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Abstract: It is now possible to estimate an individual’s brain age via brain scans and machine-
learning models. This validated technique has opened up new avenues for addressing clinical
questions in neurology, and, in this review, we summarize the many clinical applications of brain-age
estimation in neuropsychiatry and general populations. We first provide an introduction to typical
neuroimaging modalities, feature extraction methods, and machine-learning models that have been
used to develop a brain-age estimation framework. We then focus on the significant findings of
the brain-age estimation technique in the field of neuropsychiatry as well as the usefulness of the
technique for addressing clinical questions in neuropsychiatry. These applications may contribute to
more timely and targeted neuropsychiatric therapies. Last, we discuss the practical problems and
challenges described in the literature and suggest some future research directions.
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1. Aging, Disease, and the Brain

The aging process in humans is associated with the progressive decline of various
physiological and organ functions [1], and many diseases including cancer, cardiovascular
disease, diabetes, and dementia are associated with aging [2]. It is not uncommon for
elderly people to suffer from multiple diseases simultaneously. Since humans’ bodies
change with age and as humans are living longer in several regions of the world, the aging
process has become a key issue in public health, disease prevention, and treatment. Many
discussions concerning the pathological meaning of aging in the context of epigenetic
change, proteotoxic or oxidative stress, and telomere damage have thus been conducted [3].

The brain is also affected by aging [4]. In the early stage of life, the aging process is
regarded as brain development in which the brain matures, and children usually experience
an increase in their cognitive ability along with their physical growth. During late adult-
hood, the brain aging process has different effects, e.g., a decline of cognitive function, and
advancing age is associated with neurodegeneration, particularly Alzheimer’s disease and
other forms of dementia [5,6]. If the aging process of the brain could be measured precisely
and accurately, the findings may have potential as biomarkers for neuropsychiatric disor-
ders. In fact, frameworks to quantify the age of a human brain have been attempted for
several decades [7]. Today, advances in medical imaging and analytical methods (especially
machine learning) have allowed the calculation of an individual’s biological age from the
extracted biological features [8]. The frameworks that are now used to estimate the age
of an individual’s brain have the potential to provide useful, objective, and personalized
biomarkers for neurological and psychiatric disorders.

2. Neuroimaging-Based Brain-Age Estimation

Telomere-related and epigenetics-related biomarkers have not shown sufficient pre-
dictive and deterministic value for estimating brain ages, and it has been suggested that
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phenotype-based estimation can generate a much closer indicator of brain age [4]. Neu-
roimaging is a widely available, less-invasive method to investigate the whole brain of
humans, and with neuroimaging, the brain’s morphological and microstructural features
can be obtained; these features are speculated to be suitable material for the estimation of
the age of an individual brain. In fact, neuroimaging-based brain-age estimation has been
increasingly applied to individuals with various neuropsychiatric disorders and general
populations [8]. In this narrative review, we examined over 100 studies and introduce the
recent findings and methodologies of this emerging technique. We conducted a search
of the PubMed database in May 2022 using “brain-age estimation” and/or “brain-age
prediction” as keywords, although we did not adopt rigorous systematic selection criteria
of studies for this narrative review.

3. Theory and Methodology
3.1. Theory of Neuroimaging-Based Brain-Age Estimation

In 2010, Katja Franke and her peers developed a prediction model that was able to
estimate a subject’s age based on brain imaging data and the use of a regression machine-
learning model [9]. The output of a brain-age estimation framework has been called the
“brain age-delta,” “brain predicted age difference (Brain-PAD),” “brain age gap estimation
(BrainAGE),” and “brain age gap (BAG),” each of which is computed by deducting the
estimated brain age from the subject’s chronological age. In this review, we refer to “brain
age-delta” as the output of a brain-age estimation framework. The brain age-delta is known
as a heritable biomarker for both monitoring cognitively healthy aging and identifying
age-associated disorders [8]. There are three possibilities for a brain age-delta value: (i) a
brain age-delta close to zero, representing normal brain aging, (ii) a positive brain age-delta
(i.e., estimated brain age > chronological age), representing an older-appearing brain, and
(iii) a negative brain age-delta (i.e., estimated brain age < chronological age), representing a
younger-appearing brain.

A brain-age estimation study is generally composed of three main stages: (i) creating
a prediction model by using extracted brain features and a regression machine-learning
model, validation, and bias correction; (ii) computing the brain age and brain age-delta for
the subject under study; and (iii) interpreting the results, including the use of a within-group
and/or a between-groups analysis. Figure 1 depicts the pipeline of a typical brain-age
estimation study.
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In the literature, the typical accuracy of the prediction of brain ages is from 2 years
to 10 years in terms of mean absolute error (MAE) [10,11]. The prediction accuracy in a
brain-age estimation framework depends on variables such as the type of input data, the
feature extraction, and reduction strategies [12] and bias adjustment techniques [13], and
machine-learning models [14]. In the following subsections, we provide a general overview
of these variables.

