrical
signals, which should be a subject of comprehensive study at the
micro- and macro-levels.

Noise plays a very significant and constructive role in
memristive devices, and only recently new investigations on the
positive role of noise have been started (Mikhaylov et al., 2016;
Filatov et al., 2019). Nowadays, there are many known examples,
where the interplay of non-linearity and fluctuations can change
the properties of a stochastic system in a counter-intuitive way, in
classical and quantum physics (Fiasconaro et al., 2004; Chichigina
et al., 2005, 2011; Valenti et al., 2008, 2015; Falci et al., 2013;

Spagnolo et al., 2015, 2016, 2018a,b). Furthermore, internal
and external noise can play a positive role in the switching
dynamics of memristors, as in stochastic resonance phenomenon
(La Barbera and Spagnolo, 2002; Valenti et al., 2004; Agudov et al.,
2010). This paves the way for using the intensity of fluctuations
as a control parameter for switching dynamics in memristive
devices (Agudov et al., 2020).

CMOS CIRCUITS: ON-CHIP ANALOG
AND DIGITAL SYSTEMS

As noted above, a significant progress has been demonstrated
on the way toward integration of memristive arrays and CMOS
circuits (Cai et al., 2019; Kataeva et al., 2019). The electronic
subsystem required for the CMOS integration of memristive
arrays includes peripheral and control circuitry. In Kataeva et al.
(2019), large passive memristive cross-bars are accessed via on-
chip CMOS interface circuits which are controlled by a custom
FPGAboard. To reduce latency and power consumption, a full set
of mixed-signal interface blocks and a digital processor have been
recently integrated together with memristive cross-bar array on a
single chip (Cai et al., 2019), instead of using discrete components
on printed board. On-chip integration of processor allows the
neuron functions and network structures to be reprogrammed
through simple software changes, enabling different algorithms
to be mapped on the same hardware platform.

With respect to the electronic subsystem of the neurohybrid
chip, a number of technical problems have to be solved to
organize the optimal interaction of living neuronal culture with
memristive arrays. Reading, processing, and reflection of the
spiking activity of neural cells must be carried out with a duration
of no more than a typical pulse (spike) in the areas of the
neurons. At the prototyping stage, a separate reading amplifier
and recording amplifier cannot be allocated to each electrode of
contact with a living culture due to the limited area of the CMOS
layer. This should be implemented in future with higher design
standards or a smaller number of electrodes.

It is necessary to implement an array of reading and writing
amplifiers in the CMOS layer, which allows transmitting pulses
from a living culture through electrodes to memristive array
and vice versa, simultaneously on a certain surface area. The
reading and writing amplifiers must be tuned to the signal
from living tissue amplified to the levels of active operating
modes of memristors. In the CMOS layer, it is also necessary to
implement access circuits for electrodes and memristors at row
and column addresses.

Circuits for stimulation of living culture/tissue (by using
the response of memristive network) are supposed to be
implemented on the basis of the pulse-widthmodulation (PWM).
If necessary, for the simultaneous reading of the electrode states
in the CMOS layer, banks of buffer memory can be implemented.
It is proposed to use ADC and DAC circuits to input and
output information about the analog state of memristors, but the
required bits of the ADC and DAC should be determined at the
prototyping stage (8 bits are assumed in the layout). The initial
input and subsequent output of information for a set of statistics
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on the experiment and processing can be implemented on the
basis of standard bidirectional interfaces (Cai et al., 2019).

Although the local resistive switching effect in memristive
devices provides the unique compactness, fast and energy-
efficient operation of passive memristive arrays (Xia and Yang,
2019), the active arrays integrated with peripheral and control
electronics should be always a subject of explicit evaluation
and benchmarking depending on the development/prototyping
stage (Cai et al., 2019; Zhao et al., 2020). Recently, several
reports on such benchmarking have shown potential advantages
of memristive chips over conventional ones: 19.7, 6.5 times,
and 2 orders of magnitude better energy efficiency compared to
the Google’s tensor processing unit (TPU), a highly optimized
application-specific integrated circuit (ASIC) system, and the
state-of-the-art graphics-processing unit (GPU), respectively
(Sun et al., 2020; Yao et al., 2020). The performance benchmark
of memristive neuromorphic computing system shows 110 times
better energy efficiency and 30 times better performance density
compared to Tesla V100 GPU. So, even rough estimates for
memristive circuits considered in this article allow one to imagine
their great potential from the viewpoint of speed, performance,
power consumption, and compactness.

