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Bidirectional communication links operate between the brain and the body. Afferent 
immune-to-brain signals are capable of inducing changes in mood and behavior. Chronic 
heavy alcohol drinking, typical of alcohol use disorder (AUD), is one such factor that 
provokes an immune response in the periphery that, by means of circulatory cytokines 
and other neuroimmune mediators, ultimately causes alterations in the brain function. 
Alcohol can also directly impact the immune functions of microglia, the resident immune 
cells of the central nervous system (CNS). Several lines of research have established the 
contribution of specific inflammatory mediators in the development and progression of 
depressive illness. Much of the available evidence in this field stems from cross-sectional 
data on the immune interactions between isolated AUD and major depression (MD). 
Given their heterogeneity as disease entities with overlapping symptoms and shared 
neuroimmune correlates, it is no surprise that systemic and CNS inflammation could be 
a critical determinant of the frequent comorbidity between AUD and MD. This review 
presents a summary and analysis of the extant literature on neuroimmune interface in 
the AUD–MD comorbidity.

Keywords: alcohol use disorder, depression, comorbidity, neuroimmune interface, neuroinflammation, alcohol 
drinking, cytokines

iNTRODUCTiON

Alcohol consumption is responsible for 5.9% of global annual deaths and 5.1% of the global disease 
burden (1). Unipolar major depression (MD) was the second leading cause of years lived with dis-
ability worldwide, accounting for 8% of all global years lived with disabilities in 2013 (2). Together, 
alcohol use disorder (AUD) and MD disorders account for a half of the global disease burden 
attributable to mental and substance use disorders (3). An unequivocally high comorbidity exists 
between AUD and MD, with a lifetime comorbidity rate of 20.5% (4). About 30% of individuals with 
MD report lifetime AUD (5). Conversely, depressive symptoms are common in AUD to the extent 
that well over a third of AUD patients satisfies diagnostic criteria for MD at some point during their 
drinking career (6, 7). Compared to isolated disorder, patients with AUD–MD comorbidity carry 
higher risk of relapse to alcohol dependence, treatment dropout, suicide attempt, and poorer effect 
of antidepressant medication and have lower global functioning and less life satisfaction (4, 8, 9). 
Attempts to disentangle causal pathways between depression and AUD have resulted in the wider 
acceptance of bidirectional causality, with an estimate suggesting one disorder doubles the risk for 
the other (10). However, the mechanisms of such causality and the interfaces at which they interact 
remain unclear.

A colloquial understanding of the brain–body interaction is that the brain subjugates the body 
and pathogenic penetration of the blood–brain barrier is the only route by which bodily immune 
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insults can reach the brain tissue. This view has changed with the 
demonstration of immune signals in the form of inflammatory 
cytokines that access the brain via afferent vagal fibers (11), by 
directly crossing leaky regions in the blood–brain barrier (e.g., 
area postrema), through cytokine-specific active transport 
molecules and through secondary messenger molecules within 
the CNS endothelia (12). Microglia and astrocytes can in turn 
accentuate CNS cytokine load. These cytokines and the relayed 
signals in the brain interact with various neurotransmitter 
systems as well as the hypothalamic–pituitary–adrenal (HPA) 
axis, the primary hormonal response system to stress (13). 
Furthermore, co-stimulatory signals that allow mast cells to 
interact with the immune cells and influence the integrity of the 
blood–brain barrier are important mediators of the cross talk 
between the peripheral and the central neuroimmune signaling 
(14). Thus, immune inflammatory signals in the brain are key 
to the translation of psychological and biological stressors into 
behavioral outcomes.

Several lines of research show both AUD and MD are, as 
isolated disorders, associated with various changes in immune 
function. There is, however, a paucity of knowledge on the role 
of neuroimmune function in the development and progression 
of comorbid AUD and MD. As an example, a binge pattern of 
drinking is particularly depressogenic (10), but the exact under-
lying neurobiological mechanism for this “alcoholic depression” 
awaits elucidation. The available evidence indicates that allostatic 
changes in the neuroimmune functioning could have significant 
impact on the development, progression, and outcome of AUD–
MD comorbidity, and promising neuroimmune targets are being 
identified to address these issues. Several caveats remain before 
these developments in psychoneuroimmunology of comorbid 
psychiatric disorders could be capitalized.