3.2. Input Data and Feature-Extraction Methodologies of Neuroimaging

One of the key concerns among researchers attempting to develop a brain-age esti-
mation framework is the selection of the input data. Each modality offers unique insights
into the brain. For example, fluorodeoxyglucose-positron emission tomography (FDG-PET)
scans provide information about the brain’s glucose metabolism, whereas magnetic reso-
nance imaging (MRI) data provide information about the anatomy of the brain. Among the
different brain, MRI modalities such as T1-weighted MRI images (T1w MRI), T2-weighted
MRI images (T2w MRI), resting-state functional (f)MRI, and fluid-attenuated inversion
recovery (FLAIR), the majority of brain-age estimation studies have used T1w MRI data.
The main reason for using T1w MRI is because it is more readily available than other modal-
ities [15]. Brain age frameworks generally require a large dataset for training a prediction
model, and many public neuroimaging datasets such as ADNI (https://www.adni.loni.
usc.edu, accessed on 31 October 2022), PPMI (https://www.ppmi-info.org, accessed on
31 October 2022), IXI (http://brain-development.org/ixi-dataset/, accessed on 31 October
2022), and OASIS (https://www.oasis-brains.org/, accessed on 31 October 2022) have
provided a great number of T1W MRI scans for research studies.

Each brain imaging modality requires a specific feature extraction strategy. The feature
extraction approaches for T1w MRI data can be classified into two categories: (i) voxel-wise
methods (e.g., statistical parametric mapping [SPM], http://www.fil.ion.ucl.ac.uk/spm,
accessed on 31 October 2022) [8,16,17], which use gray matter (GM) and/or white matter
(WM) signal intensities as brain features; and (ii) region-wise methods (e.g., FreeSurfer,
http://surfer.nmr.mgh.harvard.edu/, accessed on 31 October 2022) [18], which use the
subcortical and cortical and measurements of volume, surface, and thickness values as
brain features. Both voxel-wise and region-wise feature extraction approaches have been
widely used in T1-w MRI-driven brain-age estimation studies [19–21].

A direct comparison of voxel-wise and region-wise metrics as well as their integration
in the accuracy of brain age has been conducted [12]. For functional MRI-driven brain-
age frameworks, the extracted features can be functional connectivity (FC) measures
between brain regions or intrinsic connectivity networks and voxel-wise whole-brain
FC measures (e.g., FSLNets, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets, accessed on
31 October 2022) [22,23]. In terms of the PET modality, the extracted features for estimating
brain ages include measurements of brain metabolism (i.e., PET regional total glucose,
aerobic glycolysis, oxygen) and cerebral blood flow [22,23]. White-matter microstructure
measurements such as mean diffusivity, fractional anisotropy, axial diffusivity, and radial
diffusivity have been employed as brain features for a diffusion tensor imaging (DTI)-based
brain age framework [24].

3.3. Data Reduction, Validation, and Bias Adjustment Neuroimaging Methodologies

The ‘curse of dimensionality’ is one of the major concerns in developing a brain-age
estimation framework, particularly when the number of brain features is far higher than the
number of samples (e.g., in voxel-based feature extraction strategies). High-dimensional
data can give rise to some substantial issues in a prediction model, such as overfitting and
decreased computational efficiency. A data reduction technique that can decrease the high
dimensionality of data and diminish redundant information is thus required. In the area
of brain-age estimation, most studies have used the principal component analysis (PCA)
strategy, which is an unsupervised learning technique [9,19]. The effect of the number of
principal components on the accuracy of brain-age predictions has been investigated [9].

https://www.adni.loni.usc.edu
https://www.adni.loni.usc.edu
https://www.ppmi-info.org
http://brain-development.org/ixi-dataset/
https://www.oasis-brains.org/
http://www.fil.ion.ucl.ac.uk/spm
http://surfer.nmr.mgh.harvard.edu/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets
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The number of principal components may influence the prediction accuracy in a brain age
estimation framework. However, it can be adjusted to achieve maximum accuracy in the
training set [9].

After a prediction model is developed, it is critical to validate the model’s prediction
accuracy. Most studies in the field of brain-age estimation have used a K-fold cross-
validation strategy (e.g., K = 5 or 10) to assess the prediction performance on a training
set [12,14,16,21]. In the K-fold cross-validation technique, the data are randomly divided
into K folds, and the learning process is repeated K times so that K-1 folds are used for
training a prediction model, and the remaining fold is used as a test for each iteration. To
assess the prediction accuracy, researchers generally use the coefficient of determination
(R2) between the subjects’ chronological age and estimated age, the MAE, and root mean
square error (RMSE) metrics.

Many brain-age estimation studies have reported age dependency on the prediction
outputs, and this is considered a substantial issue in brain-age frameworks [13,21]. This
bias, which could be a result of regression dilution bias, may adversely affect the predicted
values and alter the interpretation of results. Several techniques have been proposed
to diminish this bias (i.e., age dependency) [13,21,25]. For instance, Le and colleagues
proposed using chronological age as a covariate in the statistical analyses and interpreting
the results [26]. However, it should be highlighted that Le’s method is appropriate for group
comparison only and not able to deliver bias-free brain age values at the individual level.
A bias adjustment strategy is proposed in [21] (i.e., Cole’s method) that uses the intercept
and slope of a linear regression model of estimated brain age against chronological derived
from the training set. The bias-free Brain-age values in the test sets are then calculated by
subtracting the intercept from the predicted brain age and dividing by the slope [21]. The
most recent bias adjustment technique is suggested in [13] (i.e., Beheshti’s method) which
computes offset values for test subjects on the basis of the intercept and slope of a linear
regression model of brain age-delta against chronological age achieved from the training
set. Then, the bias-free Brain-age values are computed by subtracting the offset values
from the estimated brain-age values [13]. A direct comparison of these bias adjustment
techniques has shown that Beheshti’s method greatly reduces the variance of the predicted
ages, whereas Cole’s method increases it [13].

