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include microcephaly which is the hallmark of the disease, 
other malformations of cortical development (e.g., lissen-
cephaly, heterotopia, etc.), parenchymal calcifications, uni-
lateral or bilateral ventriculomegaly, enlarged extra-axial 
CSF spaces, dysgenesis of the corpus callosum, agenesis 
of the cavum septum pellucidum, cerebellar and brainstem 
hypoplasia, and ocular abnormalities. ZIKV infection may 
also cause Guillain-Barré syndrome and acute disseminated 
encephalomyelitis in adults. Familiarity with neuroimaging 
findings of congenital and acquired ZIKV infection is cru-
cial to suspect this disease in residents of endemic regions 
and travelers to these areas.

Keywords  Zika virus (ZIKV) · Neuroimaging · Magnetic 
resonance imaging (MRI) · Computed tomography (CT) · 
Ultrasound

Objective

To review neuroimaging findings of congenital and 
acquired Zika virus infection on ultrasound, computed 
tomography (CT), and magnetic resonance imaging (MRI).

Background

Zika virus (ZIKV) is an arbovirus from the Flaviviridae 
family. It was first detected in a primate (rhesus macaque) 
in 1947 and consequently isolated from its vectors (Aedes 
africanus) in 1948 in Zika Valley, Uganda, Africa [1, 2]. It is 
typically transmitted by mosquito bite, with Aedes aegypti 
being the main vector nowadays, and Aedes albopictus and 
Aedes polynesiensis the next most important ones [3]. In 
addition, sexual transmission has also been reported [4].

Abstract  Zika virus (ZIKV) is an arbovirus from the Fla-
viviridae family. It is usually transmitted by mosquito bite. 
There have been no reports of severe symptoms caused by 
ZIKV infection up until the last few years. In October 2013 
an outbreak was reported in French Polynesia with severe 
neurological complications in some affected cases. In 
November 2015, the Ministry of Health of Brazil attributed 
the increased number of neonatal microcephaly cases in 
northeastern Brazil to congenital ZIKV infection. The rapid 
spread of the virus convinced the World Health Organiza-
tion to announce ZIKV infection as a “Public Health Emer-
gency of International Concern” in February 2016. The 
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Fever is a common presentation of ZIKV infection and 
other arbovirus infections such as West Nile, dengue fever, 
yellow fever, and Japanese encephalitis viruses [5]. No 
severe symptoms caused by Zika virus infection have been 
reported until recently. In October 2013, an outbreak of 
ZIKV infection was reported in French Polynesia (a coun-
try in the South Pacific Ocean) and some of the affected 
adult patients suffered from severe neurological and auto-
immune complications [6]. In 2015, there was a Zika 
virus epidemic in Brazil which outspread rapidly to more 
than 30 nations in South America and Caribbean regions, 
and affected more than 2 million people [7]. In Novem-
ber 2015, the Ministry of Health of Brazil attributed the 
increased number of neonatal microcephaly cases in north-
eastern Brazil (particularly in Pernambuco State) to con-
genital ZIKV infection [8, 9]. In addition, ocular involve-
ment has been reported in neonates with ZIKV infection, 
mainly affecting the macular and peri-macular areas, as 
well as the optic nerve [10]. Moreover, ZIKV infection has 
been associated with Guillain-Barré syndrome (GBS) and 
acute disseminated encephalomyelitis (ADEM) in affected 
adult cases in the endemic regions [11]. New evidence 
from in vitro studies suggest that ZIKV may directly infect 
neuronal cells [12].

The serological diagnosis of ZIKV infection is challeng-
ing because cross-reactions with other flaviviruses have 
been reported and also serology may be falsely negative in 
the early course of the disease. Real-time polymerase chain 
reaction (RT-PCR) is used as an accurate and rapid test for 
detecting virus RNA in the blood [13]. However, viremia 
is transient in most cases (mostly present during the first 
week after the beginning of presentations) and RT-PCR is 
likely to be negative after the viremia is resolved. By con-
trast, it seems that, as in other flaviviruses, ZIKV Ig-M 
becomes positive in the patient’s serum as the viral load 
starts to decrease, and will remain detectable for several 
months [2]. In summary, RT-PCR is the diagnostic method 
of choice for ZIKV infection; but in suspicious cases when 
RT-PCR is negative, looking for ZIKV Ig-M using the 
enzyme-linked immunosorbent assay (ELISA) technique 
may be beneficial [14].