AUD AND iMMUNiTY

Alcohol is a potent modulator of the immune system and alters 
the expression of inflammatory mediators in the periphery as 
well as in the CNS. A well-described mechanistic explanation for 
this is that heavy alcohol consumption activates toll-like receptor 
(TLR) systems, including the TLR2 and TLR4 (15), through the 
danger-associated molecular pattern signaling, which renders 
the gut wall “leaky” then enabling the translocation of microbial 
products such as lipopolysaccharides (LPS) into circulation. 
This effect has been confirmed both in binge drinking (16) 
and chronic heavy drinking among humans (17, 18) and more 
widely in animal models (19, 20). The leaked LPS potentiates 
alcohol-induced liver inflammation and stimulates immune cells 
such as monocytes, macrophages, T lymphocytes, and dendritic 
cells to cause the release of pro-inflammatory cytokines, includ-
ing interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha 
(TNF-α) (21). Peripherally produced cytokines and chemokines 
[e.g., monocyte chemoattractant protein-1 (MCP-1)] and/or 
their signals eventually relay to multiple brain regions, where 
they further activate brain microglia and astrocytes to produce 
CNS cytokines. The cytokine production in the brain is again 
dependent on TLR4 signaling and is propagated along the 
mitogen-activated protein kinase and NF-κB pathways. It appears 

that alcohol-induced cytokine upregulation follows the pattern 
of LPS but with less intensity. Within an hour of an intoxicating 
dose (5 g/kg) of ethanol, IL-10 levels were already significantly 
increased in rat hippocampus (22). Qin and colleagues demon-
strated that comparable doses of ethanol in binge and chronic 
alcohol drinking paradigm in mice could induce IL-1β, TNF-α, 
and MCP-1 production in the liver, plasma, and brain tissues (23). 
In the liver and other peripheral organs, cytokine upregulation 
upon LPS or alcohol resolves within days to weeks. Remarkably 
though, brain immune activation induced by ethanol, or by LPS 
upon sensitization with ethanol, persisted for many months (23, 
24). Using postmortem brain samples, the same group discov-
ered that MCP-1 concentrations were increased in the ventral 
tegmental area, substantia nigra, hippocampus, and amygdala 
of alcoholic brains compared to the MCP-1 concentrations in 
those brain areas of moderate drinking controls (25). Since these 
areas are relevant to reward, emotion, and behavioral functions, 
MCP-1 is potentially involved in the neurodegenerative patholo-
gies of alcohol. It is at this juncture that alcohol-induced neu-
roinflammation becomes clinically relevant because persistent 
neuroinflammation clearly precipitates cognitive and behavioral 
responses (26). It has recently been proposed that neuroimmune 
signaling is an important contributor to the development and 
maintenance of alcohol dependence (27). Thus, the enduring 
nature of the neuroimmune induction in the brain resonates 
with the chronicity of alcohol addiction and might represent a 
mechanism contributing to the development of closely comorbid 
conditions of alcohol dependence, such as depression (23, 24).

