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Abstract: Advances in neuroimaging of the preterm infant have enhanced the ability to detect brain
injury. This added information has been a blessing and a curse. Neuroimaging, particularly with
magnetic resonance imaging, has provided greater insight into the patterns of injury and specific
vulnerabilities. It has also provided a better understanding of the microscopic and functional impacts
of subtle and significant injuries. While the ability to detect injury is important and irresistible, the
evidence for how these injuries link to specific long-term outcomes is less clear. In addition, the
impact on parents can be profound. This narrative summary will review the history and current state
of brain imaging, focusing on magnetic resonance imaging in the preterm population and the current
state of the evidence for how these patterns relate to long-term outcomes.

Keywords: neonates; magnetic resonance imaging; neuroimaging; cranial ultrasound; neurodevelop-
mental; premature infants; parental perception

1. Introduction

Advances in perinatal and neonatal care have improved survival rates for very preterm
infants (born ≤ 30 weeks gestation age GA) [1–3]. The developing preterm brain is uniquely
vulnerable to hypoxic, hemorrhagic, and/or inflammatory injury. The two most frequently re-
ported findings include intracranial hemorrhage and white matter abnormalities (WMA) [4,5].
Both are associated with substantial neurodevelopmental challenges, including cerebral palsy
(CP) and mild motor dysfunction, neurosensory impairment, cognitive, language, as well as
behavioural disorders such as attention-deficit–hyperactivity disorder (ADHD) and autism
spectrum disorder (ASD) [6–8]. These outcomes have associated impacts on individuals,
families, and society [9]. Early identification and the provision of targeted interventions are
essential to the infants’ and their families’ quality of life [10–13].

As neuroimaging has evolved, the identification of brain injuries in the preterm pop-
ulation has become more sophisticated, demonstrating a complex and diverse spectrum
of brain injury [14]. Ironically, this diverse pattern of presentations on neuroimaging has
limited the prediction of outcome [15]. The univariate nature of imaging is one of the
most significant limiting factors for its prognostic efficacy. Images alone cannot account
for the complex nature of perinatal and neonatal brain injuries with a potpourri of ex-
tracranial factors correlated to the developmental outcome, including nutrition, social
and economic factors, and access to early identification and targeted interventions [16].
Additionally, the dynamic nature of brain development and potential injury in this unique
population underlies the significance of the timing of imaging. These collective factors
contribute to the widely variable sensitivity and specificity of neuroimaging in predicting
later development.

This narrative summary will review the history and current state of brain imaging,
focusing on cranial ultrasound and magnetic resonance imaging (MRI) in the preterm
population to predict later neurodevelopmental outcomes. The updated guidelines from
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the American Academy of Neurology (AAN) [17], the American Academy of Pediatrics
(AAP), and the Canadian Pediatric Society (CPS) [5,18] regarding MRI screening in this
population will also be summarized.

2. History of Neuroimaging and Patterns of Brain Injury in the Preterm Population

Neuroimaging emerged as a diagnostic tool in the mid-1970s with cranial ultrasonog-
raphy (US) to assess intracranial hemorrhage in neonates [19]. In 1978, Dr. Volpe indicated
that one of the primary goals of neuroimaging in preterm infants was to “identify those with
a hopeless prognosis” [20]. Neuroimaging offered additional depth and detail previously
unavailable.

Over the last 40 years, cranial US, with its ease of use, has become the primary
neuroimaging modality to evaluate intracranial pathology in preterm infants and predict
long-term neurodevelopmental outcomes. It is cost-efficient, readily available, and easily
performed at the bedside. In addition, it offers an imaging modality free of exposure to
ionizing radiation as opposed to computerized tomography (CT) scans [21]. A routine
imaging schedule for preterm infants less than 32 weeks gestational age (GA) with the
cranial US is now followed in neonatal intensive care units (NICU) [5,18]. In order to
standardize the descriptions of injury documented on the cranial US, grading systems were
developed by Papile et al. [22] Table 1 and Volpe [23], with that from Papile being the most
widely used to date.

Table 1. Germinal matrix hemorrhage and intraventricular hemorrhage (GMH-IVH) grading system by Papile et al. [22].

Grade Description in the Parasagittal View

I Germinal matrix hemorrhage (GMH) only or germinal matrix hemorrhage plus intraventricular
hemorrhage less than 10% of the ventricular area

II GMH and intraventricular hemorrhage; 10 to 50% of the ventricular area

III GMH and intraventricular hemorrhage involving more than 50% of the ventricular area; lateral
ventricles are usually distended

IV Hemorrhagic infarction in periventricular white matter ipsilateral to intraventricular hemorrhage
(also called periventricular hemorrhagic infarction [PVHI])

Note. The description is in part based on the percentage (%) volume of the lateral ventricle fill by blood.