The rapid emergence and spreading of the virus con-
vinced the World Health Organization (WHO) to announce 
the ZIKV infection as a “Public Health Emergency of 
International Concern” on 1 February, 2016 [15]. A few 
reports about neuroimaging findings of ZIKV infection are 
available, but several questions still need to be answered. 
In this article, we aim to review the neuroimaging findings 
in fetuses, neonates, and adults with ZIKV infection. For 
radiologists, a detailed knowledge of the potential neuroim-
aging findings in patients with ZIKV infection is crucial for 
accurately making the diagnosis.

Methods

Protocol, data sources, and inclusion criteria

ENTREQ guidelines [16] have been followed by the 
authors during this study. The PubMed search engine and 
two other databases (i.e., Embase and Cochrane) were 
searched electronically among English literature for the 
keywords “Zika virus”, “neuroimaging”, “magnetic reso-
nance imaging (MRI)”, “computed tomography (CT)”, 
“ultrasound” and related terms in articles published 
between January 2010 and July 2016. The reference lists of 
retrieved articles were also manually searched for any rel-
evant study. There was no restriction for the study design 
of searched articles. The literature search was iterative, i.e., 
finding all available materials until reaching theoretical 
saturation.

Data collection and data synthesis

Study data were independently extracted by two authors of 
this article and disagreement was resolved by consensus. 
Primary screening for study selection was done by title and 
abstract review. Narrative synthesis and thematic analysis 
have been used for data synthesis.

Results

Fetal brain ultrasound

The most frequent finding on prenatal ultrasound described 
in the literature is microcephaly [17], i.e., head circumfer-
ence (HC) 2 standard deviations (SD) below the mean for 
the gestational age or under the 3rd centile [23]. However, 
neonates with severe brain abnormalities caused by con-
genital ZIKV infection may have a normal HC. Micro-
cephaly seems to depend on the timing of prenatal ZIKV 
infection, with infections early in pregnancy i.e., in the first 
and early second trimesters being mostly associated with 
microcephaly. Fetal microcephaly is most likely due to 
increased developmental neuronal apoptosis secondary to 
early ZIKV infection of progenitor cells [17–22]. The risk 
of ZIKV infection associated fetal microcephaly is esti-
mated to be 95 (95 CI 34–191) per 10,000 pregnant women 
that are infected in the first trimester of pregnancy [17].

Other fetal ultrasound findings include: (1) unilateral or 
bilateral ventriculomegaly which may be associated with 
subependymal pseudocysts around the occipital horns; (2) 
brain parenchymal atrophy and calcifications; (3) agenesis/
hypoplasia of the corpus callosum with or without inter-
hemispheric cyst; (4) absent cavum septum pellucidum;  
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(5) global cerebellar or vermian hypoplasia; (6) medul-
lary and pontine hypoplasia; (7) ocular abnormalities, 
like microphthalmia, intraocular calcification, and cataract 
[17–22].

Brain parenchymal calcifications are mainly periven-
tricular (especially in the frontal lobes) in location, but may 
also involve the cerebellum and basal ganglia, particularly 
the caudate nucleus [18].

Fetal brain MRI

Like ultrasound, fetal brain MRI reveals microcephaly in 
most cases. Other findings are: (1) ventriculomegaly and 
subependymal pseudocysts particularly near the occipital 
horns of lateral ventricles; (2) agenesis/hypoplasia of the 
corpus callosum; (3) absent cavum septum pellucidum; (4) 
other malformations of cortical development apart from 
microcephaly, such as extensive polymicrogyria, opercu-
lar dysplasia, and pachygyria; (5) abnormal cortical signal 
intensity suggesting cortical laminar necrosis; (6) cerebel-
lar and vermian hypoplasia; (7) brainstem abnormalities; 
(8) enlarged extra-axial spaces [17, 20].