Alcohol modulation of the immune system involves a complex 
dynamic dependent on the dose and duration of exposure and 
chronicity of AUD (Figure 1). Acute heavy alcohol consumption 
(e.g., ≥3 g/kg), even in a single dose, inhibits inflammatory cell 
activation (28–30). Upon LPS challenge, alcohol-primed mice 
suppressed lung TNF-α activity, TNF-Rp55 mRNA expression, 
and soluble TNF-Rp55 levels (31). Ethanol suppressed LPS-
induced expression of IL-1, IL-6, and their receptors while sig-
nificantly upregulating IL-10 levels. In fact, acute ethanol blunted 
LPS-induced TNF-α secretion by 40%. This immune suppressing 
effect of alcohol drinking has long been appreciated. The exact 
molecular mechanism for the opposing immune effects of acute 
and chronic alcohol remains unclear. However, alcohol-induced 
tolerance and sensitization of TLRs depending on the length of 
exposure to alcohol may play a role. Through a series of experi-
ments on human monocytes stimulated with LPS and on animal 
binge drinking models, Szabo and colleagues demonstrated that 
acute alcohol induces TLR4/LPS tolerance through activation 
of a nuclear protein Bcl-3, which interacts with the p50 subunit 
of the nuclear factor kappa-light-chain-enhancer of activated 
B cells (NF-κB) (32). The Bcl-3–NF-κB p50 interaction results 
in the suppression of transcription of NF-κB-regulated genes, 
including that of pro-inflammatory cytokines (33). Furthermore, 
chronic alcohol switched the anti-inflammatory response to a 
pro-inflammatory response by human monocytic sensitization 
to LPS through decreased expression of interleukin-1 receptor-
associated kinase-M, a negative regulator of TLR signaling, 
and subsequent activation of NF-κB, an effect opposite to acute 
alcohol (34).
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FigURe 1 | Alcohol modulation of the innate immune response in vitro and in vivo involves a complex dynamic depending upon the dose and 
duration of exposure and chronicity of alcohol use and alcohol use disorder.
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Animal studies have demonstrated that an anti-inflammatory 
effect of acute binge drinking ensues already in the first hour 
and lasts beyond ethanol elimination from the body (22, 31). 
The same finding was replicated in humans 13 h after intake of 
1.5 g/kg of alcohol (35). The experiment showed that stimulated 
peripheral blood mononuclear cell production of IL-10 and IL-12 
as well as IFN-γ was increased upon early withdrawal. Thus, the 
continuum of heavy drinking, withdrawal, craving, and relapse to 
alcohol use potentially involves immune inflammatory signaling, 
an area that deserves further investigations. Recently, a study of 
rat models of acute alcohol intoxication suggested that the expres-
sion of inflammatory cytokines is elevated during the withdrawal 
phase, but changes in the central nervous system appeared to be 
site dependent (36). In particular, IL-6 levels were increased in 
multiple brain regions following alcohol exposure and lasted for 
up to 18 h. Thus, acute heavy drinking favors apoptotic and anti-
inflammatory changes (37, 38), whereas chronic heavy drinking 
is known to induce monocytic TNF-α production as well as 
T- and B-cell activation (38, 39).

Clearly, the neuroimmune and endocrine modulatory func-
tion of alcohol varies depending on whether the individual is a 
social drinker or has a severe AUD (Figure 1). Gonzalez-Quintela 
et al. (40) reported that, among Spanish adult men and women, 
light-to-moderate alcohol drinking was not associated with 
altered levels of TNF-α. In clinical AUD populations, however, 
levels of cytokines are typically increased compared to non-
drinking individuals (26, 41, 42). A recent study from Taiwan 
showed that the levels of inflammatory cytokines were elevated 

during the early withdrawal phase (up to 4 days of abstinence), 
which was considerably ameliorated upon 4 weeks of abstinence 
(43). Regarding alcohol effects on HPA axis, the findings have 
been controversial, but varying results probably indicate different 
vulnerability factors and the extent of familiarization with alcohol 
(44). Corticosterone levels surges following acute alcohol intake 
by social drinkers in a dose-dependent manner, but this response 
is dampened in chronic AUD (45). In clinical AUD popula-
tions even without liver disease, levels of cytokines are typically 
increased compared to non-drinking individuals (26, 41, 42). As 
I will elaborate later, pro-inflammatory responses seen in chronic 
alcohol misuse are akin to those seen in MD.

Recent studies have shown long-term negative health out-
comes in animals exposed to ethanol prenatally. In adult rats 
prenatally exposed to ethanol, the corticosterone reservoir was 
depleted and the cytokine production upon immune challenge 
was exaggerated (46). The ensuing low-grade inflammation 
correlated with memory deficits, which implicated a microglial 
role in fetal alcohol spectrum disorders (47). Also, substantial 
neuroinflammation caused by traumatic brain injury induced 
escalation of drinking in ethanol-habituated animals (48). Thus, 
CNS inflammation in both low and high grades changes alcohol 
drinking behavior. This phenomenon is clinically relevant.