One key change from Volpe, however, has been the revision of the finding once referred
to as a Grade IV IVH by Papile [22] to that which is now referred to as a periventricular
hemorrhage (PVH) [23]. A PVH infarction (PVHI) is attributed to impaired venous drainage
of the white matter’s medullary veins following a GMH-IVH [24–26]. It is viewed as a
separate finding from IVH and can be found with any injury grade. In addition to hem-
orrhagic injuries, cranial US also provided visualization of ischemic injury of the cortical
white matter, referred to as periventricular leukomalacia (PVL) [26–28]. Expansion of the
intracranial windows has also allowed greater visualization of the cerebellum, now recog-
nized as having the potential for hemorrhagic or ischemic injury and its own consequences
for neurodevelopmental outcomes [29].

Imaging the entire brain was once performed using computer tomography (CT),
but this has shifted to cranial US and MRI, which offer either more specific detail and
avoid ionizing radiation [30]. One of the earliest studies using CT scans in preterm was
in 1983 to predict long-term outcomes in the preterm population. The authors described
the association of major developmental and neuromotor handicaps with the findings of
more severe (grade III and IV) IVH on CT scans performed between 3 and 10 days of
age [31]. In 1994, infants with HIE were receiving at least one CT scan during their initial
hospitalization as it was deemed more efficient, despite concerns regarding radiation
exposure, the ease of cranial US, and the superiority of MR imaging in this population [32].
CT can identify severe deep gray matter lesions with similar sensitivity to MRI, and injuries
to the thalami and basal ganglia on CT have been associated with death or significant
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neurologic sequelae at 18 months of life [33]. However, CT does not identify white matter
cortical injury or cerebellar injury as effectively as MRI [34,35]. CT has been used to assess
for calcifications, hemorrhage, brain injury, and edema secondary to hypoxia-ischemia,
venous sinus thrombosis, masses, and structural abnormalities, but this modality is now
primarily supplanted by MRI due to the ionizing radiation required for imaging. Except
for emergencies, CT scans are now generally avoided for newborn imaging [5]. Therefore,
CT is no longer considered a part of routine imaging techniques of the preterm brain. The
main benefit of CT remains its rapid acquisition time, obviating the need for sedation of
the infant and better visualization of superficial structures over the cranial US.

In 1985, MRI emerged as an additional safe imaging option for neonatal brains [36],
initially describing findings in neonatal encephalopathy (NE) [37]. Benefits associated
with MRI included more detailed images and no ionizing radiation [38–41]. Since those
early studies, MRI technology has demonstrated better sensitivity and specificity for
detecting brain injury in neonates, particularly in the thalami and basal ganglia [42].
The use of MRI extended into the preterm cohort as well, demonstrating a broader sense
of the extent of white matter injury or white matter abnormality (WMA) [43]. Types of
WMA include ventriculomegaly, decreased white matter volume, increasing intensity of
white matter signal, and evidence of decreased myelination [44–47]. The remainder of the
MRI abnormalities described in preterm infants are more focal in nature, most commonly
being punctate lesions [48–50], representing clusters of activated microglia. Although
classic cystic PVL is the WMA that has been the most thoroughly investigated in preterm
infants, it represents only about 4% of the abnormalities seen on term equivalent age
(TEA) MRI [48,49].

Another significant advantage of MRI is the detailed images of the posterior fossa
and detection of cerebellar hemorrhage (CBH), ranging from small punctate lesions, focal
unilateral bleeds, and massive bleeds involving both hemispheres and including the
vermis [51,52]. While few IVH are missed by routine cranial US, CBH is identified more
readily on MRI versus cranial US [44,47,53]. A recent study showed CBH on MRI in 10% of
the cohort, whereas only 2% had hemorrhage detected on the cranial US [54,55]. A grading
system for CBH has been developed based on the lesion(s) location and extent of the
bleeding as crucial variables concerning the neurodevelopmental outcomes [47,52,56,57].

Practical considerations include the cost of MRI estimated at GBP 315 (CAD 550)
per patient [38,58]. There are also technical challenges, with MRI not being available in
most NICUs at the bedside, requiring transportation to the imaging suite. They are also
more time consuming to obtain and more sensitive to motion artifacts, thereby requiring
sedation. Sedation and neonatal transport are often imperative, requiring personnel with
these competencies [59–63].