3.4. Machine-Learning Methodologies

One of the important steps in developing a brain-age estimation framework is choosing
a regression machine-learning model. A regression model establishes a pattern between
independent variables (here, brain features) and the corresponding dependent variable
(a subject’s chronological age) based on the training dataset, and the model uses this
pattern to predict the brain age based on unseen data (i.e., independent test datasets).
The most widely used traditional regression algorithms include support vector regression
(SVR) [19,23], relevance vector regression (RVR) [9], Gaussian process regression [21],
an ensemble of gradient-boosted regression trees [25], and XGBoost [25]. It has been
demonstrated that the type of regression algorithm used influences the prediction accuracy
and the interpretation of outcomes in brain-age frameworks [14].

In addition to the traditional regression algorithms, deep learning models have become
a prominent methodology in the area of brain-age estimation [11], as they can be used to
develop more accurate prediction models. A major advantage of deep learning models
is that they can be applied directly with 3D brain image data and incorporate feature
extraction, data reduction, and prediction stages into a unified system. The main challenge
of deep learning-based brain-age estimation frameworks is that this methodology requires
a large dataset to train a model. In 2017, James Cole and his peers developed the first deep
learning-based brain-age estimation framework, with a 3D convolutional neural network
(CNN) that uses 3D gray matter and 3D white matter intensity maps as the input data [11].
Other deep learning architectures used in brain-age estimation frameworks include feed-
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forward neural networks, VGGNet [27], ResNet [28], U-Net [29], and an ensemble of CNN
architectures [30].

4. Applications in Neuropsychiatry
4.1. Alzheimer’s Disease, Dementia, and Memory Impairment

One of the most active areas of brain-age research concerns Alzheimer’s disease (AD)
and mild cognitive impairment (MCI) (Table 1) [17,23,31–37], because of their strong associ-
ation with aging. Alzheimer’s disease is the most common cause of dementia, which is also
a relevant issue in aging societies in many developed countries. The early detection of AD is
important in terms of early cognitive intervention [38–40] as well as the future development
of disease-modifying therapy [41], and neuroimaging plays key roles in ensuring accurate
and early diagnoses, revealing the underlying pathophysiology, and monitoring the disease.
An increased BAG in individuals with AD has been consistently reported, ranging from
+2.88 to +9.29 years [17,20,37], and correlations between an increased BAG and cognitive
dysfunction or white matter hyperintensity were also found [17,36]. Importantly, the pre-
dictability of progression from MCI to AD and the detectability of preclinical AD based on
brain-age measures are also confirmed and would be clinically significant [31,34,37].

Table 1. Neuroimaging-based brain age studies for dementia, cognitive impairment, and other
neurological disorders.

First Author
[ref.] Year Cohort Imaging Modality ML Algorithm Main Findings

Alzheimer’s Disease and Cognitive Impairment

Gaser [31] 2013 133 pMCI, 62 sMCI T1WI RVR

BAG predicts conversion to AD,
10% greater risk of developing
AD by each 1 additional yr of

BAG

Lowe [32] 2016 150 AD, 112 pMCI,
36 sMCI, 107HC T1WI RVR Effect of APOEe4 on BrainAGE

changing rates over time

Beheshti [17] 2018 147 AD, 112 pMCI,
102 sMCI, 146 HCs T1WI SVR

BAG: +5.36 yr in AD, +3.15 yr in
pMCI, +2.38 yr in sMCI.

Correlation with cognitive
function

Wang [33] 2019
3688 people

(middle age to
elderly)

T1WI CNN BAG: related to incident
dementia

Mohajer [35] 2020 48 AD, 222 MCI,
60 HCs T1WI SVR

BAG was elevated in MCI and
AD but was not associated with

sleep-disordered breathing.

Ly [34] 2020
74 AD, 283 MCI,

51 preclinical AD,
83 HCs

T1WI GPR
BAG differentiated cognitively
unimpaired Amyloid (+) from

Amyloid (−).

Beheshti [23] 2021 292 AD, 440 MCI,
548 HCs FDG-PET SVR

Younger BAG in females than in
males in HCs group but not in

MCI or AD groups

Habes [36] 2021 1932 MCI/AD,
8284 HCs T1WI RBF-kernel BAG associated with WMH as

well as cognitive function
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Table 1. Cont.

First Author
[ref.] Year Cohort Imaging Modality ML Algorithm Main Findings

Parkinson’s disease

Beheshti [20] 2020 160 PD, 129 AD,
839 HCs T1WI SVR

GM-based BAG: +1.50 yr in PD,
+9.29 yr in AD. WM-based BAG:
+2.47 yr in PD, +8.85 yr in AD.
WM-based BAG > GM-based

BAG in PD

Eickhoff [42] 2021 372 PD, 172 HCs T1WI SVR

BAG: +2.9 yr in PD. Associated
with disease duration and

cognitive and motor
impairment.