The issue of reliability of memristive neural networks is
also currently in the eyeshot of many researchers and requires
the use of system approach and comprehensive consideration
(see Zhao et al., 2020 for review on the status of reliability
studies in this field). An example of such a system approach to
ensure the reliability of neural networks based on memristors is
proposed by the authors (Danilin et al., 2019; Shchanikov et al.,
2020). Another promising way is to use specialized algorithms
for tuning (training) memristor-based neural networks, as it is
proposed in Wang et al. (2019). This approach makes it possible
to create a neural network that self-adapts to non-idealities of
the 1T-1R memristive array, thereby providing the necessary
level of reliability.

One more important limitation when creating electronic
devices in contact with living cultures/tissues is to preserve
a trade-off between performance and power dissipation. On-
chip processing is more efficient than transmitting raw data
to the external processing unit (Zhuk et al., 2020), but the
power consumption of state-of-the-art digital processors is too
high. The dissipated power of memristive chips, according to
the estimates made by a number of research groups, does not
exceed tens of mW: 13.7 mW (Li et al., 2018b), 7.438 mW
(Yao et al., 2020), 6.62 mW (Wang et al., 2019), 42.1 mW (Lee
et al., 2020), 64.4 mW (Cai et al., 2019). The power dissipation
strongly depends on the amplitudes and frequencies of the signals
and increases with increasing the values of these parameters,
which is not necessary in principle when working with living
neurons. In addition, in a traditional computing system, power
is also dissipated in memory units (Horowitz, 2014) and even
much more in data movement, while both data storage and
computation can be combined in one memristive device. So, the
use of memristors to create a system on chip seems to be much
more efficient and safe for neural interfacing.

Therefore, one can argue that memristive CMOS circuits
will outperform traditional digital computing tools (CPU, GPU,

TPU, ASIC) in all key parameters for a wide range of data-
intensive applications, one of which is the real-time on-chip
processing of electrophysiological data in the frame of the
proposed neurohybrid concept.

MEMRISTIVE NEURAL ARCITECTURES:
TOWARD NEUROPROSTHETICS

Biological relevance should be ensured when developing
substitutive (neuroprostheses, motorized prostheses) and
assisting neuromorphic systems [computer interfaces (Lobov
et al., 2016), exoskeletons (Mironov et al., 2017), wheelchairs,
“neuromobiles” (Mironov et al., 2018)]. Here, if possible, the
same neural “language” and the same principles of information
processing should be used as in a biological brain. Only in this
case, over time, we can expect the blurring of the boundary
between living and artificial neural subsystems, which will
ultimately lead to the expansion of human capabilities. On
the other hand, in all the neurochip perspective applications
discussed here, we have arrays of implantable or non-invasively
attached electrodes that record in real time the electrical activity
of ensembles of neurons and/or muscle fibers. It is clear that
the more electrodes and more frequently the signal is taken
from each of them, the higher is the spatial (topographic) and
temporal resolution and, accordingly, the potentially higher is
the accuracy of sensory recognition (vision, hearing) or motor
control commands sent to an electromechanical prosthesis.
In this manner, we get a huge amount of data that needs to
be processed in real time. Currently, it is common to use an
external processor, which performs this processing and provides
an interface between an external part of a prosthesis (camera,
microphone, artificial limb) and the microcontroller device from
a living tissue side. However, the solution of such problems could
be strongly optimized by exploiting a highly specialized processor
with neural network architecture adapted for this specific kind
of calculation and serving as if it is a natural extension of the
biological nervous system (Boi et al., 2016). In this case, the
computing device would be capable of processing a large input
dimension (determined by the number of electrodes in the MEA)
and performing the required real-time signal processing. In
our opinion, the SNN architecture based on phenomenological
models and integrated into the proposed hybrid system seems to
be a good compromise in the sense of both biological similarity
and computational/power cost.