Human experimental studies on the immune effects of ethanol 
consumption in healthy individuals are rare for obvious ethical 
reasons. A few endeavors have confirmed an early recruitment 
of immune cells following ethanol intoxication. Afshar et al. (49) 
gave a binge dose of alcohol to healthy men (0.9 g ethanol/kg body 
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weight) and women (0.8 g ethanol/kg body weight) and found a 
surge in the number of circulating monocytes, leukocytes, and 
natural killer cells—within 20 min of alcohol intake, which was 
followed by recovery toward baseline within 5 h. Thus, both innate 
and adaptive arms of the immune system are affected by alcohol. 
LPS induction of whole blood in the same sample showed fluctua-
tions in inflammatory cytokines, and at 5 h, an anti-inflammatory 
state set in with elevated IL-10 and reduced IL-1β levels. No sex 
differences in immune response were reported, although animal 
studies indicate that females are more vulnerable to the neuro-
inflammatory effects of alcohol (50). For example, chronically 
ethanol-treated female mice expressed relatively greater levels of 
inflammatory mediators (iNOS and COX-2), cytokines (IL-1β, 
TNF-α), gliosis processes, caspase-3 activation, and neuronal loss 
in the cerebral cortex compared to their male counterparts (50). 
This finding was confirmed in postmortem brain specimens of 
AUD individuals who had higher MCP-1 levels and increased 
microglial activation markers compared to controls (25). Human 
pharmacogenetic studies on alcohol dependence have coinci-
dentally discovered several immune-gene polymorphisms as 
underlying excessive drinking (51).

NeUROiMMUNe ALTeRATiONS 
iN DePReSSiON

The identification of immune disturbance in depressive illness 
(52) led to the “macrophage hypothesis of depression,” the 
proposition that inflammatory products of macrophage were 
responsible for depression (53). Since then, a consistent body 
of literature has confirmed that inflammatory processes are 
involved in the development and progression of depressive ill-
ness. Numerous studies have consistently documented positive 
associations of MD with C-reactive protein (CRP) and IL-6 (54). 
Meta-analyses have also supported depression’s associations with 
IL-1β (55) and TNF-α (56, 57) as well as sIL-2 receptor (57). These 
associations held true for patient populations from the commu-
nity as well as from clinical inpatient/outpatient settings. Patients 
with depression are found to have renormalized cytokine levels 
following treatment (58). Furthermore, several reports indicate 
longitudinal associations between CRP and subsequent develop-
ment of depression (59), although an association was found in 
the opposite direction in a younger sample (60). Compelling 
evidence exists to suggest elevated levels of IL-6 as both a cause 
and a consequence of depression (61). In a 12-year prospective 
study of British civil servants, increased IL-6 levels at baseline 
predicted cognitive symptoms of depression at follow-up (62). 
These effects were reported to be consistent even after accounting 
for possible confounders such as, socio-demographics, behavioral 
and biological risk factors, health conditions, medication use, and 
baseline negative emotions. Recently, a population-based study 
from England (N = 5,909) showed positive associations between 
CRP and symptoms of fatigue, disturbed sleep, low energy, and 
low mood in a dose–response manner, a relationship that was 
absent in antidepressant medication users (63).

These novel findings quickly triggered drug trials using anti-
inflammatory agents in depressive illness in humans. Notably, a 
proof-of-concept study examined infliximab, a TNF-α blocker in 

patients with treatment-resistant depression. Twelve weeks after 
the initiation of therapy, infliximab reduced depressive symptoms 
by at least a half among patients with baseline hs-CRP > 5 mg/L, 
but not among those with lower baseline hs-CRP levels (64). Yet, 
another trial showed that adjunctive celecoxib, a selective COX2 
inhibitor, was more effective in reducing depressive symptoms 
than sertraline alone in MD (65). Again, a reduction of serum 
IL-6 levels correlated very well with a reduction in depression 
score. However, the observation period was only 6 weeks. Several 
other drug trials using non-steroidal anti-inflammatory drugs 
have been conducted (66), mostly without rigorous patient selec-
tion. Significant methodological heterogeneity and publication 
bias make the reported positive efficacy less tenable.

One mechanism by which activated inflammatory cytokines 
(mainly IFN-γ and TNF-α) can aggravate depressive symptoms 
is through their induction of indolamine 2,3-dioxygenase (IDO), 
an enzyme that metabolizes tryptophan along the neurotoxic 
kynurenine pathway (67, 68). IDO induction causes relative 
reduction in the availability of tryptophan, which is the amino 
acid precursor for serotonin synthesis. Tryptophan depletion 
and the neurotoxic metabolites produced downstream the 
kynurenine pathway may both trigger depression. In particular, 
peripheral macrophages and brain microglia preferentially 
metabolize kynurenine into anthranilic acid and quinolinic acid, 
both of which are NMDA receptor agonists and have potentially 
neurotoxic effects (69). Approximately, half of the cancer patients 
treated with IFN-α immunotherapy develops depression, and it 
was found that the severity of IFN-α-induced depression was 
related to the tryptophan degradation index (kynurenine to tryp-
tophan ratio) along the kynurenine pathway (70). Studies also 
show a higher tryptophan degradation index ratio in individuals 
with MD compared to healthy controls (71, 72).