Charisse [43] 2022
83 PD-NC,
78 PD-MCI,

17 PD-D, 84 HCs
T1WI SVR

RBA: +2.38 yr in PD-NC,
+1.90 yr in PD-MCI, +3.52 yr in
PD-D. Associated with attention
deficits and working memory

Epilepsy

Pardoe [44] 2017
42 new FE,

94 refractory FE,
74 HCs

T1WI GPR BAG: +4.5yr in refractory FE, no
significance in new FE

Hwang [45] 2020 104 TLE, 151 HCs T1WI, fMRI SVR
T1-based BAG: +6.6 yr in TLE.

fMRI-based BAG: +8.3 yr in TLE
Association with clinical data

Sone [19] 2021 318 epilepsy,
1,196 HCs T1WI SVR

BAG: >+4 yr in all types of
epilepsies, +10.9 yr in TLE with

psychosis

de Bézenac [46] 2022 48 TLE, 37 HCs T1WI GPR BAG: +7.97 yr in TLE,
postsurgical reduction of BAG

Multiple sclerosis

Cole [47] 2020 1204 MS/CIS,
150 HCs T1WI GPR

BAG: +10.3 yr in MS, +13.3 yr in
SPMS, predictive value for

progression

Jacobs [48] 2021 179 MS T1WI GPR BAG: +6.54 yr in MS, associated
with a physical disability

Traumatic brain injury

Gan [49] 2021 116 mTBI, 63 HCs DTI RVR
BAG: +2.59 yr in mTBI,

associated with post-concussion
complaints

Hellstrom [50] 2021 123 mTBI T1WI, DTI XGBoost
No significant difference in

BAG between APOEe4 carriers
and non-carriers after mTBI

Pain

Yu [51] 2021 31 CLBP, 32 HCs T1WI GPR
Discrepancy in BAG between
HCs and CLBP was greater in

older individuals

Hung [52] 2022 45 TN, 52 OA,
50 CLBP, 812 HCs T1WI GPR

BAG: +6.48 yr in TN, +9.80 yr in
OA, no significance in BP.

Female-driven elevation in BAG
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Table 1. Cont.

First Author
[ref.] Year Cohort Imaging Modality ML Algorithm Main Findings

Others

Azor [53] 2019 20 PWS, 40 HCs T1WI GPR

BAG: +7.24 yr in PWS, Not
associated with IQ, hormonal or

psychotropic medications, or
abnormal behaviors

Cole [54] 2017 162 HIV(+),
105 HIV(−) T1WI GPR

BAG: +2.15 yr in HIV(+),
associated with cognitive

performance

AD: Alzheimer’s disease, BAG: brain age gap, CIS: clinically isolated syndrome, CLBP: chronic lower back pain,
CNN: convolutional neural network, DTI: diffusion tensor imaging, FDG-PET: 18F-fluorodeoxyglucose PET, FE:
focal epilepsy, fMRI: functional MRI, GPR: Gaussian process regression, HCs: healthy controls, ML: machine
learning, MS: multiple sclerosis, mTBI: mild traumatic brain injury, NC: normal cognition, OA: osteoarthritis, PD:
Parkinson disease, PD-D: PD with dementia, pMCI: progressive mild cognitive impairment, PWS: Prader-Willi
syndrome, RBF: radial basis function, RVR: relevance vector regression, sMCI: stable mild cognitive impairment,
SPMS: secondary progressive MS, SVR: support vector regression, T1WI: T1-weighted image, TLE: temporal lobe
epilepsy, TN: trigeminal neuralgia.

4.2. Other Neurological Diseases

Parkinson’s disease (PD) is a common neurodegenerative movement disorder charac-
terized by the degeneration of dopaminergic neurons in the substantia nigra [55]. Overall,
it seems that an increase in brain age by 2–3 years occurs in PD [20,42,43], and such an
increase is associated with cognitive or motor impairment (Table 1). A comparison study
between PD and AD revealed a significant increase in the BAG in AD compared to PD.

Epilepsy is also a common neurological disorder, characterized by recurrent seizures
associated with abnormal electrical activity in the brain. A brain with chronic epilepsy
tends to present a BAG of +4 to +8 years (Table 1) [19,44–46], and comorbid psychosis may
further increase the BAG by several additional years [19]. Interestingly, epilepsy surgery
may reduce the abnormal BAG increase, regardless of postsurgical seizure freedom [46].

Multiple sclerosis (MS) is an autoimmune disease involving damage to the myelin
sheaths of the brain and spinal cord [56]. The BAG in MS is relatively high at +6.5 to
10.3 years on average (Table 1), and it is particularly higher in secondary progressive MS
(+13.3 years) [47,48]. An increased BAG is also suggested to predict MS progression.

A brain-age framework has also been applied to neurological and related disorders
including traumatic brain injury [49,50], pain [51,52], Prader-Willi syndrome [53], and HIV
infection [54] (Table 1).

4.3. Schizophrenia and Psychotic Disorders

Schizophrenia is a serious psychiatric disorder presenting symptoms that include psy-
chosis, cognitive dysfunction, and negative symptoms. Increased brain age in schizophrenia
and first-episode psychosis (FEP) has been reported (Table 2) [57–72], and consistent find-
ings of a BAG increased by approx. 3–6 years in schizophrenia have been confirmed, with
possible associations with cognitive dysfunction or polygenic risk. The BAG in individuals
with FEP may be lower than that in schizophrenia, and, according to longitudinal studies,
an acceleration of brain aging over time is suggested in this population. The BAG is also
associated with schizotypal symptoms in relatives of patients with psychosis [72]. Early
medication may reduce the BAG in psychosis [71].