In addition, there are an array of contraindications to MRI, including implanted or
attached electronic and ferromagnetic devices (e.g., pacemakers, ferrous aneurysm clips).
All personnel, monitoring and support equipment must be safe for the magnet. Yet, most
resuscitation equipment is not magnet-safe and cannot be brought into the MRI scanning
room, limiting the modality to those that are clinically stable or for whom there is no other
acceptable option. [39,64]. Lastly, accurate neonatal MRI readings require expertise by
knowledgeable pediatric neuroradiologists. In particular, the ability to detect mild and
moderate degrees of injury on MRI may need sophisticated scanning sequences as well as
additional proficiency in the analysis of these results [65–67].

3. Correlation of Neuroimaging Findings with Neurodevelopmental Outcomes

These advances in the development and utilization of cranial US and MRI have en-
hanced brain injury detection in preterm infants and improved the understanding of the
links between brain injury and neurodevelopmental outcomes. In particular, neuroimaging
is able to identify preterm infants with significant brain injury who are at-risk for neurode-
velopmental challenges [15,44,68]. This section will review the specific imaging technique
and evidence around the associated long-term outcome.
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3.1. Cranial US

Cranial US remains the NICU’s primary imaging tool worldwide [5,18,56]. This is
related to its ease of use and cost-efficiency. It has also been the most commonly used
neuroimaging modality for predicting long-term outcomes [69].

The correlation between IVH diagnosed by the cranial US in the first one to two weeks
of life and later developmental outcomes were the focus of early studies. One of the earliest
outcome studies in 1989 reported that grade II or higher cerebroventricular hemorrhage
(CVH) was 79% sensitive for the development of CP and 70% sensitive for intellectual
challenges by two years of life [70]. Today, however, CP’s risk due to isolated IVH has been
much lower, mostly due to care and management changes in the NICU [71,72]. Subsequent
recent studies, including extremely low gestational age neonates (ELGANs), have estimated
the risk rate of CP in isolated IVH to be between 9 and 17%, compared to 4–6% in infants
with normal cranial US results [73,74]. The finding of PVHI (described originally as grade
IV IVH) has been associated with more significant motor and cognitive impairments [75–80].
PVL was reported to be the strongest sonographic predictor of abnormal motor outcomes
and CP in preterm infants [81–85].

Late cranial US findings (35 to 42 weeks postmenstrual age) associated with cog-
nitive delay and/or psychomotor delay include moderate/severe ventriculomegaly,
echolucencies and echodensities, severe IVH (grade III or higher), and periventricular
hemorrhage [15,69,79,86].

The predictive value of cranial US remains low despite technological advances and
high-frequency probes. The ELGAN study found 43% of infants who develop CP had no
significant IVH, WMA, or ventriculomegaly on the cranial US, and 6% had normal findings
on the cranial US [74]. Table 2 presents a review of some of the evidence around the cranial
US and long-term outcome.
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Table 2. The predictive value of the cranial ultrasound in preterm infants.

Study/Year Year of
Recruitment

Population Characteristics
GA in Weeks (toTal
Number of Infants)

Ages of Assessment
Lesions with the

Highest
Correlation

Outcome
Measure

Age of Outcome
Measure (Corrected Age

when Age in Months)

Predictive Result

Sens (%) Spec (%) PPV (%) NPV (%)

O’Shea et al., 2008
(ELGAN) [69]

2002–2004 <28 (1506)

Variable—day 1 and 4 or day 5
and 14 or day 15 to 40th

postconceptional weeks or a
combination of all above

V.E./Echolucent
lesion

MDI +/−VABS
ABC < 70

24 months

12–17 93–95 45 75–76

PDI of <70
+/−VABS
ABC < 70

14–17 94–96 55–61 71–72

Kuban et al., 2009
(ELGAN) [74] 2002–2004 (1105)

Variable—day 1 and 4 or day 5
and 14 or day 15 to 40th

postconceptional weeks or a
combination of all above

V.E./Echolucent
lesion CP 24 months 32–38 94–96 44–52 >92

Leijser et al., 2008
[87]

May 2001–Apr
2004 <32 (40)

Average of 7 US between day of
birth until discharge or transfer,

and TEA
Major Lesions a BSID II, MDI, PDI)

of <70 24 months 75 86 43 96

Woodward et al.,
2006 [68]

November
1998–May 2002 ≤30 (1962)

Minimal by 48 h of life, at 5 to 7
days of age, and again at 4 to 6

weeks of age
Major Lesions a CP 24 months 18 85 - -

De Vries et al.,
2004 [88]

January
1990–January 1999

<32 (1460) Weekly until discharge and 40
weeks PMA Major Lesions a CP 24 months 76 95 48 99

33–36 (469) Weekly until discharge and 40
weeks PMA Major Lesions a CP 24 months 86 99 83 99

Valkama et al.,
2000 [89]