The failure of monoamine hypothesis to explain the delayed 
symptom relief in depression, despite early changes in brain mon-
oamine neurotransmitter concentration following treatment, led 
to the emergence of the neurotrophic hypothesis of depression. It 
posits that chronic stress leads to reduced neurotrophic support 
to the brain limbic structures responsible for regulating mood 
and increases vulnerability to depression (73). Indeed, numer-
ous studies have shown reduced serum levels of brain-derived 
neurotrophic factor (BDNF) in patients with MD compared to 
healthy controls (74–76), and evidence also exists to support 
renormalization of BDNF levels upon successful anti-depression 
interventions (74, 77). This process takes weeks to months. 
CNS and peripheral BDNF concentrations are altered in several 
mood and behavioral aberrations (74, 75, 78). Overexpressed 
pro-inflammatory cytokines in the brain and associated chronic 
neuroinflammation can lead to neurodegeneration and reduced 
neurogenesis, as indicated by decreased BDNF in multiple 
brain areas following LPS challenge (79). However, the cytokine 
network is rather complex, including pleiotropic effects that are 
sometimes paradoxical. For example, both neurotrophic and 
neurodestructive properties of IL-6 have been reported (80). 
Accordingly, circulating BDNF levels in depressed individuals 
were positively correlated with IL-6, but not with TNF-α (81). 
In recovering alcoholics, however, serum BDNF levels were posi-
tively correlated with IL-6 and TNF-α (82). Thus, the interaction 
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between inflammatory cytokines and BDNF remains an active 
area of research.

While the search for neuroimmune targets in depression 
continues, alternative medicine has also contributed to the field. 
Salidroside, a traditional Tibetan herbal product, known for its 
antioxidative and immunotonic effects, was administered to 
mice that were later exposed to LPS (83). The study revealed 
that salidroside could effectively ameliorate LPS-induced 
depression-like behavior while also attenuating the inflammatory 
cytokine and NF-κB. Further investigations using polyphenolic 
compounds such as curcumin and resveratrol are underway to 
test the possible role of these agents in HPA axis modulation, hip-
pocampal neurogenesis, and central monoamine homeostasis. 
Additionally, several other compounds related to immune regula-
tion are of value: statins, polyunsaturated fatty acids, ketamine, 
TLR-inhibitors, glycogen synthase kinase-3 inhibitors, oleanolic 
acid analogs, and minocycline (84).

The most pressing caveat is that inflammation is neither 
necessary nor sufficient to cause depression, which means that 
activated inflammatory response would accompany only a sub-
group of individuals with MD. Circulating and CNS levels of the 
inflammatory cytokines induced by alcohol are also modest, typi-
cally exceeding the levels in the healthy controls by a factor of 2–5 
(24, 43). Unlike in purely inflammatory conditions, inflammatory 
markers in these low-inflammatory states rise only marginally, 
thus making interpersonal variations difficult to interpret (85). 
Nonetheless, a finding of sustained immune activation can 
connect depression as well as AUD with the often coexisting 
conditions of low-grade inflammation such as cardiovascular dis-
eases, diabetes, fibromyalgia, multiple sclerosis, and cancer (86). 
A  bulk of psychoneuoroimmunological literature stems from 
correlational evidence, which is clearly inadequate to explain the 
depression pathophysiology and to subsequently proffer clinical 
interventions. Thus, it is high time that the theoretically embraced 
entity of “inflammatory cytokine-associated depression” (87) be 
phenotype based on relevant biological and clinical characteris-
tics. Omics-based approaches highlighting systems biomedicine 
could be beneficial (88). Only such progress would lead to an 
enhanced understanding of comorbid conditions of MD.