J. Pers. Med. 2022, 12, 1850 8 of 21

Table 2. Neuroimaging-based brain age studies for psychiatric disorders.

First Author
[ref.] Year Cohort Imaging Modality ML Algorithm Main Findings

Schizophrenia and Psychosis

Koutsouleris [57] 2014
141 SZ, 104 MDD,
57B PD, 89 ARMS,

127 HCs
T1WI SVR

BAG: +5.5 yr in SZ, +4.0 yr in
MDD, +3.1 yr in BPD, +1.7 yr

in ARMS.

Schnack [58] 2016 341 SZ, 386 HCs T1WI SVR
BAG: +3.36 yr in SZ,

acceleration just after illness
onset

Nenadic [59] 2017 45 SZ, 22 BPAD,
70 HCs T1WI RVR BAG: +2.56 yr in SZ, no

significance in BPAD

Kolenic [60] 2018 120 FEP, 114 HCs T1WI RVR BAG: +2.64 yr in FES,
associated with obesity

Hajek [62] 2019

43 FES, 43 HCs,
96 offspring of

BPAD (48 affected,
48 unaffected),

60 HCs

T1WI RVR BAG: +2.64 yr in FES, no
significance in early BPAD

Chung [61] 2019 476 CHR N/A N/A

BAG predicts conversion to
psychosis in a univariate

analysis but not in a
multivariate analysis

Shahab [63] 2019 81 SZ, 53 BPAD,
91 HCs T1WI, DTI RF BAG: +7.8–8.2 yr in SZ, no

significance in BPAD

Kuo [64] 2020 26 SZ, 30 MDD,
19AD, 109 HCs T1WI LASSO, ICA

BAG: +5.69 yr in SCZ,
+3.25 yr in AD, no significance

in MDD. Association with
large-scale structural
covariance network

Tønnesen [65] 2020 668 SZ, 185 BPAD,
990 HCs DTI XGBoost

Increased BAG in SZ (Cohen’s
d = −0.29) and BPAD

(Cohen’s d = 0.18)

Lee [66] 2021 90 SZ, 200 HCs,
76 SZ, 87 HCs T1WI

OLS, Ridge,
LASSO,

Elastic-Net, SVR,
RVR

BAG: +3.8–5.2yr in SZ cohort
1, +4.5–11.7 yr in SZ cohort 2.

Algorithm choice can be a
cause of inter-study

variability.

Lieslehto [67] 2021 29 SZ, 61 HCs T1WI SVR

BAG: +1.3 yr at baseline,
+7.7 yr at follow-up in SZ. It

was suggested that BA
captured treatment-related

and global brain alterations.

McWhinney [68] 2021 183FEP, 155 HCs T1WI RVR

BAG: +3.39 yr in FEP at
baseline, longitudinal

worsening was associated
with clinical outcomes or

higher baseline BMI

Teeuw [69] 2021 193 SZ, 218 HCs T1WI SVR
BAG: correlation with

polygenic risk, no correlation
with epigenetic aging
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Table 2. Cont.

First Author
[ref.] Year Cohort Imaging Modality ML Algorithm Main Findings

Wang [70] 2021 166 SZ, 107 HCs DTI RF
BAG: +5.903 in SZ >30 yrs old.

Association with working
memory and processing speed

Xi [71] 2021 60 FES, 60 HCs DTI RVR
BAG: +4.932 yr in FES, +2.718.

Decreased BAG after early
medication

Demro [72] 2022
163 psychosis,
103 relatives,

66 HCs
T1WI SVR/RF

BAG increase in psychosis
more than HCs or relatives.

Associated with cognition or
schizotypal symptoms in

relatives

Mood disorders

Bestteher [73] 2019 38 MDD, 40 HCs T1WI RVR BAG: no significant change in
MDD

Van Gestel [74] 2019 84 BPAD, 45 HCs T1WI RVR

BAG: +4.28 yr in BPAD
without Li treatment, no

significance in BPAD with Li
treatment or HCs

de Nooij [75] 2019 283AYA T1WI RVR

Reduction of BAG in young
high-risk individuals who

developed a mood disorder
over 2-yr follow-up

Christman [76] 2020

76 MDD
(middle-age),

118 MDD (elderly),
130 HCs

T1WI CNN

BAG: +3.69 yrs in geriatric
MDD, no increase in mid-life

MDD. Associated with
cognitive and functional

deficits in elderly

Ahmed [77] 2021 95 late-life
depression T1WI CNN

BAG: +4.36 yrs in late-life
depression. Not associated
with treatment response.

Ballester [78] 2021 160 MDD, 111 HCs T1WI GPR

BAG: higher in older MDD
than in younger MDD,

associated with BMI in MDD,
not associated with treatment

response

Han [79] 2021 2675 MDD,
4314 HCs T1WI Ridge regression

BAG: +1.08 yr in MDD with
no specific association with

clinical characteristics

Han [80] 2021 220 MDD/Anxiety,
65 HCs T1WI Ridge regression

BAG: +2.78 yr in MDD,
+2.91 yr in Anxiety.