November
1993–October 1995 <34 (51) Term Major Lesions a CP 18 months 67 85 - -

Pinto-Martin et al.
1995 [90]

September
1984–June 1987 (1105)

4 and 24 h and 7 days of life;
with 47% also scanned in week 5

and/or Predischarge
PEL/VE Disabling CP 24 moths 54 96 - -

Nwaesei et al.1988
[91]

July 1984–June
1985

≤32 (110)

US at 1 week

Major Lesions a CP or BSID III < 85 12 months

16 99 75 85

US at 2 weeks 16 99 75 85

US at 3 weeks 37 99 87 87

US at 6 weeks 53 99 91 91

US at 40 weeks PMA 58 100 100 92

Graham et al. 1987
[92]

January
1984–April 1985

Selected on weight ≤ 1500
g, not GA (200)

At least twice weekly for the first
month and then every week

until discharge.

PVH

CP 18 months

67 53 11 95

Cystic PVL 67 96 62 97

Prolonged Flare 17 85 9 92

Note. a Major lesions: Grade III-IV IVH, cystic PVL: subcortical leukomalacia, basal ganglia lesions, or focal infarction. ABC: adaptive behavior composite, BSID: Bayley Scales of Infant and Toddler Development,
CP: cerebral palsy, DWMA: diffuse white matter abnormality, ELGAN: extremely low gestational age newborns, MABC: Movement Assessment Battery for Children, MDI: Mental Developmental Index.
MRI: magnetic resonance imaging, NPV: negative predictive value, PDI: Psychomotor Developmental Index, PEL/VE: parenchymal echodensities/lucencies or ventricular enlargement, PL/VE: parenchymal
lesions/ventricular enlargement, PPV: positive predictive value, PVH: periventricular hemorrhage, PVL: periventricular leukomalacia, Sens: sensitivity, Spec: specificity, TEA: term equivalent age, US: ultrasound,
weeks: weeks, VABS: Vineland Adaptive Behavior Scales, WMA: white matter abnormalities.
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3.2. Magnetic Resonance Imaging

In contrast, MRI has demonstrated more sensitive and specific imaging information
about central nervous system (CNS) abnormalities. As a result, MRI is increasingly be-
ing used in many NICU settings to identify cerebral WMA in preterm infants’ brains
at TEA [93–95].

One of the first extensive studies to examine the link between findings on neuroimag-
ing and neurodevelopmental outcomes was by Woodward et al. [68], which demonstrated
improved MRI sensitivity over the cranial US in predicting a range of neurodevelopmental
challenges. The sensitivity associated with moderate-to-severe WMA on MRI for predicting
cognitive delay at two years was 41%, and 65% for severe motor delay or CP, respectively.
Subsequent studies (see Table 3) have demonstrated a correlation between neurodevelop-
mental outcome and either grossly abnormal or normal TEA MRI scans [4,15,44,46,68,96,97].
For those extremely preterm infants (GA < 28 weeks) with a normal TEA cranial US, studies
have demonstrated that there is a low likelihood of finding moderate or severe white matter
or gray matter abnormalities on TEA MRI [98–100]. As a complement to the cranial US,
TEA MRI has emerged to improve prognostic information and inform current clinical and
future supportive care [101]. Table 3 presents a review of individual studies on MRI and
their associated long-term outcome.

Table 3. The predictive value of the MRI at TEA in preterm infants.

Study/Year Year of
Recruitment

Population
Characteristics GA in
Weeks (Total Number

of Infants)

Lesion with
Highest

Correlation

Outcome
Measure

Age of Outcomes
Measures (Corrected

Age when Age
in Months)

Predictive Result

Sens
(%)

Spec
(%)

PPV
(%)

NPV
(%)

Parikh et al.,
2020 [102]

November
2014 and

march 2016
≤31 (98)

Moderate-to-
severe

DWMA

BSID III
Cognitive < 70

24 months

100 95.7
- -

BSID III
language < 70 37.5 93.9

Slaughter et al.,
2016 [103]

August 2005
and

November
2007

Based on the weight of
ELBW, not GA (122)

Diffuse cystic
changes Death or CP

18–24 months
33 94 - -

Gyral
maturational

delay

Death, CP,
BSID III < 80,

or sensory
challenges
(vision or

hearing loss)

33 97

Spittle et al., 2011
[104]

2001 and
2003

<30 weeks or
birthweight < 1250 g

(227)

Moderate-to-
severe WMA

(30)
CP or MABC <
5th percentile 5 years - - 34 91.4

Any Severity
WMA 92.5 40.7

Woodward et al.,
2006 [68]

November
1998–May

2002
≤30 (1962)