Neonatal brain CT scan (Fig. 1)

Microcephaly is seen in nearly all affected neonates. Other 
described findings include: (1) intraparenchymal calci-
fications which have been reported in almost all infants 
with congenital ZIKV infection. Calcifications are mainly 
located at the corticomedullary junction within the frontal 
and parietal lobes. Other locations include basal ganglia 
and thalami in a decreasing order. Calcifications are pre-
dominantly punctate in shape and band-like in distribution; 

(2) ventriculomegaly is seen in nearly all affected neonates 
and is severe in about half of them. Ventriculomegaly may 
involve the whole ventricular system, but in about 40  % 
of patients it occurs only in the lateral ventricles with pre-
dominant enlargement of the trigones and posterior horns; 
(3) malformations of cortical development, such as hypo-
gyration, is seen in almost all infants with congenital ZIKV 
infection. It is severe (i.e., agyria) in about 80 % of cases. 
Other malformations described in the literature include 
polymicrogyria, heterotopia, and schizencephaly; (4) cer-
ebellar and brainstem hypoplasia may also be noted in 
approximately 75 % and 10  % of cases, respectively; (5) 
white-matter hypodensity is seen in almost all neonates and 
is diffuse in near 90 % of them; no further characterization 
of white matter changes is possible on CT, but MRI studies 
suggest that white matter changes seen on CT are due to 
dysmyelination or delayed myelination; (6) chronic enceph-
alomalacia is reported in one case in the territory of the 
middle cerebral artery (MCA) which is most likely caused 
by sequelae of prenatal ischemic stroke in early intrauterine 
life; (7) skull molding with a pointed occiput and overrid-
ing of bones mainly in the frontal and occipital regions is 
another described feature in head CT scans of affected neo-
nates [24–27].

Neonatal brain MRI

Craniofacial disproportion and microcephaly (HC < 32 cm) 
are seen in almost all brain MRI studies [25–27].

Other findings that are seen in almost all cases include: 
(1) brain atrophy and reduced brain cortical thickness; (2) 
enlarged subarachnoid spaces; (3) lissencephaly; (4) ven-
triculomegaly which is non-hypertensive and secondary to 

Fig. 1   Axial brain CT scan 
findings in congenital micro-
cephaly due to intrauterine Zika 
virus infection in four different 
infants. Multiple isolated (a, b, 
f) and band-like (c–e) calcifica-
tions at the corticomedullary 
junction or periventricular white 
matter are noted. In addition, 
diffuse hypogyration (a–f), 
ventriculomegaly (a–f), and 
cerebellar hypoplasia (g–h) are 
seen
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brain atrophy; (5) agenesis/hypoplasia of the corpus cal-
losum; (6) coarse calcifications that are most commonly 
seen in subcortical-cortical transition and the basal ganglia 
[25–27].

Less common findings include: (1) a large choroid 
plexus; (2) intraventricular septations; (3) periventricular 
calcifications; (4) cerebellar and brainstem hypoplasia; (5) 
schizencephaly; (6) gray matter heterotopia [8, 25–27].

ZIKV‑related Guillain‑Barré syndrome

Brain and spine MRI findings in ZIKV-related GBS are 
similar to those in patients with GBS due to other etiolo-
gies and include: (1) post-contrast enhancement of cra-
nial nerves, such as trigeminal and facial nerves; (2) post-
contrast enhancement of the conus medullaris and cauda 
equina nerve roots with more prominent and common 
enhancement of the ventral roots compared to the dorsal 
ones; (3) T2-hyperintensity and contrast-enhancement of 
the lumbar spinal ganglia bilaterally. The findings are sec-
ondary to autoimmune inflammation and demyelination, 
along with blood-neuronal barrier breakdown [11, 28]. 
So far, no significant imaging difference between ZIKV-
related GBS and GBS in other settings has been reported.

ZIKV‑related acute disseminated encephalomyelitis

Neuroimaging findings in ZIKV-related ADEM do not dif-
fer from those caused by other etiologies, and no specific 
imaging finding for ZIKV-related ADEM distinguishing it 
from other causes of ADEM has been reported yet. Neu-
roimaging findings of ADEM typically include multiple, 
asymmetrically distributed, and poorly marginated lesions 
involving the white matter and deep gray matter nuclei 
that are hyperintense on T2-weighted and fluid-attenuated 
inversion recovery (FLAIR) MR images. Open-ring post-
contrast enhancement is common, but complete-ring or 
punctate enhancement as well as lack of enhancement are 
also possible. In the acute phase, peripheral restricted dif-
fusion is typically seen in contrast to central restriction in 
brain abscesses [29, 30].