NeUROiMMUNe DYSRegULATiON 
iN AUD–DePReSSiON COMORBiDiTY

It should be noted that immune perturbations presented in 
the previous sections that focused on inflammatory cytokines 
are only parts of several interacting biological systems that are 
ascribed to AUD and MD. The proposed interrelated inflam-
matory and neurodegenerative mechanisms responsible for the 
neurobiological changes in depression involve activated central 
and peripheral pro-inflammatory cytokine response, lowered 
levels of zinc and ω3 polyunsaturated fatty acid overload, oxi-
dative and nitrosative stress, tryptophan degradation along 
the kynurenine pathway, reduced neurogenesis, and increased 
neurodegeneration (89). A complex interaction between these 
processes produces neurobiology of depression and contributes to 
related brain disorders. For example, inflammatory cytokines in 
the brain are toxic to dopaminergic neurons and may precipitate 

Parkinson’s disease (90). Two main factors contributing to the 
development of alcohol addiction are reinforcement (positive 
and negative) and neuroadaptation, both of which seem closely 
related to alterations in these processes, as has been elaborated 
in previous sections. Given the high rates of comorbidity and 
overlapping pathophysiological changes in various aspects of the 
neuroimmune system that accompany each disorder, it will be no 
surprise if neuroimmune changes in AUD–MD comorbidity are 
somehow coordinated (Figure 2).

Hypothalamic–pituitary–adrenal-axis hyperactivity and 
glucocorticoid receptor impairment are reliable findings in 
depression (91), and altered HPA axis regulation is a hallmark 
of hormonal dysbalance in AUD (92). The nature of HPA axis 
abnormality upon ethanol depends on various stages of the 
disease and ethanol dose. In chronic AUD cases, basal ACTH 
levels are elevated and stress- and cue-induced corticotropin and 
cortisol responses are suppressed (93). Alcohol withdrawal syn-
drome is characterized by symptoms of autonomic hyperactivity 
such as tremor, sweating, anxiety, agitation, nausea, and malaise. 
Symptoms also include disturbed sleep and depressed mood. 
Interestingly, blocking the hypothalamic corticotropin-releasing 
factor (CRF) ameliorates the dysphoric symptoms of alcohol 
withdrawal (94) and the increased stress responsiveness and asso-
ciated anxiety-like behavior during protracted abstinence (95). 
CRF blockade in depression-like behavior in a mouse model was 
shown to reduce those symptoms through modulation of neu-
ronal plasticity (96). Taken together, involvement of brain stress 
systems in neuroadaptive changes accompanying addiction and 
emotional circuitry provides a common interface for AUD- and 
MD-related neuronal changes.

Inflammatory cytokines are potent inducers of CRF and, 
therefore, negative affect during withdrawal and negative rein-
forcement during long-term abstinence could potentially arise 
from immune-mediated CRF activation. Glucocorticoids thus 
produced cause tryptophan degradation by activating hepatic 
degradation of tryptophan 2,3-dioxygenase (TDO), which, along 
with cytokine-induced IDO in the brain, once again produces 
metabolites biased toward the neurotoxic edge (97, 98). TDO 
enzyme is activated upon acute alcohol consumption, subse-
quently inhibited with chronic alcohol drinking, and again surges 
during ethanol withdrawal (99–101). The altered tryptophan 
metabolism reportedly lasts for several months into abstention, 
as shown in a comparative study of 4 and 11 weeks of abstinence, 
wherein longer abstinence was related to increased kynurenine 
levels (102, 103). This could well be explained in terms of hyper-
active stress response in concert with negative reinforcement, 
craving, and relapse. We reported increased tryptophan turnover 
with increased duration of abstinence (104). However, another 
study (105) showed that AUD individuals who abstained from 
alcohol for longer than two weeks, regardless of background 
variables, had much higher tryptophan levels compared to 
healthy controls. Literature also indicates a contradictory higher 
tryptophan and lower tryptophan degradation in depression, 
alongside activated pro-inflammatory pathway (104, 106, 107), 
but these findings are based on peripherally measured mediators 
and may not reflect brain levels. An overview of the few studies 
that have investigated neuroimmune mediators in the context of 
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FigURe 2 | Simplified pathways illustrating the potential mechanisms that underlie associations between alcohol use disorder (AUD) and major 
depression (MD), with a compelling neuroimmune contribution. Heavy alcohol drinking may render gut wall permeable to bacterial proteins such as 
lipopolysaccharide (LPS) through the activation of toll-like receptors. Ethanol and LPS upregulate the transcription factor NF-κB and cause immune cells in the 
periphery as well as glial cells to produce pro-inflammatory cytokines. The pro-inflammatory cytokines within the brain activate the indolamine 2,3-dioxygenase 
enzyme, which metabolizes tryptophan away from serotonin production toward a potentially neurotoxic kynurenine pathway. MD accompanies altered monoamines, 
oxidative and nitrosative damage, and neurodegeneration. Depression is associated with chronic inflammatory conditions such as cancer and cardiovascular 
diseases, which together with sickness symptoms can feed the neuroimmune dysregulation causing further neurodegeneration, negative affect, and anxiety-like 
behavior and loss of behavioral control—all features characterized in AUD.
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AUD–MD comorbidity are shown in Table 1. Further studies are 
needed to clarify these observations.