Moderate-to-
severe WMA
in (35) 21%

CP or severe
cognitive or
motor delay

24 months
41–65 84–85 - -

Any Severity
WMA 88–94 30–31

Valkama et al.,
2000 [89]

November
1993–

October
1995

<4 (51)

Parenchymal
lesions: PVH,

PVL, or infarct
WMA

CP 18 month 100 79 - -

ABC: adaptive behavior composite, BSID: Bayley Scales of Infant and Toddler Development, CP: cerebral palsy, DWMA: diffuse white
matter abnormality, ELGAN: extremely low gestational age newborns, MABC: Movement Assessment Battery for Children, MDI: Mental
Developmental Index. MRI: magnetic resonance imaging, NPV: negative predictive value, PDI: Psychomotor Developmental Index, PPV:
positive predictive value, PVH: periventricular hemorrhage, PVL: periventricular leukomalacia, Sens: sensitivity, Spec: specificity, TEA:
term equivalent age, US: ultrasound, weeks: weeks, VABS: Vineland Adaptive Behavior Scales, WMA: white matter abnormalities.

A meta-analysis by George et al., 2018 examined data from 31 articles to evaluate the
diagnostic accuracy of early MRI performed before 36 weeks postmenstrual age in relation
to later motor outcomes and CP. The results demonstrate that early structural MRI had a
sensitivity of 100% and specificity of 93% for the identification of children with CP [105].
These results reinforce those from Van’t Hooft et al., 2015, which demonstrated a similar CP
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prediction result [106]. However, prognostic accuracy for visual and/or hearing problems,
neurocognitive and/or behavioural function was poor [106].

Imaging the posterior fossa and detecting CBH is one of the significant advantages of
MRI over cranial US [29,55]. CBH has been associated with a substantial risk of neurologic
abnormalities in preterm infants [107–110]. A follow-up study of infants with CBH at
seven years of age found that these children have more challenges with attention [111–113].
Disrupted cerebellar development has been linked to a future diagnosis of autism spec-
trum disorder (ASD) [114], and other psychiatric disorders (e.g., schizophrenia) [115,116].
A high incidence of nonmotor (cognitive, language, and behavior development) delay in
infants with neonatal CBH was confirmed in a recent systematic review by Hortensius,
Dijkshoorn et al., 2018 [109].

3.3. Clinical Implications of Imaging at TEA

There is evidence that abnormal findings on neuroimaging can aid in the prediction
of the long-term neurodevelopmental outcome, but the challenge lies in that the predictive
value is unclear, higher for more obvious lesions and lower for less clear findings (see
Tables 2 and 3). The correlation between TEA cranial US and TEA MRI has a consistency
of up to 88% for the predictive value in very preterm infants with brain injury evaluated
for neurodevelopmental outcomes at two years of age [117,118]. In addition, up to 25%
of preterm infants with an unremarkable exam on the cranial US may still present later
in childhood with cognitive or psychomotor delays [69]. A similar dilemma applies to
MRI studies, as not all children with WMA at TEA MRI had significant challenges, and
profound neurologic impairment occurred in other children without WMA. Table 4 presents
a review of some studies with a normal or unremarkable exam on neuroimaging (cranial
US and MRI) [99].
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Table 4. Normal neonatal imaging (Cranial US and TEA MRI) exam and neurodevelopmental outcomes in preterm infants.

Cranial US.

Study/Year Year of
Recruitment

Population with no
US Abnormalities

Ages of Assessment
Corrected Age
of Outcomes

Measures

Outcome

Cognition

CP (%) HI. (%) VI (%) NDI (%) Other (%)BSID MDI < 70
(%)

BSID PDI < 70
(%)

Hou et al., 2020
[119] 2005 to 2010 BW < 1250 g (n) 192 Serially from birth until Term 2 years 22.4 BSID III < 80 - 2.1 - - - -

Munck et al.,
2010 [120] 2001 to 2006 VLBW infants BW

< 1500 g (n) 91

Serially at 3–5 days, 7–10 days, at 1
month and then monthly discharge and

then at term
2 years 2 BSID II - 0 0 - 2 ID 2

Kuban et al.,
2009 (ELGAN)