Recently, the first steps have been taken toward EMG (Lobov
et al., 2015, 2020a) and EEG (Goel et al., 2006; Tahtirvanci
et al., 2018) interfaces based on SNNs. However, until now, no
learning rule for SNNs has been proposed, which is equal in its
universality and effectiveness to the back propagation algorithm
for ANNs based on formal neurons. Several attempts were made
to adapt the “backprop” and its variations to SNNs (Hong et al.,
2010; Xu et al., 2013; Esser et al., 2016), but associative learning
based on synaptic plasticity similar to that for living neurons
seems to be a more “natural” way. Indeed, traditional formal
neural networks contain artificial neurons with a static activation
function as key computational elements, i.e. there is no dynamics

Frontiers in Neuroscience | www.frontiersin.org 7 April 2020 | Volume 14 | Article 358

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


Mikhaylov et al. Neurohybrid Memristive Chip Concept

in such systems. Consequently, such systems are quite difficult
to synchronize with time sequences of individual spikes recorded
in a biological nervous system. Spiking artificial neurons, as
well as their biological prototypes, generate spike sequences
that could be synchronized with the biological pulse signal
through a non-linear interface—an artificial analog of synapse,
a memristor. Namely, it has been recently shown that a system
consisting of several spiking pre-synaptic neurons connected via
memristive devices to the one post-synaptic neuron can adapt
their conductivities (synaptic weights) to the same distribution
under STDP updates by the repeatable pre- and post-synaptic
trains of pulses, independent of the initial resistances of
memristors or their device-to-device variability (Emelyanov et al.,
2020). This means that the non-linear memristive spiking system
memorizes only useful information about millisecond-scale time
intervals between spikes which could encode some real data about
perceived objects from an environment or motor commands
to actuators. In a neurohybrid interface, spikes from biological
neurons could be transformed online (synchronized) to the trains
of voltage pulses generated by artificial spiking units which, in
turn, could be used for the informative update of memristive
weights as described above.

Neural networks of a living brain appear to use both temporal
and frequency coding (Clopath et al., 2010; Masquelier and Deco,
2013). Similar behavior is observed in memristive devices based
electronic circuits (Battistoni et al., 2019a). Thus, the process of
SNN learning should provide both types of coding. In addition,
SNNs, unlike their formal counterparts, can be trained by bio-
plausible, so-called local rules of synaptic weight change using
information only about the activity of interconnected neurons
and synaptic efficacy (weight magnitude) between them. These
rules do not require information from the outside, as in the case
of learning by error back propagation technique, and therefore
can be the basis of self-learning computing systems, with a
change in synaptic weight according to the rules of the Hebbian
(Morris, 1999), STDP (Bi and Poo, 1998), BCM (Bienenstock
et al., 1982), metabolic (Yousefzadeh et al., 2018), or homeostatic
(van Rossum et al., 2000) types. In the case of frequency coding, it
is necessary to use frequency-dependent varieties of STDP, such
as the triplet-based rule STDP (Pfister and Gerstner, 2006) or
voltage-based STDP (Clopath et al., 2010). Recent studies have
shown the possibility of rate and temporal coding in SNN using a
combination of Hebbian learning (through triplet-based STDP),
synaptic and neuronal competition (Lobov et al., 2020a,b).
Hebbian and other STDP rules have been demonstrated for a
large number of different kinds of memristors (Kim et al., 2015;
Ielmini and Waser, 2016; Emelyanov et al., 2019; Minnekhanov
et al., 2019) that confirms their high potential to serve as the
self-adjusting weights between neurons in SNN.

Moreover, on the basis of spiking architectures, it is possible
to naturally train recurrent networks in which there are feedback
connections from deeper layers of neurons to less deep layers,
as well as the lateral connections between neurons of the same
layer (Demin and Nekhaev, 2018). In general, such architectures
cannot be reduced to a feedforward neural network, such
as a long-short term memory (LSTM) “unrolled” in several
consecutive modules (Hochreiter and Schmidhuber, 1997;

Brownlee, 2019). Therefore, recurrent SNNs can potentially be
trained on the basis of local rules to realize complex dynamic
patterns corresponding to those in the biological part of
neurointerface. This kind of training can take place in real time,
continuously adapting to the individual characteristics of a user’s
behavior. This is a practically inaccessible task for the formal
ANN architectures that require a priori training by error back
propagation on a set of pre-recorded patterns.