Discussion and data synthesis

Many prenatal viral infections such as TORCH infections 
may interfere with various processes of brain development 
like neuronal migration, cortical organization, and myeli-
nation, and hence result in various brain injuries and con-
genital brain anomalies. The earlier the mother is infected, 
the more severe the abnormalities will be because the main 
process of organogenesis takes place during the first trimes-
ter and early second trimester.

The brain damage may be a consequence of either direct 
viral invasion and apoptosis of fetal neuronal tissue, or an 
inflammatory response due to inflammatory mediators 
released from the placenta in the infected pregnant woman 
[31]; however, Mlakar et al. [32] have isolated ZIKV from 
the brain of an aborted fetus affected by Zika infection 
which proves the neurotropism of this virus and favors the 
first pathomechanism against the second one.

The neuroimaging findings described in the literature 
suggest that ZIKV may disrupt various stages of the nor-
mal cortical development because of abnormal cell prolif-
eration/apoptosis (e.g., microcephaly), abnormal neuronal 
migration (e.g., lissencephaly, heterotopia), or abnormal 
post-migrational development (also known as abnormal 
cortical organization) (e.g., polymicrogyria, cortical dys-
plasia, and schizencephaly). Recent experimental studies 
also support a disruptive pathomechanism. In experimental 
models ZIKV has been shown to target human brain cells, 
reducing their viability and growth [33–35]. These results 
suggest that Zika virus abrogates neurogenesis during 
human brain development. In addition, Zika virus infection 
causes a downregulation of genes involved in cell cycle 
pathways, dysregulation of cell proliferation, and upregula-
tion of genes involved in apoptotic pathways resulting in 
cell death [34].

Intracranial calcifications are a common finding in 
TORCH infections. It is considered to be a part of the heal-
ing phase. Morphology, distribution, and location of calci-
fications may differ between patients affected by different 
viral congenital infections. In congenital ZIKV infection, 
intracranial calcifications are typically punctate in form, are 
located at the cerebral gray-white matter junction, and have 
band-like distribution; however, calcifications may be also 
seen in the basal ganglia, periventricular white matter, and 
cerebellum.

The distinctive finding described in congenital Zika is 
the corpus callosum dysgenesis indicating that the insult 
has occurred at about 8–12 weeks of gestation. The normal 
development of the corpus callosum begins from the genu 
(anterior) and progresses posteriorly; however, the rostrum 
appears as the last part. Insult at any stage of development 
will result in different outcomes, ranging from total agen-
esis to hypoplasia, due to encephalomalacia in the corpus 
callosum white matter bundles, also known as the bundles 
of Probst [36].

The ventriculomegaly and enlarged extra-axial CSF 
spaces are best explained in the context of brain volume 
reduction with an ex-vacuo mechanism.

In adults, ZIKV may cause neuronal damage and demy-
elination with inflammatory mediators. Two described con-
ditions that may complicate Zika virus infection in adults 
are Guillain-Barré syndrome (GBS) and acute dissemi-
nated encephalomyelitis (ADEM). Since they are usually 
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of autoimmune pathogenesis, they may develop secondary 
to ZIKV cross-reactivity with human neuronal antigens 
theoretically.

Conclusion

We reviewed neuroimaging findings of congenital and 
acquired Zika virus infection on ultrasound, CT scan, and 
MRI.

Fetal ZIKV infection causes severe central nervous sys-
tem (CNS) developmental abnormalities. The neuroimag-
ing findings in congenital Zika infection are not pathog-
nomonic; but in combination with the patient history 
(especially residence or history of travel in endemic areas) 
may be suggestive of ZIKV infection.

In addition, ZIKV may cause neurological complica-
tions in adults. Familiarity with the neuroimaging findings 
of these potential conditions is important for making the 
correct diagnosis in the infected patients.
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