[74]
2002 to 2004 <28 weeks infants

(n) 739

Variable—day 1 and 4 or day 5 and 14
or day 15 to 40th postconceptional

weeks or a combination of all above
2 years - - 6 - - - -

Laptook et al.,
2005 [121] 1995 to 1999

GA 26 +/− 2 weeks
BW < 1000 g infants

(n) 1473
mean age of 6 and 47 days 18 to 22 months 25 BSIDII - 9 - - 29 ID 25

Adams-
Chapman et al.,

2008 [122]
1993 to 2002 BW 401–1000 g

infants (n) 5163 n.s. 18 to 22 months 27 BSID IIR 17 BSID IIR 10 1 9 35 ID 27

Ancel et al., 2006
(EPIPAGE) [73] 1997 GA 22 and 32 weeks

infants (n) 1238
1 to 3 times in the first 2 weeks of life

and then every 2 weeks 2 years - - 4.4 - - - -

Patra et al., 2006
[123] 1992 to 2000 GA 26.5 weeks ± 1.9

infants (n) 258
at least 2 in the first 10 days of life, then
30 days and at least 1 before discharge 20 months 25 BSIDII 28 BSID-II 3 2 - 28 ID 25

Sherlook et al.,
2005 [124] 1991 to 1992 GA < 28 weeks BW <

1000 g infants (n) 180
At least 1 by 1st week of life, at 28 days,

and prior to discharge

8 years
chronological

age
- - 6.7 - - -

Low reading 24.4%
Low spelling 19.2%

Low arithmetic 27.6%

Whitaker et al.
1996 [125] 1984 to 1987

GA 32.1 ± 3.0 BW
501 to 2000 g infants

(n) 468

4 and 24 h and 7 days of life; with 47%
also scanned in week 5 and/or

Predischarge
6 years - - - - - - ID1.3
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Table 4. Cont.

TEA MRI

Study/Year Year of
recruitment

Population with no US abnormalities
Age of

outcomes
measures

Outcome

Cognition

CP (%) HI. (%) VI (%) NDI (%) Other (%)BSID MDI < 70
(%)

BSID PDI < 70
(%)

Anderson et al.,
2017 [97] 2001 to 2003 60 infants GA < 30 weeks BW < 1250 g 7 years

corrected age - - - - - -

Intelligence quotient
100.2 (14.7)
Mean (SD.)

Motor 9.5 (3.7)
Mean (SD.)

Munck et al.,
2010 [120] 2001 and 2006 182 infants BW < 1500 g 2 years

corrected age - - 2 - - 2 ID 0

Woodward et al.,
2006 [68] 1998 to 2002 GA < 30 weeks

No WMA (n) 47 2 years
corrected age

4 - 2 - - 15 ID 7

No GrMA (n) 85 - - 5 - - 21 1D 10

BSID: Bayley Scale of Infant Development, BW: birth weight, EPIPAGE: Etude épidémiologique sur les petits âges gestationnels, HI: hearing impairment, ID: intellectual disability GA: gestational age, GrMA:
gray matter abnormality, NDI: neurodevelopmental impairment, n: number of population, n.s.: not stated, MRI: magnetic resonance imaging, US: ultrasound, VLBW: very low birthweight, VI: vision impairment,
Wks: weeks, WMA: white matter abnormality.
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Term age equivalent MRI alone poorly predicted cognitive function for the individual
patients at school age or later in life [97,126]. Adding TEA MRI to early and late cranial US
also did not appear to improve the predictive ability of severe intellectual disability (ID) or
significant neurodevelopmental challenges at six or seven years of age [15,97].

As a result of the challenges associating findings or lack thereof with long-term
outcomes, neuroimaging (cranial US and/or MRI) does not yet offer the solitary accurate
predictor of long-term neurodevelopmental outcomes for individuals. Limitations may
relate to the use of early CP as a binary variable in this population; this is a primitive metric,
as many infants with IVH who demonstrate signs of CP at one to two years of life have a
minimal functional impairment and an overall intelligence similar to that of controls by
the time they reach school age [127]. In addition, it endorses a misperception that PVL
and PVH carry universally ‘poor’ outcomes, which may potentially lead to alterations
of care or withdrawal of care [128]. Complex decisions such as withdrawal of support
necessitate a deeper investigation into models of developmental outcomes, including an
emphasis on factors such as functional impacts, family impact, and quality of life; this does
not yet exist [58].

4. Effect of Diagnostic MRI on Parents and Further Follow-Up

Preterm birth has long-lasting effects on individuals and families, and increased ma-
ternal anxiety adversely influences child development [129,130]. Based on data to date,
neuroimaging’s predictive capabilities for high-risk infants are inadequate to identify those
infants that should be excluded from structured follow-up or those that should be selected
for additional therapies [131–133]. Additionally, the imaging technique with the greatest
predictive capacity, MRI, is performed after the acute phase of illness, making it unavailable
for counselling parents on limitations of care or support withdrawal [134,135]. The main
remaining benefit is that of providing parents with a risk-adjusted estimate of the develop-
mental outcome, something that has been suggested by families and physicians to be of
questionable benefit and potentially emotionally harmful [134,136]. Pearce and Baardsnes
(2012) articulated parental perspective in the impact of neuroimaging at TEA [136]:

“We are not angry at the hospital, but knowing what we know now, we never would have
consented to an MRI, because it served no purpose other than to traumatize a family that
had already been through so much and affect our ability to enjoy bonding with our child.”