Neurotrophic changes in brain regions involved in depres-
sion and AUD are relevant considerations. As discussed in the 
previous section, depression is consistently associated with 
depleted BDNF. Indeed, neuroinflammation has an inhibitory 
effect on adult cortical and hippocampal neurogenesis, as 
evidenced by reduced BDNF expression concurrent to LPS-
induced upregulation of inflammatory cytokines in rats (79). 
Similarly, chronic ethanol exposure in humans was accompa-
nied by reduced BDNF expression in the hippocampus (108) 
as well as lower plasma BDNF protein levels (109). Reduced 
expression of BDNF in the hippocampus and cortical regions is 
a clear conjuncture for AUD and depression because these are 
critical target brain regions in both disorders. During the last 
decade, we (82) and others (110–113) have investigated BDNF 
in AUD patients. The findings of these studies indicate that 
neuronal repair initiates soon after the abstention commences, 
and BDNF levels continue to rise over several months (109, 
113–117). Rat models of alcoholism showed that augmenting 
BDNF actions by the use of the selective BDNF tyrosine kinase 
B receptor agonist (7,8-dihydroflavone) removed withdrawal-
induced depression-like behavior (118). Depressive symptoms 
are observed during various stages of AUD. In many cases of 
AUD, associated depressive symptoms do not disappear even 
after sustained abstinence. Against this backdrop, bidirectional 
causality between AUD and MD has been demonstrated with 
a more robust association seen from AUD leading toward MD 
(10). These evidences suggest the existence of what might be 
considered alcoholic depression and that a biological explanation 

for depression in AUD could be approached from the immune 
inflammatory and stress pathways. It remains to be shown how 
the neuroadaptive changes in recovering AUD individuals relate 
to depressive symptoms, and whether targeting key neuroim-
mune factors such as BDNF is a viable intervention option in 
AUD–MD comorbidity.

Immune signaling induces a range of physiological responses 
that are common to affective and behavioral disorders. Infection 
accompanies a TLR4-mediated pro-inflammatory response, 
indicated by raised IL-1β, IL-6, and TNF-α levels, which leads 
to “sickness behavior” (119, 120). Sickness behavior is also 
observed upon psychological stress and exogenous cytokine 
administration such as during cancer treatment with IFN-α 
and includes physiological responses (e.g., fever and disturbed 
sleep) as well as behavioral symptoms (e.g., anorexia, reduced 
mobility, disappearance of body care activities and reduced social 
interaction) (119). Many of these features overlap with those of 
depression. Compelling evidence also suggests activated TLR4 
signaling to accentuate alcohol drinking but also negative affect 
and anxiety-like behavior, especially during the withdrawal phase 
(121). Sickness symptoms wane away over several days; however, 
cytokine induction of these behavioral changes may persist as 
MD. Thus, a better understanding of the loop between immunity, 
the brain, and behavioral outcomes holds promises to newer 
approaches to intervene AUD–MD pathologies.

CONCLUSiON AND FUTURe DiReCTiONS

The clinical realm of frequent comorbidity between AUD and 
MD requires an integrated psychobiological understanding that 
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TABLe 1 | Overview of studies investigating neuroimmune pathways in comorbid alcohol use disorder (AUD) and depression.