Association with somatic
symptoms (+4.21 yr) and

antidepressant use (−2.53 yr)

Dunlop [81] 2021 109 MDD, 710 HCs fMRI SVR
BAG: +2.11 yr in MDD,

associated with impulsivity
and symptom severity
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Table 2. Cont.

First Author
[ref.] Year Cohort Imaging Modality ML Algorithm Main Findings

Others

Liu [82] 2022 90 OCD, 106 HCs T1WI GPR
BAP: +0.826 yr in OCD,
associated with disease

duration

Niu [83] 2022
70 SP, 77 SAD,

70 MDD, 44 PTSD,
48 ODD, 81 ADHD

T1WI Ridge regression
Multidimensional brain-age
index is sensitive to distinct

regional change patterns

Ryan [84] 2022 1618 SMI,
11,849 HCs DTI

RF, gradient
boosting

regression, LASSO

Additive effect of SMI and
cardiometabolic disorders on
brain aging, the greater effect

of SMI than CMD

Comprehensive

Kaufmann [85] 2019 10,141 patients,
35,474 HCs T1WI XGBoost

BAG: d = +1.03 in dementia,
+0.41 in MCI, +0.10 in MDD,
+0.74 in MS, +0.29 in BPAD,
+0.51 in SZ, +0.06 in ADHD,

+0.07 in ASD

Bashyam [86] 2020 353 AD, 833 MCI,
387 SZ, 12,689 HCs T1WI CNN Successful discrimination for

neuropsychiatric disorders

Kolbeinsson [87] 2020
12,196 people who

had not been
stratified for health

T1WI CNN
Identified risk factors, e.g.,

MS, diabetes, and beneficial
factors, e.g., physical strength

Rokicki [88] 2021
54 AD, 90 MCI,
56 SCI, 159 SZ,

135 BPAD, 750 HCs
T1WI, T2WI, ASL RF Highest accuracy by

multimodal imaging model

AD: Alzheimer’s disease, ARMS: at-risk mental state, ASL: arterial spin labeling, AYA: adolescence and young
adult, BAG: brain age gap, BPAD: bipolar affective disorder, BPD: borderline personality disorder, CHR: clinical
high-risk state for psychosis, CMD; cardiometabolic disease, CNN: convolutional neural network, DTI: diffusion
tensor imaging, FEP: first episode psychosis, FES: first-episode schizophrenia, fMRI: functional MRI, GPR: Gaus-
sian process regression, HCs: healthy controls, ICA: independent component analysis, MDD: major depressive
disorder, ML: machine learning, OCD: obsessive-compulsive disorder, ODD: oppositional defiant disorder, OLS:
ordinary least squares, PTSD: posttraumatic stress disorder, RF: random forest, RVR: relevance vector regression,
SAD: social anxiety disorder, SMI: severe mental illness, SP: specific phobias, SVR: support vector regression, SZ:
schizophrenia, T1WI: T1-weighted image, T2WI: T2-weighted image.

4.4. Mood Disorders

There have been several studies of brain age in mood disorders (Table 2), including
bipolar affective disorder (BPAD) and major depressive disorder (MDD) [73–81]. Unlike
schizophrenia, some studies reported no significant difference in the BAG in mood dis-
orders [59,62,73], while others found an increase of approx. +2 to +4 years [76,77,79–81].
Overall, the aging abnormality in mood disorders would be mild to moderate. Two studies
that focused on MDD in late life reported significantly increased brain age [76,77]. Interest-
ingly, the BAG may be reduced by medications, such as lithium for BPAD or antidepressants
for MDD [74,80].

4.5. Other Psychiatric Disorders

The brain age in other psychiatric disorders such as obsessive-compulsive disorder
(OCD) and specific phobias has been investigated [82,83] (Table 2), and a relatively large
study reported contributions of both severe mental illness and cardiometabolic disorders
to an increased BAG [84].
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4.6. Comprehensive Studies

Brain-age findings across various neuropsychiatric disorders have been obtained in
comprehensive studies [85–88] (Table 2). Overall, these studies successfully identified
neuropsychiatric disorders and risk factors by using brain age, and it was indicated that a
multimodal imaging model may have high accuracy [88]. In particular, an investigation of
a large sample (>10,000 patients and 35,000 healthy controls) revealed the effect sizes of a
BAG in various conditions, which should be regarded as a reliable standard of BAG scores
so far [85]. According to this study, the strongest aging of the brain is seen in dementia,
followed by MS, schizophrenia, and MCI.

5. Applications to General Populations

Targeting a general population or individuals without neuropsychiatric diagnoses is
another important topic in neuroimaging-based brain-age framework research, as it may clar-
ify how to keep our brains healthy and avoid the risks of accelerated aging [15,16,21,89–129].
The most consistent significant risk factor could be diabetes (Table 3). In fact, diabetes has
been consistently reported to adversely affect the aging of the brain. Alcohol consumption
and smoking were also associated with an increased BAG in some studies [15,16,121–123,128].
Other factors that were suggested to be associated with an increased BAG include mortality,
allostatic load, lung function, exposure to famine in early gestation, recidivism, chronic
pain, cardiovascular risk, chemotherapy for cancer, lead exposure in childhood, hyperten-
sion, premature birth, male sex, worry and rumination, neighborhood disadvantage, sleep
apnea, obesity, and physical strength (Table 3).

Table 3. Neuroimaging-based brain age studies for general populations or those without neuropsy-
chiatric diagnoses.