Subsequently, parents have reported that there is a significant emotional impact associated
with brain imaging during their infant’s NICU admission [58,136]. Edwards, Redshaw et al.,
2018, studied the effect of MRI on preterm infants and their families and demonstrated that
maternal anxiety was reduced after receiving information from neuroimaging (cranial US
and/or MRI) and slightly more after an MRI compared with the cranial US. However, this
reduction was not clinically significant and did not contribute to a better health-related
quality of life for the child and family [58].

While the evidence is limited [137], most parents have expressed interest in more
accurate long-term prognostic information, especially from a TEA MRI, in order to prop-
erly plan post-discharge early intervention support services. Despite that, it has been
reported that parent’s concerns about long-term developmental outcomes and the need for
information did not diminish over time or with the knowledge of assuring normal brain
neuroimaging results and the baby’s stable condition [137–139]. The emotional impact of
having a preterm baby had a negative effect on parents’ ability to retain information while
in the NICU, and all had an ongoing need for reassurance beyond the hospital period [137].

In addition to the parent’s perspective regarding neuroimaging in the NICU, 10%
of infants will demonstrate unexpected abnormalities on TEA MRI not acquired in the
perinatal period (i.e., not already diagnosed prenatally or postnatally by clinical signs
or the cranial US) [140,141]. Incidental findings in the adult population are identified in
1–4% of brain MRIs, with up to one-third of those neoplastic. Many of the remaining
findings were considered benign without the need for follow-up [142]. Contrary to adult
literature, extreme preterm infants tend to have a higher rate of incidental findings (9.7%)



Children 2021, 8, 227 11 of 19

on TEA MRI requiring follow-up [140,141]. These incidental findings increase parental
anxiety [143,144]. One-quarter of these findings were deemed benign (e.g., small benign ve-
nous anomalies, arachnoid cysts, corpus callosum dysgenesis, absent septum pellucidum,
frontal scalp mass and a nasal septum cyst) and required no further follow-up. The remain-
ing three-quarters required further diagnostic follow-up and/or therapeutic intervention,
including cortical tubers, significant dysmorphia of the brain stem or cerebellum, and
ectopic pituitary [140,141]. The balance between revealing silent brain abnormalities of
clinical significance and discovering findings of uncertain clinical importance that result in
potentially unnecessary diagnostic follow-up has led to the ongoing debate regarding the
benefit and appropriateness of TEA MR imaging in this population [134,143].

5. Moving from Research to Clinical Practice

Despite the lack of clarity in the data as well as the cost, there have been calls to
standardize the use of MRI for all former extreme preterm infants at 36–40 weeks post-
menstrual age [145–148]. Magnetic resonance imaging has significant predictive value
as an isolated imaging modality. However, several issues must be overcome before TEA
MRI can become a standard in preterm infants. The current MRI data limit TEA MRI’s
clinical usefulness to predict the long-term neurodevelopmental outcome for the individual
survivor accurately [44]. In addition, there are no data to support that any improved prog-
nostic capabilities of MRI will translate into improved outcomes. Due to these limitations,
performing TEA MRI for preterm infants was recently listed as one of the top five tests
or treatments in newborn medicine that “cannot be adequately justified based on efficacy,
safety, or cost” [134,149].

Recommendations from the American Academy of Neurology (AAN), the American
Academy of Pediatrics (AAP), and the Canadian Pediatric Society (CPS) do not endorse
routine MRI for preterm infants, regardless of cranial US findings [5,17,18]. Currently,
updated guidance from both the AAP and CPS state that TEA MRI for infants should be
considered mainly as a follow-up of abnormal cranial US results (e.g., severe IVH, PVL,
and hydrocephalus) and following a conversation with the family regarding its limitations
for estimation of long-term prognosis. [5,18,105,134,136]. A “feed and wrap” technique is
preferred should MRI be pursued [18,61,150]. Brain CT is no longer considered a part of
routine imaging techniques for the preterm population [18].