Reference, 
country

Subjects Studied pathway/
parameter

Main findings

Han et al. (110), 
South Korea

45 male inpatients with 
alcohol dependence

Growth factors Depression score in AUD patients correlated positively with insulin-like growth factor, 
but not with nerve growth factor or BDNF

Plemenitaš et al. 
(122), Slovenia

101 alcohol abusing and 100 
previously alcohol-dependent 
male inpatients abstinent for 
≥2 years

Tryptophan 
metabolism; genetic 
association study

Genetic variability in tryptophan hydroxylase 2 (TPH2) gene associated with anxiety 
and, to some extent, with depression. TPH2 rs1843809 was associated with 
depressive and aggressive traits and TPH2 rs4290270 with depressive and anxiety 
traits

Neupane et al. 
(104), Nepal

153 male and 16 female AUD 
inpatients

Tryptophan 
metabolism

Concurrent depressive state related to counterintuitive higher tryptophan level and 
lower tryptophan degradation index. Tryptophan metabolism related to abstinence 
duration and AUD severity

Neupane et al. 
(82), Nepal

152 male AUD inpatients BDNF Concurrent depressive state in AUD related to lower BDNF serum levels. Among 
patients in controlled abstinence, history of binge drinking, and severe AUD 
associated with higher BDNF serum levels. Tumor necrosis factor-alpha (TNF-α) 
correlated with BDNF levels

Neupane et al. 
(107), Nepal

156 male and 20 female AUD 
inpatients

Cytokines Higher serum levels of inflammatory cytokines [interleukin (IL)-6, TNF-α, IFN-γ], 
but not IL-10 among comorbid major depression (MD) group. Cytokine levels less 
increased in depression comorbid with greater severity of AUD than less severe AUD

Nedic et al. (111), 
Croatia

549 male and 126 female 
patients with alcohol 
dependence

BDNF; genetic 
association study

BDNF Val66Met polymorphism not related to depression in alcohol dependence

Su et al. (112), 
China

548 male Han Chinese with 
alcohol dependence

BDNF; genetic 
association study

The A allele of BDNF rs6265 was significantly overrepresented in alcohol-dependent 
patients with depression compared to patients with isolated alcohol dependence

Umene-Nakano 
et al. (113), Japan

13 male and 6 female 
inpatients with MD and 
alcohol dependence

BDNF No significant difference was found in the serum BDNF levels of depressive patients 
with and without alcohol dependence. BDNF levels increased among responders to 
antidepressant medication (8 weeks), but not among non-responders

BDNF, brain-derived neurotrophic factor.
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underlies these conditions. As presented in this review, mounting 
evidence supports neuroimmunological alterations, in particu-
lar activated immune responses (26), as a critical piece of the 
physiological link between AUD and MD. Neuroimmune gene 
induction in limbic brain regions increases negative affect, drug-
seeking behavior, and loss of behavioral control (51). Diminished 
affect is a hallmark of depression, and anxiety-like behavior is 
pronounced in the withdrawal phase of alcohol addiction. Thus, 
mood symptoms as well as emotional and behavioral lability in 
AUD and MD appear to stem from neuroimmune mechanisms 
(21, 51, 87). The relative contribution of one phenomenon in the 
context of the other remains unclear. The current evidence is 
clearly inadequate to unravel the full scope of possible neuroim-
mune etiopathology of isolated AUD and MD, and an endeavor 
to attack their comorbidity may sound premature at this stage. 
However, this complexity should not be a hindrance to inves-
tigate these two disorders in their totality, because the relative 
neuroimmune contribution to each disorder may become clearer 
when one of the comorbid conditions vanishes. Prospective 
studies investigating longitudinal associations between changes 
in neuroimmune function and changes in depressive symptoms, 
drinking behavior, and treatment outcome are necessary. 
Furthermore, researchers in the field should be aware of the 
ethical obligation not to categorically exclude patients who have 
additional burden.

An extension of the research focus from isolated to comorbid 
disorders and from preclinical to clinical settings is conducive 

to appraising the significant overlaps in manifestation of AUD 
and MD, as well as common biological perturbations in their 
development and maintenance. It is important to note that the 
neuroimmune approach alone would not be sufficient to elucidate 
the underlying complex etiopathology of AUD and MD, which 
strongly involves other genetic, epigenetic, and environmental 
factors. However, the neuroimmune approach would constitute 
an essential component of the systems biomedicine and be 
applicable to a significant proportion of patient populations. 
Equally important is the identification of intermediary processes 
that may determine the ultimate neuroimmune allostasis. Taken 
together, an exploration of a neuroimmune model for AUD–MD 
comorbidity provides a foundation for the development of more 
effective immune-based pharmacotherapy against these burden-
some disorders.
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