First Author
[ref.] Year Cohort Imaging Modality ML Algorithm Main Findings

Franke [89] 2013 185 people T1WI RVR
BAG: +4.6 yr in T2DM,

Acceleration by +0.2 yr per
year

Franke [90] 2014 228 elderly T1WI RVR
BAG associated with health

markers with
gender-specific pattern

Franke [91] 2015 8 women T1WI RVR
BAG changes during the
course of the menstrual

cycle

Luders [92] 2016 50 LTM, 50 HCs T1WI RVR BAG: −7.5 yr in LTM

Cole [21] 2018 669 people T1WI GPR

Higher BAG was associated
with weaker grip strength,

poorer lung function, slower
walking speed, lower fluid

intelligence, higher allostatic
load, and increased

mortality risk.

Franke [93] 2018 118 elderly T1WI RVR

BAG: +4.3 yr in males
whose mothers were

exposed to famine in early
gestation
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Table 3. Cont.

First Author
[ref.] Year Cohort Imaging Modality ML Algorithm Main Findings

Hatton [94] 2018 359 men T1WI SVR
BAG associated with

negative fateful life events
in midlife

Kiehl [95] 2018 1332 incarcerated
males T1WI ICA

Brain age predicts
recidivism, particularly

when combined with other
data.

Le [96] 2018 20 healthy people T1WI SVR BAG: −1.15 or −1.18 yr by
taking ibuprofen

Luders [97] 2018 14 healthy women
after childbirth T1WI RVR Brain age became younger

in late postpartum by 5.4 yr.

Rogenmoser [98] 2018
42 pro-musician,

45 amateurs,
38HCs

T1WI RVR BAG: −3.70 to −4.51 yr in
musicians

Scheller [99] 2018 34 elderly T1WI RVR

interaction of BAG and
APOE variants, suggesting a
compensation mechanism in

the elderly

de Lange [100] 2019 12,021 women T1WI XGBoost
BAG decrease with the

number of previous
childbirths

Cruz-Almeida [101] 2019 47 elderly T1WI GPR Increased BAG in elderly
with chronic pain

Cole [15] 2020 14,701 people T1WI, FLAIR, T2*,
DTI, fMRI LASSO

BAS associated with stroke
history, diabetes, smoking,

alcohol, and cognitive
measures

de Lange [102] 2020 473 people T1WI, DTI, fMRI XGBoost Associated with
cardiovascular risk

de Lange [103] 2020 19,787 women T1WI XGBoost

BAG decrease with the
number of previous

childbirths. Involvement of
brain subcortical regions

Henneghan [104] 2020

43 breast cancer
with

chemotherapy,
50 HCs

T1WI SVR/RF
Trend-level increase on BAG

after chemotherapy for
breast cancer

Reuben [105] 2020 564 people at 45 yr T1WI SVR/RF
BAG: +0.77 yr in those who

had lead exposure in
childhood

Seidel [106] 2020
20 sepsis survivors

with cognitive
deficits, 44 HCs

T1WI Kernel regression
BAG: +4.5 yr in sepsis

survivor, associated with the
severity of dyscognition

Anaturk [107] 2021 537 elderly T1WI, DTI, FLAIR XGBoost

Relationship with
cumulative lifestyle

measures independent of
cognitive age
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First Author
[ref.] Year Cohort Imaging Modality ML Algorithm Main Findings

Bittner [108] 2021 622 elderly T1WI RVR

BAG: +5.04 months by
combined lifestyle risk,

+0.6 month by smoking,
−0.55 month by physical

activity

Cherbuin [109] 2021 335 middle age,
351 elderly T1WI RVR

BAG: +51.1–65.7days by
every additional 10-mmHg

increase in BP

Dunas [110] 2021 351 people T1WI, DTI, fMRI
OLS, BRR, LASSO,
ENET, SVR, RVR,

GPR

BAG associated with
current and past physical

fitness and cognitive ability

Elliott [111] 2021 869 middle-age T1WI SVR/RF

Associated with cognitive
function, impaired brain
health at age 3, and other

signs of aging

Hedderich [112] 2021

101 premature-
born adults,

111 full-term
controls

T1WI RVR

BAG: +1.4 yr in
premature-born adults,

associated with low
gestational age, low birth

weight, and increased
neonatal treatment intensity

Karim [113] 2021 78 older adults T1WI, T2WI,
FLAIR GPR BAG associated with male

sex, worry, and rumination

Rakesh [114] 2021 166 adolescents T1WI SVR

increased BAG by
neighborhood disadvantage,

modulated by effortful
control

Rosemann [115] 2021 169 elderly T1WI GPR No association with
age-related hearing loss

Salih [116] 2021 15,335 HCs DTI Bayesian ridge
regression

Limbic tract-based BAG was
most accurate and

associated with daily life
factors. Two SNPs were

associated with BAG.

Sanders [117] 2021 122 elderly T1WI XGBoost
BAG decrease in more

physically active women but
not men

Subramaniapillai
[118] 2021 1067 elderly T1WI Elastic net

regression

Brain age was more
associated with AD risk

factors in women than in
men.

Vidal-Pineiro [119] 2021 6950 people T1WI LASSO, XGBoost

No association between
cross-sectional brain age
and longitudinal change.