While MRI has not yet emerged as a solitary tool, its role as contributing important
data cannot be overlooked. It is for this reason that there is a consideration for TEA MRI to
be integrated into a more extensive assessment, including physical examination findings,
clinical risk factors (e.g., neonatal history of bronchopulmonary dysplasia and postna-
tal steroids) [151,152], standardized neurological and motor assessments (e.g., General
Movement Assessment (GMA) [153–155], Hammersmith Infant Neurological Examination
(HINE)) [155–158] for early identification of motor challenges, mainly CP [159–163]. In a
retrospective case–control study of 441Italian high-risk infants, Morgan et al., 2019 found
that the combined predictive power of the three-month HINE, GMA, and neuroimaging
(MRI and/or cranial US) post-term gave sensitivity and specificity values of 97.86% and
99.22% (PPV 98.56%, NPV 98.84%) for detecting CP [164]. The clinical combination of these
tools leads to earlier identification of CP diagnosis and facilitates earlier intervention. This
will have significant implications for optimizing the child’s overall function [165,166], pre-
venting secondary complications [167] and supporting the families of these children [168].

Two systematic reviews further supported a combined approach for the prediction of
CP in conjunction with clinical history. Bosanquet et al., 2013 [169] looked at it in preschool-
age children less than five years; one sampling mostly from preterm infants. Novak et al.,
2017 [170] looked for clinical signs and CP symptoms that emerge and evolve before age
two years, pooled from six systematic reviews and two evidence-based clinical guidelines.
A more recent systematic review by Caesar et al., 2020 [171] evaluated the accuracy of
clinical tools used at a corrected age of six months or younger to predict motor and cognitive
delay at two years (not cerebral palsy) in infants born very preterm. Table 5 shows the
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result of the three recent systematic reviews of the predictive value of diagnostic tools that
can identify infants at risk of long-term neurodevelopmental challenges [169–171].

Table 5. The predictive value of tools used in the early (less than six months corrected age) identification of infants at risk of
long-term neurodevelopmental challenges.

Study/Year Country Population
Characteristics Outcomes

Age of
Outcome

Diagnostic
Tool

Predictive Value

Sens % (95% CI) Spec % (95% CI)

Caesar et al.,
2020 [171] Australia

Ten studies ≤
32 weeks GA ±
≤ 1500 g infants

(n) 992

Sever motor
delay (not CP)

2 years

GMA Fidgety
stage (AF, F-) 70 85

HINE at 3 and
6 months 93 (68–100) 100 (96–100)

Cognitive
delay BSID III

≤ 2SD

GMA Fidgety
stage (AF, F-) 70 85

HINE at 3 and
6 months Not estimable Not estimable

Novak et al.,
2017 [170] International Eight studies

All GA
CP <2 years

TEA MRI
(preterm
infants)

86–89 -

GMA (Prechtl) 98 -

HINE 90 -

Bosanquet et al.,
2013 [169] Australia 19 studies

23–41 weeks
CP after

2 years of age

Preschool
children
(<5 year)

TEA MRI
(preterm
infants)

86–100 89–97

Cranial US 74 (63–83) 92 (81–96)

GMA 98 (74–100) 91 (83–93)

Neurological
examination 88 (55–97) 87 (57–97)

Note. CI: Confidence interval, CP: cerebral palsy, GA: gestational age, GMA: General Movements Assessment, HINE: Hammersmith Infant
Neurological Examination, MRI: magnetic resonance imaging, RCT: randomized control trial, SD: standard deviation, Sens: sensitivity,
Spec: specificity, TEA: term equivalent age, US: ultrasound, weeks: weeks.

This information is now being used by programs and guides screening tools, manage-
ment regarding the intensity and duration of follow-up and the need for early identification
and intervention. One case series suggested that this multivariate approach (risk factor as-
sessment and MRI evidence of WMA) may help identify specific cognitive and behavioural
problems in children born very preterm [172,173]. This is particularly challenging because
available tools (neuroimaging and early clinical assessment) do not accurately predict long-
term developmental outcomes such as cognitive, language, and behavior development
in individual survivors [173], compared to predicting CP and/or motor challenges; see
Tables 2 and 3.

6. Conclusions

Prediction of neurodevelopmental outcomes is an essential aspect of neonatal care [13].
It allows for important counselling to offer essential information on the potential impact on
a family, the child’s function, and future. It also allows for early identification and targeted
intervention, which has been demonstrated to improve functional outcome [170]. Currently,
however, there remains a critical gap in the research surrounding neonatal neuroimaging.
While neuroimaging has not yet proven to be a tool that can be used in isolation, it has been
proven to add value in combination with clinical history and examination. What remains
to be articulated is whether the added value of TEA MRI details and sensitivity can be
harnessed more effectively to outweigh the significant barriers to use, specifically cost,
technical challenges, and expertise. In addition, or perhaps expanding on that statement,
consideration is needed for a shift from a simple description of images and outcomes to
that which explores how these tools can be leveraged to improve outcome, rather than
predicting a ‘hopeless prognosis’.
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