Implementation of hardware SNN architectures based on
memristors certainly requires additional wide studies: first,
to identify a minimum set of local learning rules sufficient
for the convergence of training the network to a solution
of a given problem, second, to seek for the possibility of
adapting local rules (like that of STDP type) to hardware
implementation with memristive elements (either by appropriate
selection of the memristive material or by engineering the
temporal sequence and/or shape of spikes generated by artificial
neurons), and, at last, to optimize (by energy efficiency,
area and computing performance) the SNN architecture
design and placing corresponding periphery systems on
neurohybrid chip under development. Although the higher
computational/power efficiency of SNN is one of the well-
known advantages over traditional neural architectures (Lee
et al., 2020), further improvement in this direction can be
based on rich dynamics of memristive devices and avoiding
special programming circuitry used for the implementation
of learning rules.

The most interesting direction at the boundaries of
neurotechnology and neuromorphic prosthetics has recently
emerged thanks to the seminal paper (Juzekaeva et al., 2019),
where the main principles and feasibility of a memristive
prosthesis of a synapse connecting two not connected via
natural synapses neurons of a rat brain slice are proposed. This
work triggered the discussion of the option to use stochastic
memristive devices of different nature as main building block of
neuromorphic prosthesis relocating functions and topology of
natural neuronal circuits. Some steps in this direction have been
already presented (Talanov et al., 2018b) including blueprints
of a memristive neuron circuit (Talanov et al., 2017a,b, 2018a).
As the number of memristive neurons available grows and the
technology of their fabrication becomes more and more mature,
we could expect the rise of the number of spiking solutions
for the reimplementation of neuronal structures as electronic
memristive circuits with more and more bio-plausible functions.
Possibly, the most promising and timely problem, due to the
lesser number of neurons and synapses, is the spinal cord
direction that seems to attract rising interest of the researchers
community (Gill et al., 2018; Wagner et al., 2018). The current
state of neurorehabilitation of patients with complete spinal
cord injury including epidural spinal cord stimulation is mainly
experimental (Lavrov et al., 2008; Gad et al., 2013; Moraud
et al., 2016), and it seems that a memristive implementation
of part of the spinal cord circuits could restore the walking
patterns of patients with complete SCI. We should not limit
ourselves with the reimplementation of the part of the nervous
system for patients, we could envision the further development
of augmented nervous systems with digital extensions using

Frontiers in Neuroscience | www.frontiersin.org 8 April 2020 | Volume 14 | Article 358

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


Mikhaylov et al. Neurohybrid Memristive Chip Concept

memristive properties of self-adaptation for the bidirectional
brain to machine interfaces (Musk and Neuralink, 2019) based
on the proposed neurohybrid chip approach.

CONCLUSION AND OUTLOOK

Here the concept of a single neurohybrid chip is proposed based
on existing and future solutions in the field of neural cells
and microfluidic technologies, which allow spatial structuring
of living neural network combined with CMOS MEA and
memristive arrays for real-time recording, processing, and
stimulation of bioelectric activity interfaced and controlled by
mixed analog–digital circuits on the same chip. This concept
paves the way toward the creation of compact biosensors
and neuroprosthetics that cannot be realized on the basis of
traditional neurointerface architectures. The functionality of
the proposed neurohybrid chip is limited in several domains
on the side of electronic subsystem, including challenges
associated with power consumption and reliability of memristive
circuits. Significant efforts should be made to further understand
the basic principles of learning in living neural networks
and development of universal learning algorithms for SNN,
providing their biological relevance and compatibility with
memristive arrays. The key challenge on the road toward
neurohybrid systems still remains in the reliable interaction
between living neurons and electronics. Although memristors
can provide efficient recording and on-chip processing of the
neural activity, a number of problems are still related to
biocompatibility and mechanical impact, geometry, placement,
and miniaturization of electrodes and probes, as well as the
reaction of living cultures and tissues at the interface with the
artificial electronic subsystem. The potential transition from the
proposed 2D to the 3D electrode system could provide some
solutions, opening further questions related to implantation
into deeper regions of the brain without causing structural
damage to the tissue.