Association with congenital
factors, suggesting a lifelong
influence on brain structure

from early life



J. Pers. Med. 2022, 12, 1850 14 of 21

Table 3. Cont.

First Author
[ref.] Year Cohort Imaging Modality ML Algorithm Main Findings

Weihs [120] 2021 690 people T1WI OLS Brain age associated with
AHI and ODI in PSG data

Angebrandt [121] 2022 240 HCs, 231 HCs
(middle age) T1WI SVR/RF

Dose-dependent relation
between 90-day alcohol
consumption and BAG

Beck [122] 2022 790 healthy people T1WI, DTI XGBoost

T1-based BAG: associated
with sBP, smoking, pulse,

and CRP.
DTI-based BAG: associated

with phosphate, MCV

Bourassa [123] 2022 910 people
(midlife) T1WI SVR/RF

BAG in midlife is associated
with smoking, obesity, and

psychological problems
during adolescence.

Giannakopoulos
[124] 2022 80 elderly T1WI RVR

BAG predicted a decrease in
executive function over

time.

Linli [125] 2022 33,293 people T1WI XGBoost
BAG: +1.19 yr in active

regular smokers, associated
with the amount of smoking

Sone [16] 2022 773 elderly T1WI SVR
BAG: associated with life

satisfaction, alcohol use, and
diabetes

Vaughan [126] 2022 57 elderly T1WI GPR

BAG: associated with leg
strength, moderating the

relationship between
strength and mobility

Wang [127] 2022 165 elderly T1WI RVR

BAG: associated with female
gender, higher education
but not with APOE-e4 or

family history of dementia

Whistel [128] 2022 712 people T1WI SVR

Association of BAG in mid-
to late-life with heavier

smoking and alcohol
consumption in early

mid-life

Zheng [129] 2022 1676 HCs T1WI RBF-kernel
BAG associated with worse

cognitive outcomes over
time

BAG: brain age gap, CNN: convolutional neural network, DTI: diffusion tensor imaging, ENET: efficient neural
network, fMRI: functional MRI, GPR: Gaussian process regression, HCs: healthy controls, ICA: independent
component analysis, LTM: long-term meditation practitioner, ML: machine learning, OLS: ordinary least squares,
RBF: radial basis function, RF: random forest, RVR: relevance vector regression, SVR: support vector regression,
T1WI: T1-weighted image, T2DM: type 2 diabetes mellitus, T2WI: T2-weighted image.

In addition, several studies reported potentially protective factors associated with a
reduced BAG: long-term meditation (−7.5 years), music composition (approx. −4 years),
physical activity, taking ibuprofen, and life satisfaction (Table 3). Interestingly, it has been
observed in more than one study that childbirth decreases the BAG in women, not only
during the postpartum period but also in later life [100].

Thus, although the studies are diverse in terms of the methodologies used and the
targeted factors, cumulative evidence will further expand our knowledge of how to improve



J. Pers. Med. 2022, 12, 1850 15 of 21

the aging process of human brains. The strong and consistent risk for brain aging appears
to be diabetes, followed by alcohol consumption. Other lifestyle-related risk factors, e.g.,
smoking or hypertension, may also be harmful but less consistent. Regarding beneficial
effects, though the research focuses were diverse across studies, physical, mental, or
creative activities may likely improve our brain age. It is unclear whether neuropsychiatric
disorders, particularly dementia, could be prevented by improving brain aging. Further
research is necessary to obtain real-world evidence regarding the utility of brain-age studies
for this question.

6. Strengths, Controversies, and Future Direction

As described above, a neuroimaging-based brain-age estimation can provide a reliable
neuropsychiatric biomarker at the single-subject level. In addition, brain MRI—particularly
T1-weighted structural MRI—is a widely available examination in most countries, which
may support easier and wider clinical applications of brain-age analyses. Given that many
studies have successfully used public databases to build a brain-age prediction model, the
reproducibility and external validity of a brain-age model should be at an acceptable level.
Thus, the strengths of brain age as a biomarker would be its use as a single-subject-level
marker, widely available examination, and acceptable reproducibility. The processing of
MRI scans, including normalization and machine-learning analysis, may require advanced
techniques and could be a possible barrier for most facilities, but currently, there are
several public tools, e.g., BARACUS (https://github.com/BIDS-Apps/baracus, accessed
on 31 October 2022) and brainageR (https://github.com/james-cole/brainageR, accessed
on 31 October 2022) which would help us apply a brain age model to the patients.

Controversies and limitations of the use of brain ages have also been suggested,
particularly for the interpretation of study results. As reviewed herein, there is a level of
overlapping of BAG scores across various disorders, which might limit the usefulness of the
brain age for differential diagnoses in clinical analyses. It was also reported that individual
variations in brain age were associated with early-life factors rather than longitudinal
changes [119]. Moreover, the methodology is quite diverse in terms of imaging modalities,
processing, and choice of machine-learning algorithm, and there is no established consensus
about the optimal protocol for determining brain ages. Future studies should address these
controversies and limitations.

In conclusion, neuroimaging-based brain-age estimation has been widely and in-
creasingly researched for over 10 years, and many studies revealed its usefulness for
neuropsychiatry. Considering the utility, availability, and reproducibility of neuroimaging-
based brain-age estimations for single patients, brain age can be expected to become a
useful personalized biomarker in neuropsychiatry.
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