We hope that future realizations of the proposed concept may
go beyond the CMOS limitations and rely on a direct synapse-
scale interface based on organic and stochastic memristive nano-
networks. Such nano-neurointerface should provide network
distributed stimulation, when each stimulation event will be
at the level of small synaptic currents of physiological range,
hence not affecting the self-protection mechanisms of the
brain. Designed this way, recording, processing, and stimulation
electronic networks can be “physiologically” integrated into
different brain areas to compensate or enhance brain functions
from sensory level to the level of cognition and memory.
Integrated into neural tissue memristive networks can also
shed the light on the fundamental questions of analog neuron
information processing.

To illustrate the proposed approaches and related products
in a foreseeable timeline, Figure 2 shows a roadmap of
memristive neuromorphic and neurohybrid systems focused on
the specialized hardware based on the architecture and principles
of biological neural networks to support the development
and mass introduction of artificial intelligence technologies,

machine learning, neuroprosthetics, and neural interfaces. The
roadmap starts tentatively in 2008 with the beginning of
the current wave of interest to memristors (Strukov et al.,
2008) and includes long-lasting research in the broad fields
of neurobiology and neurophysiology. The following product
niches are provided at different stages of development in this
roadmap:

1) Neuromorphic computing systems;
2) Non-invasive memristive neurointerfaces;
3) Neuroimplants, neuroprostheses, and invasive

neurointerfaces.

There are the unique properties of memristive devices
that determine their decisive importance in the development
of neuromorphic and neurohybrid systems for computing
systems, brain–computer interfaces, and neuroprosthetics.
These products will occupy a significant part of the global
high-tech market worth trillions of dollars by 2030, taking
into account the speed of development and implementation of
artificial intelligence technologies, the Internet of Things,
technologies of big data, smart city, robotics. Targets
of the near future are neuroprosthetics, instrumental
adjustment/support/enhancement of human sensing and
cognitive abilities.

Hardware support is not just necessary for these
technologies—the further development of neurocognitive
technology industry and artificial intelligence is impossible
without it due to the pronounced inadequacy of the
traditional von Neumann architecture of computers for
solving anthropogenic problems requiring a neural network
architecture. As a result, we have unsatisfactory performance
with huge energy consumption by the existing ICT infrastructure
in the processing of even current (ongoing) anthropogenic tasks.
This trend with the spread of intelligent technologies will only
worsen, and therefore the development of specialized hardware
of neuromorphic and neurohybrid systems (discussed here and
based on memristors in a priority) is a key condition for the
development of high-tech industries as a whole.

The development of artificial hardware systems should be in
line with the bio- and neurotechnologies shown on the roadmap
in the form of critical milestones, when a clear decision should
be made on the most appropriate solutions. Over the past two
decades, some progress has been observed in the development
of biocompatible materials with the aim of creating multi-
channel recording devices for neuronal networks activity both
in vitro and in vivo. The prototypes of such devices are already
implanted in the brain of animals for a long time with minimal
immune response. Further optimization involves minimizing
damage during implantation into the brain by reducing the
size and increasing the flexibility of the probes in conjunction
with the electrodes scaling. At the same time, the development
of new-generation neuorohybrid systems will require a lot of
special not yet obtained tools and preliminary experiments on
animal models. These are the further advancement of neural
interfacing (in view ofmicroelectrode biocompatibility, reliability
and rejection problems, 2D to 3D transition, etc.), chronic

Frontiers in Neuroscience | www.frontiersin.org 9 April 2020 | Volume 14 | Article 358

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


Mikhaylov et al. Neurohybrid Memristive Chip Concept

FIGURE 2 | A roadmap of memristive neuromorphic and neurohybrid systems.

neural pattern recognition and control devices (neurochips and
algorithms for them), power management, signal processing,
and data transfer in miniaturized platforms. Also, there is a
problem with proof-of-principle investigation of which of neural
circuits influence over disease progression in representative
animal models. All these stages are crucial for the development
of invasive neurointerfaces and memristive control systems
for them. These neurobiology and neurophysiology involved
investigations are still in progress and, due to the vast literature
reports, could begin to develop mass products in 2 or 3 years.
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